
A Dual-Priority Real-Time Multiprocessor System on FPGA for Automotive
Applications

Antonino Tumeo1 Marco Branca1 Lorenzo Camerini1 Marco Ceriani1 Matteo Monchiero2

Gianluca Palermo1 Fabrizio Ferrandi1 Donatella Sciuto1

1Politecnico di Milano - DEI 2HP Labs
Via Ponzio 34/5 1501 Page Mill Rd.
20133 Milano, Italy Palo Alto 94304 CA, USA

Abstract

This paper presents the implementation of a dual-
priority scheduling algorithm for real-time embedded sys-
tems on a shared memory multiprocessor on FPGA. The
dual-priority microkernel is supported by a multiprocessor
interrupt controller to trigger periodic and aperiodic thread
activation and manage context switching. We show how the
dual-priority algorithm performs on a real system prototype
compared to the theoretical performance simulations with a
typical standard workload of automotive applications, un-

derlining where the differences are. 1

1 Introduction

Multiprocessor Systems-on-Chip (MPSoCs), composed
of several processing elements and on-chip memories, have
become the standard for implementing embedded systems.
Thanks to the presence of multiple processing units, these
systems potentially allow a better management of periodic
workloads and can react faster to external, aperiodic events.

Nevertheless, the adoption of these powerful architec-
tures in real time systems opens several problems concern-
ing scheduling strategies [16], since it is well known that
optimal scheduling for multiprocessor systems is a NP-
Hard problem [11]. Furthermore, on real systems, it is not
trivial to coordinate and correctly distribute tasks on the dif-
ferent processors, even more when events are triggered by
interrupts from external peripherals. This is, for example,
the case for automotive applications, in which several peri-
odic tasks to check the status of sensors and other mecha-
nisms run in parallel with tasks triggered by external events
like security warnings. Efficient hardware solutions must
support a low overhead real time scheduler to allow the de-
sign of a usable system.

Real time scheduling algorithms for multiprocessors are
usually divided in two classes: local and global schedulers.
Local schedulers rely on a pre-partitioning of the tasks on
the different processors, and then tries to schedule them in

1Research partially funded by the European Community’s Sixth Frame-
work Programme, hArtes project.

the best way possible. Global schedulers, instead, try to al-
locate all the tasks on all the processors. Among all the real
time scheduling algorithms proposed in the recent years for
multiprocessor systems, an interesting solution is the Multi-
processor Dual Priority Scheduling algorithm [8]. Thanks
to its hybrid local-global nature, it guarantees periodic task
deadlines (local) but allows to serve aperiodic requests with
very good average response time (global), which is crucial
for reactive systems. Since it is based on the offline com-
putation of the worst case response time for periodic tasks,
it has low memory usage and low computational overhead,
resulting thus suitable for efficient implementation on small
embedded systems.

Field Programmable Gate Arrays (FPGAs) are emerging
as an interesting design alternative for system prototyping
and implementation for critical applications when the pro-
duction volume is low. Lately, several multiprocessor so-
lutions on FPGAs have appeared, but no one has been tar-
geted to real time applications. In this paper, we present
a real time, shared memory multiprocessor architecture on
FPGA which supports a dual priority scheduling microker-
nel thanks to the implementation of a dedicated multipro-
cessor interrupt controller. The main goal of this work is to
propose a realistic multiprocessor architecture with support
for a light real time dual priority operating system layer,
to evaluate it with a realistic workload (the MiBench au-
tomotive benchmark set), and to compare its results to the
theoretical performance obtained with the simulation of the
scheduling algorithm, observing the aspects that in an actual
architecture can impact the performance.

The paper proceeds as follows. Section 2 presents some
related works in the field of multiprocessor real time sys-
tems. Section 3 presents our multiprocessor architecture
with details on the multiprocessor interrupt controller. Sec-
tion 4 presents the kernel with dual priority scheduling and
finally Section 5 discusses the experimental evaluation.

2 Related Work

Recently, a large number of works on multiprocessor real
time systems have appeared, both from the algorithmic and
the architectural point of views. As multiprocessors became
the standard for embedded systems, the attention has been
focused on proposing scheduling solutions that allow good

1

978-3-9810801-3-1/DATE08 © 2008 EDAA 

 



response times with sporadic and aperiodic tasks. Many
commercial real time operating systems still rely on sin-
gle processor architectures for manageability purposes or
adopt simple priority-based preemptive scheduling in mul-
tiprocessor solutions [1–3].

