

Introduction

- •With many cores on the chip, the communication across them are facilitated by Network-on-Chip (NoC).
- •In the era of dark silicon, different components of the chip are used powered off, whereas; the communication network is expected allocation in a round robin to be available.
- •Among the different NoC component, the SRAM buffers are the most power hungry.
- technologies.
- The benefits of NVMs are low static power and high density.
- •However, NVM buffer suffer from **costly write operations** and weak endurance.
- •Due to weak endurance, the lifetime of NVM buffers are limited.
- •Further, write variation due to buffer allocation and working set size restrict the lifetime of NVM buffers.
- •In the thesis, we proposed wear-levelling and write reduction SET-VNET-WC: Selection of VNet at techniques to enhance the lifetime and reduce the effect of costly write operation of NVM buffers in the dark silicon scenar10.

Wear-Levelling Techniques

- To quantify the write variation we define terms:
- Intra-VNet Write Variation: Write variation inside the VNet
- Inter-VNet Write Variation: Write Variation across the VNet
- Static Buffer Assignment to VCs
- Intra-VNet Wear Levelling: WVAR, SET-RR, and SET-VNet-WC
- Dynamic Buffer assignment to VCs • Inter- and Intra- VNet Wear Levelling: **Dy-WVAR**
- Processing Element status-based approaches:
- The power status of associated PE is taken into considerations
- gBUF-DN, SRAM-FRQSCL, Hy-SEL-ON, Hy-NEIG-SEL-ON and Hy-CRIT-WRD

WVAR:

- There is a write counter associated with each VC
- This counter is used to track the number of writes entertained by VC.
- Based on the write counter value, the flit is allocated to the appropriate VC (least write count).

Working Example of WVAR and Hy-WVAR

LongLiveNoC: Wear Levelling, Write Reduction and Selective VC allocation for Long lasting Dark Silicon aware NoC Interconnects

SET-VNET-WC: Selection of VNet at (K+1)th interval

Policy	LI (times)	IntraV Red.(%)	Lat. Inc. (%)	Energy Sav. (%)
SET-RR	3.0	55	16.5	1
SET-VNet-WC	10.7	99.9	16.5	1
SET-VNET-WC-Hy-WVAR	366	97.5	5	-26

Dy-WVAR:

- Proposed technique partition the set of router buffer into buffer groups.
- With each buffer group, a write counter is associated.
- Based on the write counter value, different groups are assigned to different VNet for certain pre-defined interval (I).
- •On each interval, the buffer group assignment to the different VNet is changed dynamically.
- Within the interval, the WVAR is applied inside the VNET.

Dy-WVAR buffer allocation at timestamp t₂

Khushboo Rani

Thesis advisor: Prof. Hemangee K. Kapoor Department of CSE, IIT Guwahati

- •All the proposed approaches uses NVM buffers that increases the network latency.
- To mitigate, the hybrid variant: Hy-WVAR, Hy-Dy-WVAR and **SET-VNET-WC-Hy-WVAR** have been proposed.

Policy	LI (times)	IntraV / InterV Red. (%)	Lat. Inc.(%)	Energy Sav. (%
WVAR	3.24	99.97 / -	23	56
Hy-WVAR	19.3	99.99 / -	16	46.2
Dy-WVAR	19.9	99.99 / 99	27	55.8
Hy-Dy-WVAR	55.5	99.99 / 99	22	45.65

gBUF-DN, SRAM-FRQSCL:

• These uses SRAM based buffers, and power gates VCs or reduces router frequency to save energy.

Hy-SEL-ON, Hy-NEIG-SEL-ON, Hy-CRIT-WRD:

- These policies use SRAM and STT-RAM-based VC buffers. The policy Hy-SEL-ON power gates SRAM and activates only STT VCs for routers associated PE is in the dark state
- •Hy-NEIG-SEL-ON extends the idea to the neighbouring router's ports as well.
- •In addition to STT VC activation, the policy Hy-CRIT-WRD allows critical words to go through SRAM VCs irrespective of $\begin{bmatrix} (3) \\ B \end{bmatrix}$ K. Rani, and H. K. Kapoor, "Write-Variation Aware Alternatives to associated PE status.

r	Policy	LI (times)	IntraV Red. (%)	Lat. Inc.(%)	Energy Sav. (%
	gBUF-DN	-	-	19	50
1	SRAM-FRQSCL	-	-	15	1
	Hy-SEL-ON	6.8	98.6	10	52.4
	Hy-NEIG-SEL-ON	5.7	98.3	11	61
f I	Hy-CRIT-WRD	9.8	99.7	7	60

Write-ReductionTechniques

• The techniques reduce the number of flits in the network which operation of NVM

ZENCO:

• The policy encodes all continuous and non-continuous zero bytes present in the data packet at the network interface.

DidaSel:

- •The proposal uses hybrid buffers to store incoming packets at the router.
- •If the number of dirty flits in a packet is below the threshold value, then the packet is send using STT-RAM VC otherwise using SRAM VC.

Policy	LI (times)	Flit Red. (%)	Lat. Inc.(%)	Energy Sav. (%)
ZENCO	1.9	48	4	66
ZENCO-RR	5.4	47	4.5	66
DidaSel	5.25	27	-0.82	29.4

Publications

Journal:

(1) K.Rani, and H.K.Kapoor, "InvestigatingFrequencyScaling, Non-Volatile, and Hybrid Memory Technologies for On-Chip Routers to Support the Era of Dark Silicon," In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, doi: 10.1109/ TCAD.2020.3007555.

(2) K. Rani, and H. K. Kapoor, "Write Variation Aware Buffer Assignment for Improved Lifetime of Non-Volatile Buffers in On-Chip Interconnects," In IEEE Transactions on Very Large Scale Integration (VLSI) Systems 27, no. 9 (2019): 2191-2204.

Replace SRAM Buffers with Non-Volatile Buffers in On-Chip Interconnects," In IET Computers and Digital Techniques 13, no. 6 (2019): 481-492.

Conference:

(1) **K. Rani**, S. Agarwal, and H. K. Kapoor, "DidaSel: Dirty data based Selection of VC for effective utilization of NVM Buffers in On-Chip Interconnects." In Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design, pp. 151-156. 2020.

(2) K. Rani, and H. K. Kapoor, "ZENCO: Zero-bytes based ENCOding for Non-Volatile Buffers in On-Chip Interconnects." In 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1-6. IEEE, 2020.

(3) K. Rani, and H. K. Kapoor, "Write Variation Aware Non- Volatile Buffers for On-Chip Interconnects." In 2019 32nd International Conference on VLSI Design and 18th International Conference on improves the lifetime and reduces the effect of costly write *Embedded Systems (VLSID)*, pp. 7-12. IEEE, 2019. (Best Paper **Candidate**)

> (4) K. Rani, S. Agarwal, and H. K. Kapoor, "Non-blocking Gated Buffers for Energy Efficient on-chip Interconnects in the era of Dark Silicon." In 2018 8th International Symposium on Embedded Computing and System Design (ISED), pp. 74-79. IEEE, 2018. (Best Paper Award)