Formal Abstraction and Verification of Analog Circuits

Model Abstraction

- **VERA**: State space sampler
- **ELSA**: Abstraction core

Abstracted Model

- Hybrid automaton generated in Verilog-A, Matlab or SystemC-AMS syntax
- The model is simulated or a reachability analysis is performed in the reduced state space S_r. Via a back transformation, all nodal voltages and currents can be obtained in the original state space S_o.

Extensions

- **Model With Abstraction Variations**
 - Instead of describing the system behavior via a matrix A, formed by taking the mean of the eigenvalues, a matrix zonotope or interval matrix is used to hull all the eigenvalues of a location for the Matlab (Cora) models.

- **Model With Parameter Variations**
 - For the SystemC-AMS models a similar approach is possible using the AADD library [1]. The models are thus extended to model uncertainties.

- **Compositional Automaton**
 - As the generated models are pin compatible, they are suitable for compositional abstraction. This can be done by abstracting the sub-circuits of a large netlist, followed by linking them in a compositional manner to abstract the whole circuit.

- **Model Checking and Reachability Analysis**
 - A reachability analysis can be conducted with the HA, and a (currently) post simulation model checking can be performed.

Publications