4.7 Dependable System Design

Printer-friendly version PDF version

Date: Tuesday 25 March 2014
Time: 17:00 - 18:30
Location / Room: Konferenz 5

Chair:
Yiorgos Makris, University of Texas at Dallas, US

Co-Chair:
Haralampos Stratigopoulos, TIMA, FR

This section presents a variety of techniques to improve dependability of digital systems, showing how to improve security and fault tolerance at system level.

TimeLabelPresentation Title
Authors
17:004.7.1REAL-TIME TRUST EVALUATION IN INTEGRATED CIRCUITS
Speakers:
Yier Jin and Dean Sullivan, The University of Central Florida, US
Abstract
The use of side-channel measurements and fingerprinting, in conjunction with statistical analysis, has proven to be the most effective method for accurately detecting hardware Trojans in fabricated integrated circuits. However, these post-fabrication trust evaluation methods overlook the capabilities of advanced design skills that attackers can use in designing sophisticated Trojans. To this end, we have designed a Trojan using power-gating techniques and demonstrate that it can be masked from advanced side-channel fingerprinting detection while dormant. We then propose a real-time trust evaluation framework that continuously monitors the on-board global power consumption to monitor chip trustworthiness. The measurements obtained corroborate our frameworks effectiveness for detecting Trojans. Finally, the results presented are experimentally verified by performing measurements on fabricated Trojan-free and Trojan-infected variants of a reconfigurable linear feedback shift register (LFSR) array.
17:304.7.2(Best Paper Award Candidate)
VERIFICATION-GUIDED VOTER MINIMIZATION IN TRIPLE-MODULAR REDUNDANT CIRCUITS
Speakers:
Dmitry Burlyaev, Pascal Fradet and Alain Girault, INRIA, FR
Abstract
We present a formal approach to minimize the number of voters in triple-modular redundant sequential circuits. Our technique actually works on a single copy of the circuit and considers a user-defined fault model (under the form "at most 1 bit-flip every k clock cycles"). Verification-based voter minimization guarantees that the resulting circuit (i) is fault tolerant to the soft-errors defined by the fault model and (ii) is functionally equivalent to the initial one. Our approach operates at the logic level and takes into account the input and output interface specifications of the circuit. Its implementation makes use of graph traversal algorithms, fixed-point iterations, and BDDs. Experimental results on the ITC'99 benchmark suite indicate that our method significantly decreases the number of inserted voters which entails a hardware reduction of up to 55% and a clock frequency increase of up to 35% compared to full TMR. We address scalability issues arising from formal verification with approximations and assess their efficiency and precision.
18:004.7.3TRADE-OFFS IN EXECUTION SIGNATURE COMPRESSION FOR RELIABLE PROCESSOR SYSTEMS
Speakers:
Jonah Caplan1, Maria Mera2, Peter Milder2 and Brett Meyer1
1McGill University, CA; 2SUNY Stonybrook, US
Abstract
As semiconductor processes scale, making transistors more vulnerable to transient upset, a wide variety of microarchitectural and system-level strategies are emerging to perform efficient error detection and correction computer systems. While these approaches often target various application domains and address error detection and correction at different granularities and with different overheads, an emerging trend is the use of state compression, e.g., cyclic redundancy check (CRC), to reduce the cost of redundancy checking. Prior work in the literature has shown that Fletcher's checksum (FC), while less effective where error detection probability is concerned, is less computationally complex when implemented in software than the more-effective CRC. In this paper, we reexamine the suitability of CRC and FC as compression algorithms when implemented in hardware for embedded safety-critical systems. We have developed and evaluated parameterizable implementations of CRC and FC in FPGA, and we observe that what was true for software implementations does not hold in hardware: CRC is more efficient than FC across a wide variety of target input bandwidths and compression strengths.
18:154.7.4AN ENERGY-AWARE FAULT TOLERANT SCHEDULING FRAMEWORK FOR SOFT ERROR RESILIENT CLOUD COMPUTING SYSTEMS
Speakers:
Yue Gao, Sandeep Gupta, Yanzhi Wang and Massoud Pedram, University of Southern California, US
Abstract
For modern high performance systems, aggressive technology and voltage scaling has drastically increased their susceptibility to soft errors. At the grand scale of cloud computing, it is clear that soft error induced failures will occur far more frequently, but it is unclear as to how to effectively apply current error detection and fault tolerance techniques in scale. In this paper, we focus on energy-aware fault tolerant scheduling in public, multi-user cloud systems, and explore the three-way tradeoff between reliability (in terms of soft error resiliency), performance and energy. Through a systematically optimized resource allocation, error detection approach selection, virtual machine placement, spatial/temporal redundancy augmentation and task scheduling process, the cloud service provider can achieve high error coverage and fault tolerance confidence while minimizing global energy costs under user deadline constraints. Our scheduling algorithm includes a static scheduling phase that operates on task graph based workload inputs prior to execution, and a light-weight dynamic scheduler that migrates tasks during execution in case of excessive re-executions. All schedules are evaluated on a runtime simulation engine that (1) mimics the performance fluctuations in cloud systems, and (2) supports the injection of arbitrary fault patterns. Compared to current virtual machine or task replication techniques, we are able to reduce overall application failure rates by over 50% with approximately 76% total energy overhead.
18:30IP2-9, 384A LOW-POWER, HIGH-PERFORMANCE APPROXIMATE MULTIPLIER WITH CONFIGURABLE PARTIAL ERROR RECOVERY
Speakers:
Cong Liu1, Jie Han1 and Fabrizio Lombardi2
1University of Alberta, CA; 2Northeastern University, US
Abstract
Approximate circuits have been considered for error-tolerant applications that can tolerate some loss of accuracy with improved performance and energy efficiency. Multipliers are key arithmetic circuits in many such applications such as digital signal processing (DSP). In this paper, a novel approximate multiplier with a lower power consumption and a shorter critical path than traditional multipliers is proposed for high-performance DSP applications. This multiplier leverages a newly-designed approximate adder that limits its carry propagation to the nearest neighbors for fast partial product accumulation. Different levels of accuracy can be achieved through a configurable error recovery by using different numbers of most significant bits (MSBs) for error reduction. The approximate multiplier has a low mean error distance, i.e., most of the errors are not significant in magnitude. Compared to the Wallace multiplier, a 16-bit approximate multiplier implemented in a 28nm CMOS process shows a reduction in delay and power of 20% and up to 69%, respectively. It is shown that by utilizing an appropriate error recovery, the proposed approximate multiplier achieves similar processing accuracy as traditional exact multipliers but with significant improvements in power and performance.
18:30End of session
Exhibition Reception in Several serving points inside the Exhibition Area (Terrace Level)
The Exhibition Reception will take place in the exhibition area (Terrace Level). All exhibitors are welcome to provide drinks and snacks for delegates and visitors.