
Towards fault tolerant parallel prefix adders in
nanoelectronic systems

Wenjing Rao
UC San Diego

CSE Department

wrao@cs.ucsd.edu

Alex Orailoglu
UC San Diego

CSE Department

alex@cs.ucsd.edu

ABSTRACT
Future nanoelectronics based arithmetic components will enjoy abun-
dant hardware, yet at the same time confront severe unreliability chal-
lenges. We focus on the fault tolerance of high performance parallel
prefix adders (PPA), and exploit the inherent redundancy in PPAs to
develop efficient fault tolerance approaches. We show that the internal
invariant inherent in the parallel prefix adders provides support for on-
line fault detection and fault masking. Furthermore, based on the par-
ticular regular structure of PPAs, an online diagnosis scheme can be
developed, thus enabling the application of reconfigurability of nano-
electronics for the highly flexible online repair approaches. In contrast
to traditional fault tolerance techniques that rely solely on significant
external overhead, the proposed approach opens up a new genre of
efficient fault tolerance techniques for arithmetic components in the
nanoelectronic environment.

1. INTRODUCTION
As CMOS is reaching its physical limits due to quantum physi-

cal effects and fabrication limitations [1], a number of nanoelectronic
devices have been proposed as promising candidates, including SET
[2], RTD [3], CNT [4], QCA [5] and molecular electronics [6]. Even
though each device candidate operates on its specific physical basis, a
number of characteristics are shared among the nanoelectronic devices
due to their commonality of nanometer level scales.

These fundamental changes at the device level provide significant
benefits due to the density boost, but at the same time introduce new
challenges as well [1, 7]. The most severe challenge confronting in
common all the nanoelectronic device candidates is unreliability, in
particular, the extremely small scale of the nanoelectronic devices lead-
ing to low immunity to noise and errors. Since ultra low power is
used with the device operation based on quantum effects, the influence
of stray charge, crosstalk, temperature fluctuation and cosmic particle
caused single event upset results in massive online fault occurrences in
nano scale transistors [1, 7, 8]. In addition, multiple faulty behaviors,
including transient, semi-permanent and permanent faults are all pro-
jected to occur in the nanoelecronic environment. As a result, online
fault tolerance is of significant importance in ensuring the fundamen-
tal requirement of computational correctness for nanoelectronics based
systems.

Adders constitute the most basic and fundamental building blocks
for arithmetic components. In the nanoelectronic environment, high
performance parallel adders exhibit significant advantages over serial
adders, because the hardware abundance and massive parallelism sup-
ported by nano devices diminishes the relative importance of the area
constraint. Fault tolerance techniques for the most basic form of par-
allel adders, Carry Lookahead Adders, have been developed in [9] for
nanoelectronic systems. In this paper, we focus on the general genre of

parallel adders, namely the parallel prefix adders (PPA). The delivery
of high performance and the regularity in the prefix network both make
PPAs highly promising for the future nanoelectronic systems. Specif-
ically, the design of a Kogge-Stone parallel prefix adder on defective
nanoelectronic fabrics has been illustrated in [10].

Since PPAs utilize a parallel prefix network to calculate carry bits
in advance for performance reasons, the extra hardware used in PPAs
opens up opportunities for developing efficient fault tolerance schemes.
To answer the questions of whether or how the inherent hardware re-
dundancy can be exploited for fault tolerance purposes, one needs to
examine both the redundancy in parallel carry generation, and the re-
dundancy necessitated in various fault tolerance approaches. In this
paper, we exploit the inherent relationship among the output bits of
a PPA’s parallel prefix network for fault tolerance purposes. Further-
more, we show that such inherent redundancy can be used to support
multiple fault tolerance approaches, thus facilitating efficient imple-
mentation of reliable PPAs in the nanoelectronic environment.

The paper is organized as follows. In section 2, we provide the pre-
liminaries for PPAs and the general genres of fault tolerance schemes.
The proposed schemes of exploiting extant redundancy to achieve fault
tolerant PPAs are presented in section 3. In section 4, we discuss the
capability of the proposed fault tolerance approaches, and section 5
concludes the paper.

