
Memory-aware NoC Exploration and Design

Nikil Dutt

Center for Embedded Computer Systems
Donald Bren School of Information and Computer Sciences

University of California, Irvine, CA 92697-3435
dutt@uci.edu

http://www.cecs.uci.edu/~dutt

Memory-aware NoC design methodology

In the past decade, tremendous progress has been made in NoC
research, spanning architectures, protocols and tools. In
addition to a large number of academic and research projects,
we are now seeing several commercial realizations of NoC-
based chip designs. With chip capacities going well beyond
the billion transistor mark, on one hand large amounts of the
die are occupied by memory resources and on the other hand
many complex applications being mapped to these chips are
also memory-intensive. In such instances, memories dominate
all the axes of traditional design constraints, including, but not
limited to performance, area (cost), and power/energy.
Furthermore, the move towards sub-nanometer technologies
elevates another critical design consideration: process
variability and thermal sensitivity, which in turn critically
affect the reliability of memories as well. All of these trends
make the case for a memory-aware NoC design methodology.

Traditional NoC design flow

In a traditional NoC design methodology flow, applications are
first analyzed to determine the essential characteristics of data
traffic, thereby establishing the communication requirements
for the applications. These communication requirements are
typically represented as variants of a Communication
Throughput Graph (CTG), where nodes represent
computational cores and edges specify the direction and
amount of communication between the cores. NoC synthesis
algorithms are then applied to these communication throughput
graphs to perform topology synthesis, mapping/binding of
physical cores to CTG nodes, and communication/protocol
synthesis to establish communication paths, reserve routing
resources, and optimize key NoC architectural parameters,
including link widths, buffer sizes, core frequencies, etc. [1].

Memory-Aware NoC design flow

Although the traditional NoC design flow implicitly captures
memory requirements through a “communication-exposed”
design paradigm – initially through the CTG and subsequently
through the synthesis process – memories themselves are not
treated as first-class objects during NoC synthesis. Given the
importance of memory issues in NoC design, there is a critical
need to incorporate memory decisions both early in the
analysis phase, as well as concurrently during NoC synthesis.
A memory-aware NoC design flow needs to facilitate early
memory decisions (e.g., partitioning, hierarchies, memory

access architectures), as well as memory customization
concurrently with the traditional synthesis steps. Towards this
end, a “memory-exposed” design paradigm needs to be
developed, leading to a number of new and interesting research
problems that will need to be coherently stitched into
customized NoC design flows, depending on the application,
NoC architectural template, and overall design goals and
constraints. Some sample problems and issues are summarized
below.

o Combining programming models for complex NoCs

Many researchers are advocating “memory-exposed” and
“communication-exposed” programming models for
classes of applications that process large volumes of data,
typically in a streaming fashion. While such programming
models are eminently suited for streaming applications,
complex SoC platforms are likely to support a variety of
applications exhibiting heterogeneity in their data access
patterns and volumes, as well as in control and interrupt-
driven behaviors. Thus a memory-aware NoC
methodology should support the use of diverse
programming models suited for a range of behaviors; the
traffic patterns and constraints will then need to be
succinctly captured in a unifying internal representation
(e.g., a variant of the CTG). Memory-aware NoC
synthesis tools can then be developed to handle such
heterogeneity in programming models.

o Rethinking the cache coherence paradigm
A direct consequence of allowing heterogeneous
programming models is that the resulting memory
architectures are themselves going to be heterogeneous:
caches will be only be part of the memory architectural
landscape, and a diverse, customized memory architecture
can be deployed for the NoC. Thus cache coherence may
only be a small part of the problem: rather, NoC design
flows should focus on memory coherence between diverse
memory structures, including hybrids that combine shared
memory with message passing; software controlled
scratchpads, stream buffers, CAMs etc.

o Application restructuring within NoC design flow

Many decades of prior research in parallel processing have
highlighted the hard-to-quantify, but crucial relationship
between application restructuring and both coarse- and
fine-grained parallelism. Regardless of whether this is
done automatically or manually, each of these application
variants results in distinct memory and communication

978-3-9810801-3-1/DATE08 © 2008 EDAA

requirements. While the problem has been studied to
some extent for homogeneous, massively parallel
architectures, many NoCs will need to deal with a variety
of heterogeneous cores, which in turn require new
methods and heuristics for exploring source-level
restructuring to generate a larger space of memory and
communication alternatives. Thus explicit efforts are
needed in software support for application/source-level
memory bandwidth exploitation and exploration.