Achieving good aperiodic response time is a distinctive
element for real world systems targeted to automation and
automotive applications, in which it is not only necessary
to guarantee hard deadlines with periodic tasks, but effi-
cient reaction to external events is required. Multiproces-
sors appear as an interesting solution since thanks to the
presence of multiple processing elements, workloads can be
distributed on different processors and thus aperiodic and
periodic tasks, with hard or soft deadlines can advance in
parallel. A common approach in multiprocessor systems is
to partition periodic tasks among processors statically and
then use a well-known uniprocessor scheduling algorithm
as a local scheduler [10, 14, 15]. Aperiodic tasks, however,
are allowed to migrate to any processor [7]. Another ap-
proach focuses instead on trying to find the best allocation
on all the processors available in the system. These type of
multiprocessor global schedulers, however, do not deal with
aperiodic tasks [4, 5, 12].

However, all these works attack the problem from a theo-
retical point of view. Our purpose is different. We choose to
implement an existing algorithm for real time task schedul-
ing and then check its performance on a realistic architec-
ture rather than by simulation. We developed several hard-
ware devices to support reactive behavior and allow inter
processor communication and implemented on top of it a
microkernel supporting the Multiprocessor Dual Priority al-
gorithm [8], which thanks to its hybrid local-global nature
is suitable to manage aperiodic tasks with good response
time. With this system, we aim at measuring and identify-
ing which factors can influence the performance w.r.t. the
efficiency of the algorithm.

3 Architecture

This section presents the architecture of our real time
multiprocessor system on FPGA. We will first describe the
basic architecture and then give some details on the mul-
tiprocessor interrupt controller design that is used to dis-
tribute activation signals for the scheduler and trigger the
execution of aperiodic tasks.

3.1 Basic architecture

The target architecture has been realized with the Xil-
inx Embedded Developer Kit (EDK) 8.2 and synthesized
with Xilinx ISE version 8.2 on a Virtex-II PRO XC2VP30
Speed Grade -7 FPGA targeting a frequency of 50 MHz.
This architecture, shown in Figure 1, is composed of sev-
eral MicroBlaze processors connected to a shared On-chip
Peripheral Bus (OPB). Each processor has access to a lo-
cal memory for private data (stack and heap of the execut-
ing thread), implemented through Block RAMs (BRAMs),
and to an external shared Double Data Rate (DDR) RAM
memory for shared instructions and data. Instruction cache
is implemented for each processor, bringing down access
latency from 12 to 1 clock cycle in case of hit. Local mem-
ories, which have the same latency of caches, are instead

Figure 1. The architecture of our realtime
system prototype.

used for data. A shared BRAM is connected to the OPB for
boot purposes. The system adopts an ad-hoc coprocessor
(Synchronization Engine) that provides hardware support
for lock and barrier synchronization primitives and a Cross-
Bar module that allows inter-processor communication for
small data passing without using the shared bus. The sys-
tem features a multiprocessor interrupt controller specifi-
cally designed for this architecture. This controller dis-
tributes to all the processors in the system interrupt signals
of various nature. It forwards the signal triggered by the sys-
tem timer, that determines the scheduling period and starts
the scheduling cycle, to an available processor. It connects
to the peripherals so they can launch interrupts signal to any
processor and trigger the start of aperiodic tasks for subse-
quent elaboration. Peripherals can be interfaces to sensors
and data acquisition systems, like for example Controller
Area Networks (CANs) interfaces, widely used in automo-
tive applications. They are connected to the shared OPB
and seen by all the processors, while their interrupt lines are
connected to the multiprocessor interrupt controller which
in turn forwards them to the MicroBlazes.