2. PRELIMINARIES
In this section, we first present a brief introduction to PPAs, so as to

set up the basis for the proposed approach. We then briefly summarize
the various fault tolerance approaches applicable in the nanoelectronic
environment. In the later sections we will show that these fault toler-
ance schemes can all be supported by the extant redundancy in PPAs.

2.1 Introduction to PPA
In order to avoid the delay of the rippling carries, a PPA computes

the signals of “generate” (g) and “propagate” (p) and calculates carry
bits in parallel [11]. Based on (G[0, i− 1], P [0, i− 1]), the block g, p
signals, each bit of carry signal c[i] can be calculated directly:

c[i] = G[0, i − 1] + P [0, i − 1] · c[0]
. For an n-bit addition, a PPA calculates first all the n pairs of block
(G[0, i], P [0, i]) signals, where i = [0, n − 1], and then evaluates the
carry signals and sum signals correspondingly.

The generation of the g, p block signals falls into the prefix compu-
tation framework: for two adjacent or overlapping blocks BL and BR,
let their associated block g, p signal pairs be (gL, pL) and (gR, pR),
respectively; then the g, p signals for the merged block B = BLBR

can be obtained by g = gL + gR · pL and p = pL · pR. Intuitively, the
“generate” signal (g) of carry in the large block takes place if 1) the
left block generates a carry, or 2) the right block generates a carry and

978-3-9810801-3-1/DATE08 © 2008 EDAA

p)(g

(g p)R R

L

L(g p)

BR
B

L

LL p)(g (g p)R R

p)(g

Prefix
Operator

Figure 1: Functionality and internal structure of a prefix operator

the left block propagates it. The large block “propagates” a carry if
both the left block and the right block propagate it. A prefix operator
can be defined for the generation of g, p pairs. Figure 1 illustrates the
composition of g, p signals from two blocks BL and BR by a prefix
operator with its gate-level implementation.

In a PPA, a network is constructed to calculate all the (G[0, i], P [0, i])
pairs. Figure 2 illustrates the parallel prefix networks of three exam-
ple PPAs, where each node in the network represents a prefix operator.
The three examples illustrate multiple tradeoff points of hardware, per-
formance, and interconnect overhead in PPA designs. For each of the
PPAs shown in figure 2, the inputs are the 16 individual bit-level g, p
signals. Through the well-constructed prefix network, g, p signals of
larger blocks are constructed by applying prefix operators over consec-
utive smaller blocks. In the end, all the block signals (G[0, i], P [0, i])
are generated at the 16 output positions, facilitating the fast evaluation
of carry and sum signals.

2.2 Fault tolerance in nanoelectronic systems
In the nanoelectronic environment, the massive occurrence of on-

line faults makes aggressive fault tolerance approaches a fundamental
requirement for the implementation of any functional system [1]. Es-
sentially, any fault tolerance approach relies on a certain amount of
redundancy. Consequently, exploiting the extant redundancy within
the system reduces the extra hardware expense needed for fault tol-
erance purposes, thus opening up opportunities for the development
of highly efficient fault tolerance schemes for nanoelectronic systems.
In this section, we provide a brief introduction to a set of fault tol-
erance schemes that are generally applicable to nanoelectronic sys-
tems. We show in subsequent sections that the multiple fault tolerance
approaches, including fault detection, masking and diagnosis, can all
benefit from inherent redundancy exploitation.

Traditional CMOS based systems are highly reliable. Therefore, the
main concern on online faults in adders has been addressed by fault
detection only [12, 13, 14, 15, 16, 17]. However, fault detection by
itself cannot guarantee the basic reliability requirement in a nanoelec-
tronic environment; fault tolerance approaches, such as fault masking
and online repair, need to be applied to deal with the high occurrence
of online faults. These approaches typically come with the high cost
of tremendous hardware redundancy. It is shown that general fault
masking schemes such as NMR and N-MUX [18] result in immense
hardware cost when used to handle the fault rates in a nanoelectronic
environment.