o Hybrid NoC and bus-based architectures
With the relentless integration of complex application
functionality, NoC platforms will increasingly require a
holistic combination of guaranteed throughput, together
with best effort data delivery. This will require
methodologies and tools that allow seamless integration of
NoC [1] and bus-based communication architectures [2].

o Application-Memory-Communication Codesign
The traditional NoC synthesis approach assumes that the
number of memories, and the memory requirements are
fixed before NoC synthesis. However, there is a need to
incorporate the memory requirements during the process
of NoC synthesis. Data reuse graphs [3] are a promising
mechanism to combine a number of different
communication graphs that differ in their memory
configurations. An application-memory-communication
codesign process can be developed using notions similar
to data reuse graphs.

o PGP (Pretty Good Platforms): rethinking phase coupling,
physical coupling and optimality

An important and overarching goal of a design
methodology is to realize PGPs (Pretty Good Platforms)
quickly and reliably. Thus we need to revisit the notions of
phase- and physical-coupling, as well as of optimality.
Similar to many previous incarnations of hardware
synthesis (logic, behavioral) and software compilation, we
recognize that various phases of NoC synthesis are
inherently coupled with each other. Many approaches
have been developed to solve this phase-coupling
problem. Furthermore, research has also investigated the
coupling of physical design information into early NoC
synthesis, as well as combinations of static analysis and
dynamic profiling for performance evaluation and
validation. When memory issues are added to this mix,
the notion of “optimality” necessarily becomes a local
view. Instead, the design methodology should support the
notion of “exploration surfaces” that are composed from
pareto-optimal subsets of the complex design constraints.
NoC architects can then navigate the memory-aware
design space to focus on the most promising regions for
design refinement and further synthesis/optimization.
Thus although no guarantees can be made on the
convexity of these design spaces (and the resulting
decisions may not be “optimal”) , NoC architects can
quickly explore and generate PGPs.

o Guaranteeing real-time constraints
Much of the existing body of work on NoCs has not
focused on guaranteeing real-time constraints (either as
intervals or deadlines), but instead has focused on
throughput-driven timing constraints. However, we will
increasingly see combinations of the need for real-time
predictability, in addition to throughput constraints. Thus
new methods and tools are required to facilitate
simultaneous satisfaction of both classes of timing
constraints.

o Aggressive error-aware design methodology

With the move towards ever-finer device geometries, we
will see tremendous variations in error profiles based on
process variations and temperature sensitivity, particularly
in the memories that will occupy a large amount of the
chip’s real estate. NoCs, by their very nature are error-
tolerant and may mitigate some of these problems.
However, in these situations, we can use errors to our
advantage: many classes of emerging embedded
applications (e.g., communications and multimedia) are
inherently error-tolerant, allowing for a lower Quality-of-
Service (QoS) at the expense of higher errors. By
intentionally introducing errors in the system, we may
release some design “slack” in another dimension,
allowing for more aggressive optimization of another
design constraint [4]. NoC design methodologies should
investigate such “error-aware” opportunities for
aggressively trading off errors for gains in other constraint
dimensions.

o Application-specific NoC design flows

NoC architectural styles will see large variations in their
primary constituents: cores, interconnects and memories.
Thus there is both an opportunity, as well as a need for
developing customized design flows for each application,
that will tune the processor, interconnect and memory
parameters to generate PGPs with a range of performance,
cost, and power/energy profiles.

Many more challenges and opportunities will appear as we
move towards a memory-aware NoC design flow. Last, but
not the least, are the additional validation and verification
challenges that appear once we make memories a “first class”
design concern.

References
 [1] G. De Micheli and L. Benini, Networks on Chips, Morgan
Kaufmann, San Francisco, CA, 2006.
 [2] S. Pasricha and N. Dutt, On-Chip Communication Architectures:
System on Chip Interconnect, Morgan Kaufmann, San Francisco, CA,
2008.
[3] I. Issenin and N. Dutt, “Data Reuse Driven Memory and NoC Co-
Synthesis,” Proc. 2007 International Embedded Systems Symposium
(IESS 2007), May 2007.
[4] N. Dutt, F. Kurdahi, A. Eltawil and S. Nassif “Cross-Layer
Approaches to Designing Reliable Systems using Unreliable Chips",
All-day tutorial, ASPDAC 2008, January 2008.

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