3.2 Multiprocessor Interrupt Controller

The multiprocessor interrupt controller [17] is an inno-
vative design that allows the support of several features
in a multiprocessor architecture designed with the Xilinx
toolchain. The MicroBlaze soft-core has a very simple in-
terrupt management scheme. It only has a single interrupt
input, so if multiple peripherals that generates interrupts are
implemented in the system, an interrupt controller is re-
quired. However, when multiple processors are used, the
standard interrupt controller integrated in the Xilinx Em-
bedded Developer Kit is ineffective, since it only permits
to propagate multiple interrupts to a single processor. Our
multiprocessor interrupt controller design, instead, allows
to connect them to multiple processors introducing several
useful features:

it distributes the interrupts coming from the peripherals
to free processors in the system, allowing the parallel exe-
cution of several interrupt service routines;

it allows a peripheral to be booked by a specific proces-
sor, meaning that only a specific processor will receive and
handle the interrupt coming from a specific peripheral;

it supports interrupts multicasting and broadcasting to
propagate a single interrupt signal to more than one proces-

2



sor;
it supports inter-processor interrupts to allow any pro-

cessor to stop the execution of another processor.
Interrupt distribution allows to exploit the parallelism of

a multiprocessor system to manage interrupt services rou-
tines: concurrent interrupt handlers can be launched when
many interrupts are generated at the same time. This ef-
fectively permits a more reactive system to contemporary
external events. Our design adopts a fixed priority scheme
with timeout. When an interrupt signal is propagated to a
processor, it has a predefined deadline to acknowledge its
management. If the processor is already handling an in-
terrupt, it cannot answer since interrupt reception is dis-
abled. So, when the timeout fires, the interrupt signal to
that processor is disabled and the interrupt is propagated
to the subsequent processor in the priority list. Booking
can be very useful when dynamic thread allocation is used.
In fact, if a processor offloads a function to an intellectual
property core, we may want that the same processor that
started the computation manage the read-back of the re-
sults. Thus, with booking the interrupt that signals the end
of the IP core work is propagated only to a designated pro-
cessor. Inter-processor interrupts allow processors to com-
municate. They can be useful for example for synchroniza-
tion or for starting a context switch with thread migration
from a processor to another. Broadcast and multicast are
important to propagate the same interrupt signal to more
than one processing elements, like a global timer that trig-
gers the scheduling on all the processors. These features are
exposed to the microkernel with very simple primitives that
are seamlessly integrated in the Xilinx toolchain. The inter-
rupt controller is connected to the OPB and, when the pro-
cessors access its registers for configuration and acknowl-
edgments, mutual exclusion is used. Thus, controller man-
agement is sequential, but the execution of the interrupt han-
dlers is parallel.

4 Real time support

This section briefly illustrates how the chosen schedul-
ing algorithm, Multiprocessor Dual Priority (MPDP), works
and describes the implementation details of the real time mi-
crokernel and how it interacts with the target architecture.

4.1 Multiprocessor Dual Priority Algorithm

The scheduling approach adopted in our architecture is
based on the Multiprocessor Dual Priority (MPDP) algo-
rithm [8]. This solution adapts the dual priority model for
uniprocessor systems to multiprocessor architectures with
shared memory.

The dual priority model [9] for single processor systems
provides an efficient method to responsively schedule aperi-
odic tasks, while retaining the offline guarantees for crucial
periodic tasks obtained with fixed priority. This model splits
priorities into three bands, Upper, Middle and Lower. The
periodic tasks are considered as hard tasks and are assigned
two priorities, one from the Upper and one from the Lower
band. Aperiodic tasks instead are considered as soft tasks
and have a priority in the middle band. A periodic task is
released with a priority in the Lower Band, so it may be

Figure 2. The conceptual organization of
the MultiProcessor Dual Priority scheduler.
There is a global ready queue for low prior
ity periodic and aperiodic tasks and a local
ready queue for high priority task.

preempted by other hard tasks with higher priorities in the
same band, by aperiodic tasks in the middle band or by any
periodic task in the upper priority band. However, at a fixed
time, called promotion time, its priority is promoted to the
upper band. From this moment, it could be preempted only
by other periodic tasks promoted in the upper band with an
higher priority. While the hard periodic task are in the lower
priority bands, the aperiodic soft tasks proceed. If a peri-
odic task is promoted, it overcomes any executing aperiodic
tasks. The aperiodic task gets preempted and resumes its
execution only when all the promoted higher priority peri-
odic tasks have ended. Promotions guarantee that hard peri-
odic tasks satisfy their deadline. Thus, if a feasible schedul-
ing of the periodic tasks at their higher band priority exists,
the dual priority algorithm allows to execute not predictable
aperiodic tasks with reasonable answer times while maxi-
mizing the utilization of the system during the free times-
lices. A priori guarantees for periodic tasks are obtained
through offline computation of worst case responses, using
the analysis derived from fixed priority scheduling [6]. The
key is to determine the correct promotion time Ui for each
task i. Promotion time is 0 ≤ Ui ≤ Di, where Di is the
deadline for task i and 0 is its release time. It is computed
starting from the recurrence relation:

