# blu

Brandenburg University of Technology Cottbus - Senftenberg

## **A Computer-Aided Design Space Exploration** for Dependable Circuits

Stefan Scharoba Chair of Computer Engineering Brandenburg University of Technology Cottbus-Senftenberg Cottbus, Germany

scharst1@b-tu.de



Abstract — This thesis presents an automated toolset for exploring design choices which provide fault tolerance by means of hardware redundancy. Based on a given VHDL model, various fault tolerant implementations can be automatically created and evaluated regarding their overhead and reliability improvement.

### Contributions

Automated insertion of static and dynamic hardware redundancy including the required administrative logic into a given VHDL model

| Initial VHDL |            |
|--------------|------------|
| model        |            |
|              |            |
|              | Templates, |

- Evaluation of costs and benefits of resulting fault tolerant design candidates
- Reliability modeling considering transient and permanent faults
- Estimation of costs in terms of area, power and performance using state of the art synthesis tools
- Fast predictions of synthesis results, offering a trade-off between runtime and accuracy



#### **Exploring the Design Space**

redundancy strategies



### **Reliability Modeling**

**Accuracy and Runtime Trade-off** 

#### **Cost Estimation Methods**

- Sub-design synthesis (*reference method*): 1)
  - Synthesize generated VHDL model of a faulttolerant sub-design
- Component synthesis: 2)
  - Infer which administrative components are required and only synthesize these Build a database of results for typical components (e.g., multiplexers with varying structural parameters)



- Evaluation for 1000 randomly generated design candidates
- Component synthesis:
  - Mean estimation error of
  - 1.4% (area) and 2.6% (power)
  - 13x speedup over reference method (increasing with number of candidates)

- Reuse results for other instances of this component (in the same or other design candidates)
- Result interpolation: 3)
  - After a sufficient number of results are available, properties of new components may be derived by interpolation

- Additional error by result interpolation:
  - Depending on size of result database
  - Insignificant after component synthesis for ~50 candidates
  - 70x speedup in this case

#### DATE PhD Forum 2021

01 February 2021