Nanoelectronic systems naturally support online repair schemes by
their inherent regular structure and reconfigurability [19, 10, 20]. Con-
sequently, online repair based schemes can provide the advantages of
flexibility in dealing with the high occurrence of faults. In contrast to
fault masking schemes, online repair schemes require less hardware
overhead [18], especially for regular systems where backup units can

be shared. Related research in online repair for adders includes [9, 21,
22].

However, the cost of online repair based schemes, i.e., the spare
hardware needed to replace the faulty units, hinges heavily on the effi-
ciency of an online fault diagnosis procedure. If a fault can be precisely
localized within a small component, then the repair procedure can re-
place the faulty component with minimum hardware cost. A coarse-
grain fault diagnosis, on the other hand, results in the replacement of a
big chunk of hardware.

To summarize, the unique reliability challenge encountered by na-
noelectronic systems results from the combination of the following
two perspectives. On the one hand, the high fault rates demand power-
ful fault tolerance approaches that are not necessitated in traditional
CMOS based systems. On the other hand, the price of delivering
such fault tolerance capability is excessively high, and unaffordable
even with the hardware abundance of the nanoelectronic environment.
Specifically, although various fault tolerance approaches exist, includ-
ing fault detection, fault masking, and reconfiguration based online re-
pair, all these approaches rely on redundancy and demand tremendous
amount of extra hardware.

3. FAULT TOLERANCE FOR PPA

3.1 Redundancy in parallel prefix network
In a PPA, carry bits are computed in parallel by generating the block

g, p signals for every bit position. As is shown in figure 2, for every
output bit at position i, the signal pair (G[0, i], P [0, i]) is calculated
through a tree of prefix operator nodes covering all the inputs from bit
0 to bit i. Overall, for a 16 bit adder, the prefix network consists of 16
trees, with possible sharing of intermediate results, in generating the
outputs in parallel.

In a PPA, for performance purposes, all the (G[0, i], P [0, i]) signals
are calculated in parallel, with hardware redundancy used in a pre-
fix network. However, based on the inherent correlations among the
neighboring g, p signals, a copy of the same output can be generated
through an alternative path. For instance, between any two adjacent
output positions i and i − 1, we have:

G[0, i] = g[i] + G[0, i − 1] · P [0, i − 1]

P [0, i] = p[i] · P [0, i − 1]

where g[i] and p[i] are simply bit level g, p signals. In general, we
can define the prefix operator as ◦ on a signal pair (g, p), so that
(g, p) = (gL, pL) ◦ (gR, pR). Therefore, the correlation between ad-
jacent output positions can be represented as:

(G[0, i], P [0, i])

= (g[i], p[i]) ◦ (G[0, i − 1], P [0, i − 1])

= (g[i], p[i]) ◦ (g[i − 1], p[i − 1]) ◦ (G[0, i − 2], P [0, i − 2])

= (g[i], p[i]) ◦ ... ◦ (g[j], p[j]) ◦ (G[0, j − 1], P [0, j − 1])

(0 < j < i)

Basically, an alternative path of generating (G[0, i], P [0, i]) can be
formed in the prefix network by using the signals from an adjacent
output position (i − 1). Generating a redundant (g, p) pair through
the alternative path costs thus only one extra prefix operator for each
output position i. The efficient construction of such redundant copies
provides the opportunity to implement cost-effective fault tolerance
approaches.

In summary:

Kogge−Stone adder A hybrid Brent−Kung / Kogge−Stone adderBrent−Kung adder

Figure 2: Parallel prefix network examples

• Through the exploitation of the prefix correlation, for every out-
put position, a redundant copy of the same signal can be gener-
ated from the adjacent output position by adding an additional
prefix operator.

• Multiple redundant copies of a signal can be generated by ex-
tending the prefix correlation to output positions further apart.
However, when the redundant copy is built based on a more re-
mote output position, the cost in terms of delay, hardware and
interconnect increases.