Wm+1
i = Ci +

∑
j∈hp(i)⌈

W m
i

Tj
⌉Cj

which is also used as a schedulability test. Wi is the
length of a priority level busy period for task i, starting at
time 0 and culminating in the completion of the task. T
represents the period and C the worst case execution time.
In the worst case, task i is unable to execute any computa-
tions at its lower band priority, but when promoted to the
upper band, it will be subjected to interference only from
tasks with higher priority in this band. (i.e. all the tasks
with priority hp(i)). Promotion time is thus Ui = Di −Wi.

Iteration starts with w0
i = 0 and ends when wm+1

i = wm
i

or wm+1
i > Di −Ui, in which case task i is unschedulable.

3



This model, can be easily adapted to multiprocessor sys-
tems. The approach, proposed in [8] and summarized in
Figure 2, is a hybrid between local and global scheduling.
Hard periodic tasks before promotion can be executed on
any processors (global scheduling), while after promotion
they are executed on a predefined processing element (lo-
cal scheduling). Initially, periodic tasks are statically dis-
tributed among the processors. The uniprocessor formula is
used to compute worst case response times of periodic tasks
on a single processor. During runtime, when a task arrives,
being it periodic (hard) or aperiodic (soft), it is queued in
a Global Ready Queue (GRQ). At the beginning, aperiodic
tasks have higher priority than periodic tasks and are queued
in FIFO order. Periodic tasks are sorted according to their
fixed low priority. The global scheduler selects the first N
tasks from this queue to execute on the processors. There
are N High Priority Local Ready Queues (HPLRQ), used to
queue promoted periodic tasks for each processor. When a
periodic task is promoted, it is moved from the GRQ to the
respective HPLRQ. If there are any tasks in this queue, a
processor is not allowed to execute tasks from the GRQ. A
promotion implies a change in priority and can cause a pre-
emption, while the task migrates to its original processor.
This scheme permits to advance the periodic work, guaran-
teeing at the same time that the system can satisfy aperiodic
demands without missing the hard periodic deadlines. Thus
it seems suitable for implementation on a real time systems
which must perform periodic critical tasks while reacting at
the same time to external events with good response times.

In [8] this algorithm is presented only from a theoretical
point of view, with an efficiency analysis of the algorithm
that assumes negligible system overheads. However, task
migration and context switching have a cost. Furthermore,
on a real shared memory multiprocessor system there are
physical overheads determined by contentions on the shared
resources which dynamically changes with the workload.
Our objective is to propose a real multiprocessor system
implemented on FPGA that adopts this algorithm, testing it
with a real workload for automotive application and show-
ing the impact of all these aspects.

4.2 Implementation details

Our multiprocessor dual priority microkernel implemen-
tation exploits the underlying memory model of the target
architecture. In fact, the private data of the task are allocated
in the fast, local memory of the processors, and are moved
to shared memory and again in local memory when context
changes and task switching occur. Scheduling and promo-
tion phases are triggered by a system timer interrupt. The
multiprocessor interrupt controller assigns this interrupt to
a processor which is currently free from handling other in-
terrupts. The scheduling phase is performed by a single
processor. The others can continue their work while the
task allocation is performed. Our implementation slightly
differs from the original MPDP algorithm proposal since
we use two different queues for periodic tasks in low prior-
ity (Periodic Ready Queue) and aperiodic tasks (Aperiodic
Ready Queue), which make the global scheduling easier and
faster. Furthermore, effectively being on a closed system,
we need to park periodic tasks while they have completed
their execution and are waiting for the next release. We

