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Software-level Techniques

❑ Fine-grained Power-profiling-based Runtime HT Detection [TCAD’20]

❑ Security Attacks on ML-based Systems [IJCNN’20]

❑ Software-level Defenses for ML-based Systems [IOLTS’19][D&T’20]
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On average, our proposed approach (MacLeR) achieves 95% HT detection 

accuracy with a 0.6% drop due to PV, 3% drop due to workload and aging variation, 

and exhibits less then 0.5% area and power overheads. 

On average, our approach (SIMCom) achieves 99% HT detection accuracy with a 

1.5% drop due to process variations (PV) and exhibits less than 1% area overhead 

and ≈1% power overhead. 
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The proposed attack (FaDec), with appropriate attack parameters values, converges16x 

faster and generates the attack image with ≈20% better imperceptibility than the state-

of-the-art decision-based attack. Open-source: https://github.com/fklodhi/FaDec
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On average, QuSecNets increases classification accuracy up to 50%-96% (MNIST)

and 10%-50% (CIFAR10). SSCNets increases classification accuracy up to 16%-30% 

(White-box scenario) and 28% to 48% (Black-box Scenario).
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