3.2 Online fault detection
Since a redundant copy of each output signal can be generated with

an insignificant amount of hardware and a small delay, checking for
the conformity of the two copies of the same signal delivers online
fault detection capability. Specifically, the redundant copy of output
signal at position i can be implemented from the output signal at po-
sition i − 1, as the redundant copy generated through the immediate
adjacent one costs the least in terms of hardware and delay, and has the
best interconnection locality. These two copies of the same signal are
directly compared using an XOR gate.

We can see from figure 2 that, for the Kogge-Stone PPA, no adjacent
output positions share a common prefix operator. Such a property en-
sures a fine-grained fault detection capability, indicating at a bit level
whether each output signal is faulty or not. In general, for PPAs with-
out such a property, fault detection is achieved at the adder component
level. Nonetheless, the fault-secure property of the PPA is maintained
[23, 24]. In other words, any single fault occurrence can be guaranteed
detected. For a fault to evade the redundant copy comparison based
detection, the faulty computational unit has to either fan out to all the
output positions, or to none of the output positions. Apparently, nei-
ther condition is satisfied for any node in the PPA network. Therefore,
a faulty output is always distinguishable from the fault-free one.

The fault detection capability is essentially associated with the way
each basic computational unit (in this case, a prefix operator) fans out
to multiple output positions. Whether the approach can provide fine-
grained fault detection at the bit level depends on the overlapping of
computational units between the redundant copies to be compared. If
a common prefix operator fans out to the two adjacent output positions
i and i − 1, when the original copy at position i is compared with the
redundant copy generated at position i − 1, both might be infected by
the same faulty prefix operator, thus possibly conforming to a faulty
bit.

3.3 Fault masking
A single fault masking capability achievable by TMR requires at

least three copies of each signal. At a first sight, it seems fault mask-
ing can be supported easily by extending the fault detection approach
to generate multiple copies of each output signal through inherent re-
dundancy. However, the effectiveness of such fault masking schemes
hinges on the disjointness of the hardware to generate the three copies,
as a fault in one shared unit might cause the duplicated faulty result
to outweigh in the majority vote. Consequently, one needs to exam-
ine carefully component overlaps in a PPA network, in order to make
efficient use of the extant redundancy for fault masking purposes.

The Kogge-Stone PPA poses a unique characteristic in its structure.
Notably in the Kogge-Stone PPA, not a single common node is ever
shared between adjacent output positions. Although the set of odd
numbered output positions has a large set of overlapped prefix opera-
tor nodes, as do the even ones, there is no overlap whatsoever between
these two sets of components. In other words, the hardware is divided
into two disjoint sets with a “clear cut”. The internal redundancy struc-
tured into such two disjoint sets naturally supports the generation of
two copies of the same signal with no overlapping in hardware. Con-
sequently, the inherent correlation between adjacent output positions
can be exploited directly for fault masking approaches.

Traditional TMR approaches utilize triple the amount of original
hardware to form three copies of a computation with complete dis-
jointness. For a Kogge-Stone PPA, since the second copy of an out-
put signal can be generated with the internal redundancy disjointly,
only the third copy of the computation in a TMR approach needs to be
added. In fact, to obtain a disjoint third copy of the output signals for
TMR purposes, only half the amount of the original hardware in the
Kogge-Stone PPA needs to be added. By duplicating either the hard-
ware involved in the set of odd number output positions, or the even
ones, the third copy of each output signal can be constructed. Conse-
quently, a TMR based fault masking can be achieved with 1.5 times the
original hardware for a Kogge-Stone PPA, instead of the triplication in
a directly implemented TMR approach.