thus use a Waiting Periodic Queue, in which periodic tasks
are inserted ordered by proximity to release time. In each
scheduling cycle, periodic tasks that have reached their re-
lease time enter from this queue the Periodic Ready Queue
for the actual scheduling on the multiprocessor. Then, peri-
odic tasks in the Periodic Ready Queue are checked for pro-
motion. If a promotion happens, the periodic task is moved
to the High Priority Local Queue of its target processor, in a
position determined by its high priority value. At this point,
task assignment can be performed according to the MPDP
model. Processors with tasks in their High Priority Local
Queue get the highest in priority from their specific queue.
If any, aperiodic tasks (which have middle band priorities)
are assigned to other processors according to their arrival
order (oldest tasks are scheduled first). Finally, if there are
still free processors, non promoted periodic tasks (which
have lower band priorities) are allocated. After the com-
plete task allocation is performed, the scheduling proces-
sor triggers inter-processor interrupts to all the processors
that have received new tasks, starting a context change. If
a task is allocated on the same processor it was currently
running on, the processor is not interrupted and can con-
tinue its work. If the task allocated to the scheduling pro-
cessor itself before the scheduling cycle has been changed,
the scheduling routine exits launching the context change.
Note that, before promotion, periodic tasks can be assigned
to any processors, while after promotion they can execute
only on the predefined (at design time) processors. Thus,
it could be possible that two processors switch each other
their tasks. If a processor completes execution of its current
task, it will not wait until the next scheduling cycle but it
will automatically check if there is an available task to run,
following the priority rules.

Tasks contexts are constituted by the register file of the
MicroBlaze processor and the stack. During context switch-
ing, the contexts are saved in shared memory, stored in a
vector that contains a location for each task runnable in the
system. The context switch primitive, when executed, loads
the register file into the processor and the stack into the lo-
cal memory. The implementation of the context switching
mechanisms take care of the exiting from the interrupt han-
dling state and the stack relocation in local memories. Ape-
riodic tasks are triggered by interrupts from peripherals or
external devices. When these interrupts occur, the interrupt
controller distributes them to processors which are not han-
dling other interrupts. Thus, if a processor is executing the
scheduling cycle, or it is executing a context switch, it will
not be burdened by the aperiodic task release. Furthermore,
multiple aperiodic task releases can be managed at the same
time.

Figure 3 shows an example of scheduling on a dual pro-
cessor architecture with three periodic and two aperiodic
tasks. The table reports the basic information of the tasks
required for the scheduling. Priorities can be 0 and 1 for
periodic tasks in low priority mode and 3 and 4 in high pri-
ority. Aperiodic tasks are thus positioned with priority 2.
Schedule A shows that without aperiodic tasks, we have an
available slot in timeslice 2 on MicroBlaze 0. However, we
can see that to guarantee completion before timeslice 3, task
P2 has been promoted to high priority. Schedule B adds the
two aperiodic tasks, which arrive at the beginning of times-
lices 1 and 2. Part of task A1 is executed as soon as it ar-

4



Figure 3. A sample schedule with three pe
riodic and two aperiodic tasks on a dual
MicroBlaze architecture. The status of the
queues without and with aperiodic workload
is shown respectively in A and B.

rives, since P1 in timeslice 1 is in low priority. However,
at timeslice 2, P1 gets promoted to its high priority, A1 is
interrupted and P1 completed. A2 arrives at timeslice 2 and
it is inserted in the queue after A1. So it waits for the com-
pletion of the higher priority promoted periodic tasks and
the allocation of the remaining part of A1 before starting.

5 Evaluation

To test our dual priority real-time multiprocessor system
we adapted the automotive set of the MiBench benchmark
suite [13]. MiBench is a collection of commercially repre-
sentative embedded benchmarks. Among them, we decided
to port the automotive set as it is more representative for a
real time and reactive systems. In these systems, there are
not only sets of critical periodic tasks that must meet their
deadline (e.g. to diagnose sensors), but also many aperi-
odic tasks (like the ones triggered by security systems) that
must be served in the best way possible. In this benchmark
set there are basically four groups of applications: basic-
math, which performs simple mathematical calculations not
supported by dedicated hardware and can be used to cal-
culate road speed or other vector values (three programs:
square roots, first derivative, angle conversion), bitcount,
which tests bit manipulation abilities of the processors and
is linked to sensor activity checking (five different coun-
ters), qsort, which executes sorting of vectors, useful to or-
ganize data and priorities, and finally susan, which is an
image recognition package that can recognize corners or
edges and can smooth an image, useful for quality assurance
video systems or car navigation systems. We used a mix
of datasets (small and large) for the different benchmarks
launched on the system. The small datasets represents the
minimum workload for a useful embedded system, the large
datasets provides a real world application. We selected the