In the Brent-Kung or hybrid PPAs, the overall overlapping of hard-
ware across output positions is so pervasive that the contribution of
extant redundancy is hardly of any help in forming redundant copies
with fully disjoint hardware. Essentially, a Kogge-Stone PPA utilizes
more internal hardware redundancy to achieve higher performance, in
comparison to the other implementations of a PPA. In addition, the
redundancy in a Kogge-Stone PPA is organized in a highly regular
manner. This regularity, together with the abundance of internal hard-
ware redundancy makes it feasible to exploit the existing redundancy

fs: 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0

os: 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0

Figure 3: An example of fanout signature (fs) and observable sig-
nature (os) for the prefix operator node in black

for fault masking purposes without sacrificing the high performance.

3.4 Fine grained diagnosis for online repair
Online repair based fault tolerance approaches take advantage of the

reconfigurability in nanoelectronic systems, thus providing high flex-
ibility in dealing with high and variable fault rates. Reconfiguration
based online repair is invoked after a fault has been detected and then
diagnosed to be within a certain location. The amount of hardware
necessitated in the repair phase hinges on the precision of the online
diagnosis; therefore, high resolution online diagnosis is crucial to the
efficiency of online repair based fault tolerance approaches.

The main challenge of online diagnosis lies in the lack of control-
lability in an online environment. Furthermore, in a traditional offline
diagnosis, all the fault signatures can be stored in a dictionary, which
can be referred to when diagnosis is performed. In an online envi-
ronment, the approach of using a dictionary to store the signature of
every fault is prohibitively expensive, as one would have to store all
the outputs under every fault, for every possible input combination.

To achieve online diagnostic capability, one has to rely on the in-
herent regular structure of the components, so as to achieve full di-
agnostic resolution. In other words, each faulty component needs to
have a unique syndrome to be distinguished from another. Otherwise,
an aliasing fault would result in significant hardware overhead in the
repair stage, since all the components in the ambiguity set would need
to be replaced by spare ones.

As in the fault detection approach, by generating a redundant copy
of each output signal through its adjacent signal, the conformity of the
two copies essentially serves as a syndrome of the faulty component.
Basically, under a fault-free scenario, every pair should agree, and the
XOR results of each output position between the two redundant copies
should form a zero vector. We will refer to the vector of XOR results
as observable signature henceforth. When a fault occurs, the observ-
able signature is a non-zero vector. Basically, if every fault results
in a unique observable signature, then fine-grained diagnosis can be
achieved with full resolution.

Essentially, the observable positions of a faulty unit are only the
output positions that the unit can fan out to. We define the fanout sig-
nature of a unit by its associated combination of output positions it
fans out to. The relationship between a fanout signature (fs), and the
correspondent observable signature (os), can be expressed as os[i] =
fs[i] ⊕ fs[i − 1]. This shows that they have the same distinction
capability, since at output position 0 there is no unit involved and in-
variably fs[0] = 0. Figure 3 shows the fanout signature fs, as well as
the observable signature os for the faulty black unit in a hybrid PPA.

Since fanout signature and observable signature are essentially iden-
tical in representing the diagnostic resolution, we can examine the di-

16-bit adder Capability extra hw / extant hw
Kogge-Stone PPA bit-level detection 15 / 49

Hybrid PPA adder-level detection 15 / 32
Brent-Kung PPA adder-level detection 15 / 26

Table 1: Fault detection analysis

agnostic capability by focusing on the fanout signature of each faulty
unit, since it is more relevant to the prefix network structure. Appar-
ently, two units with the same fanout signature cannot be distinguished
apart. In such a case, the units with the same signature fall into an am-
biguity group. Figure 4 illustrates all the ambiguity groups of the three
PPA designs. For each PPA, the prefix operator nodes that are marked
by the same number belong to one ambiguity group, and the nodes that
are not marked by any number can be diagnosed with full resolution.
For instance, the Brent-Kung adder has four ambiguity groups, with
group 1 consisting of 4 elements, groups 2 and 4 consisting of 2 ele-
ments each, and group 3 consisting of 3 elements. Since the associated
diagnosis cannot distinguish between the members in an ambiguity
group, if the observable signature indicates a fault occurring in an am-
biguity group, the subsequent reconfiguration procedure in effecting a
repair needs to replace all the members.