0

2

4

6

8

10

12

14

2P 3P 4P 2P 3P 4P

Theoretical Real

T
im

e
 [

s
]

40% 50% 60%

Figure 4. Response time in seconds of an ape
riodic task on our system with different peri
odic utilization and different number of pro
cessors.

workloads in order to obtain a variable periodic utilization,
and measured the response time of an aperiodic task trig-
gered by an interrupt. The benchmarks have been executed
varying the number of processors of the target platform. We
run a total of 19 tasks on the system, 18 periodic and 1
aperiodic. The aperiodic task is the susan benchmark with
the large dataset. This choice is justified by the fact that
some of the services performed by susan can be connected
to car navigation systems and are triggered by aperiodic in-
terrupts that, for example, can signal the arrival of the image
to analyse from the cameras. All the other applications are
executed as periodic benchmarks running in parallel on the
system with different datasets (small and large). Periodic
utilization is determined varying the periods of the appli-
cations in accordance to their critical deadline. The worst
case response times of the tasks have been determined tak-
ing in account an overhead for the context switching and
considering the most complex datasets. Promotion time and
schedulability have been calculated using the recurrent for-
mula through an in-house tool that takes in input worst case
execution times, period and deadlines of the tasks and pro-
duces the task tables with processor assignments and all the
required information for both our target architecture and the
simulator.

Figure 4 shows the average response time of the se-
lected aperiodic task on architectures from 2 to 4 proces-
sors, with a periodic utilization of the systems from 40% to
60%. As MPDP adopts a best effort approach to serve ape-
riodic tasks, utilization near half the capacity of the system
is an appropriate balanced choice between exploitation of
the system and the responsiveness to external events. The
theoretical data for 2, 3, 4 processors architectures are cal-
culated with a simulator that adopts the same approach of
the scheduling kernel of the target architecture, consider-
ing a small overhead (2%) for context switching and con-
tentions. Scheduling phase is triggered each 0.1 seconds by

5



the system timer. The aperiodic task, on a single processor
architecture, should execute in 10.26 seconds with the given
dataset at 50 MHz. The data show that, with these utiliza-
tion, the system is not fully loaded and the algorithm should
execute the aperiodic task with very limited response times,
almost near the execution time, with all the architectures,
with the only overheads of context switching when mov-
ing the task on free processors (10.32 seconds in the worst
case). However, the results on the prototype show that this
assumption is not true. It is easy to see that the real 2 pro-
cessors architecture is respectively 7%, 8% and 12% slower
in response times than the simulated architecture with 40%,
50% and 60% periodic utilization respectively. Aperiodic
response times should grow with periodic utilization when
the system is heavily loaded: it is clear that context switch-
ing and contention, in particular on the shared memory and
bus, are important constraints for our architecture. The
trend is confirmed when analysing the 3 processors solu-
tions: here the prototype is 15%, 22% and 27% slower than
the expected response times. With more processors con-
tention is higher, and the system loses responsiveness. In
particular, task switching, with movements of contexts and
stacks for many applications from and to shared memory,
generates consistent traffic, even with a clever implementa-
tion of the algorithm that limits switching only when nec-
essary. Nevertheless, with 4 processors, our prototype gives
almost the same results obtained with 3 MicroBlazes, even
slightly better. This is a clear indication that the bus and
memory access patterns have stabilized, and with these uti-
lization the behavior is almost the same. Note that when
using 4 processors, a system utilization of 50% means that
the workload is double w.r.t. a system with 2 processors at
50%. This means that, even if the aperiodic response time
is worse, the system is anyway doing much more periodic
work. On 4 processors, with a 60% workload, our archi-
tecture can reach a response time of 12.88 seconds, 25%
worse than the optimal response time obtained in simula-
tion, definitely a good result considering the characteristics
of the MicroBlaze soft core, the number of tasks running
simultaneously on the system and their periods.

6 Conclusions

In this paper we presented a shared memory multipro-
cessor architecture on FPGA featuring real time support.
The system implements the Multiprocessor Dual Priority
algorithm that allows management of periodic hard real-
time tasks but can serve aperiodic request, supporting re-
active applications such those in the automotive and indus-
trial control environments. The thin real time operating
system layer is built on top of a multiprocessor interrupt
controller that allows distribution of external interrupts to
all the processors in the system, inter-processor communi-
cation with multicasting and broadcasting and peripherals
booking. This hardware device permits to trigger aperi-
odic tasks while at the same time distributing the schedul-
ing and task assignment phases to the processors. We tested
our system with the MiBench standard benchmark set for
automotive applications, comparing its results with the re-
sponse times of aperiodic tasks obtained with pure simula-
tion of the algorithm. We found that, on a realistic archi-
tecture, aspects like context switching overheads and con-

tention on the shared memory and bus are a constraining
factor that designers should carefully consider when devel-
oping a real time system, with response times that can result
up to 25% worse than the expected values. This approach
could be adopted to evaluate and validate other scheduling
algorithms for multiprocessor embedded systems.

References

[1] Mentor Nucleus RTOS. Available at http://www.mentor.com.
[2] Real-Time Operating System for Multiprocessor Systems -

RTEMS. Available at http://www.rtems.com/.
[3] WindRiver VxWorks real time operating system. Available at

http://www.windriver.com/vxworks/.
[4] B. Andersson, S. Baruah, and J. Jonsson. Static-priority

scheduling on multiprocessors. Technical Report UNC-CS
TR01016, University of North Carolina at Chapel Hill, 2001.

[5] B. Andersson and J. JONSSON. Fixed-priority preemptive
multiprocessor scheduling: To partition or not to partition.
In Proceedings of the International Conference on Real-Time
Computing Systems and Applications, pages 337–346, 2000.

[6] A. N. Audsley, A. Burns, M. Richardson, and K. Tindell. Ap-
plying new scheduling theory to static priority pre-emptive
scheduling. Software Engineering Journal, 8:284–292, 1993.

[7] J. M. Banús, A. Arenas, and J. Labarta. An efficient scheme
to allocate soft-aperiodic tasks in multiprocessor hard real-
time systems. In International Conference on Parallel and
Distributed Processing Techniques and Applications, pages
809–815, 2002.

[8] J. M. Banùs, A. Arenas, and J. Labarta. Dual priority algo-
rithm to schedule real-time tasks in a shared memory multi-
processor. In International Parallel and Distributed Process-
ing Symposium, 2003.

[9] R. Davis and A. Wellings. Dual priority scheduling. In 16th
IEEE Real-Time Systems Symposium, pages 100–109, Pisa,
1995.

[10] G. Fohler. Joint scheduling of distributed complex periodic
and hard aperiodic tasks in statically scheduled systems. In
IEEE Real-Time Systems Symposium, pages 152–161, 1995.

[11] M. R. Garey and D. S. Johnson. Complexity results for multi-
processor scheduling under resource constraints. In Tutorial:
hard real-time systems, pages 205–219, Los Alamitos, CA,
USA, 1989. IEEE Computer Society Press.

[12] J. Goossens, S. Funk, and S. Baruah. Edf scheduling on mul-
tiprocessor platforms: some (perhaps) counterintuitive obser-
vations. In 8th International Conference on Real-Time Com-
puting Systems and Applications, pages 321–330, 2002.

[13] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. Mibench: A free, commercially
representative embedded benchmark suite. In IEEE Interna-
tional Workshop on Workload Characterization, pages 3–14,
2001.

[14] K. Ramamritham, J. A. Stankovic, and W. Zhao. Distributed
scheduling of tasks with deadlines and resource requirements.
Transactions on Computers, 38(8):1110–1123, Aug. 1989.

[15] S. Saez, J. Vila, and A. Crespo. Soft aperiodic task schedul-
ing on hard real-time multiprocessorsystems. In 6th Inter-
national Conference on Real-Time Computing Systems and
Applications, pages 424–427, Hong Kong, China, 1999.

[16] J. A. Stankovic, M. Spuri, M. Di Natale, and G. C. Buttazzo.
Implications of classical scheduling results for real-time sys-
tems. Computer, 28(6):16–25, June 1995.

[17] A. Tumeo, M. Branca, L. Camerini, M. Monchiero,
G. Palermo, F. Ferrandi, and D. Sciuto. An interrupt controller
for FPGA-based multiprocessors. In International Confer-
ence on Embedded Computer Systems: Architectures, Model-
ing and Simulation, pages 82–87, Samos, Greece, 2007.

6


	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index