4. FAULT TOLERANCE ANALYSIS
In this section, based on the proposed technique of exploiting the

existing redundancy in parallel adders, we provide an analysis of the
fault tolerance capability from the following perspectives:

• Fault detection and masking capability and overhead.

• Online fault diagnostic resolution and the relevant repair costs.

• Incomplete fault manifestation.

4.1 Fault detection and fault masking discussion
Table 1 summarizes the fault detection capability and hardware over-

head for the parallel adders under discussion. The third column com-
pares the extra hardware needed to generate the redundant copies of
signals as a fraction of the existing amount of hardware in the adder.
For each of the PPA cases, a total of 15 prefix operator nodes need
to be added at the 15 output positions to generate the redundant sig-
nal copies, while the existing hardware consists of the prefix operator
nodes within the network.

Comparing to a conventional duplication based online fault detec-
tion scheme, where the extra hardware equals the existing amount of
hardware, the proposed approach utilizes significantly lower hardware
overhead. Performance-wise, the proposed approach costs an insignif-
icant two-gate delay to generate the redundant signal copy.

For the Kogge-Stone PPA, the amount of extra hardware consists
of three parts: 15 prefix operator nodes at the output end, a redun-
dant copy of the network for the odd output positions with 24 internal
nodes, and 8 extra nodes at the output of the extra network. Over-
all, fault masking can be achieved by twice the amount of the original
hardware (47 extra nodes). This is significantly less than double the
amount of extra hardware (98 nodes) required in a TMR approach.
For the proposed approach, the performance overhead for fault mask-
ing is a constant 4 gate delay in the CLA, and 2 gate delay in the
Kogge-Stone PPA.

Adder Brent-Kung Kogge-Stone hybrid
Repair cost for one faulty node 1.85 1.90 1.63

Table 2: Expected repair cost considering the ambiguity groups

A hybrid Brent−Kung / Kogge−Stone adderKogge−Stone adderBrent−Kung adder

1

1

1

1

2

2

3

3

3

4

4

1

1

1

1

2

2

2

2

3

3

3

4

4

4

5

5

6

6

7

7

8

8

1

1

1

1

2

2

2

3

3

Figure 4: Ambiguity groups of PPAs

4.2 Diagnostic resolution analysis
As is shown in figure 4, for a certain number of nodes in each of

the parallel prefix networks, aliasing exists for the proposed online di-
agnosis approach. The overhead introduced by the loss of diagnostic
resolution lies in the extra hardware needed to replace the entire ambi-
guity group, if one of the group members is faulty. Overall, according
to the ambiguity group information illustrated in figure 4, the expected
number of nodes needed in the repair phase to replace one faulty node
can be computed. Table 2 lists the expected number of nodes to replace
a faulty one for each PPA designs.

Observing that the loss of diagnostic resolution is mainly due to the
fact that all the members in the same ambiguity group have the same
fanout signature, one can improve the diagnostic resolution using addi-
tional hardware to make each member’s fanout signature distinct. Note
that the extra hardware needs to be added within the same framework
of the diagnosis scheme. In other words, new output positions need
to be added to distinguish each member of an ambiguity group, while
the only way to observe any fault at the output positions is through
the comparison of redundant copies of the same signal. Such redun-
dancy required to enhance diagnostic resolution can also benefit from
exploiting the internal correlation in the prefix computation.

Figure 5 illustrates an example of adding three nodes to distinguish
the four nodes, a, b, c, d in the same ambiguity group of a Brent-Kung
PPA. Based on the property of prefix operation, the three additional
output positions form the same signal as the highest (15th) output po-
sition in the original PPA. For example, the fan out line from node
c consists of (G[8, 15], P [8, 15]) while the 14th output position con-
sists of (G[0, 14], P [0, 14]). With one of the additional prefix operator
nodes, these two pairs are merged. According to the prefix operation:

(G[8, 15], P [8, 15]) ◦ (G[0, 14], P [0, 14]) = (G[0, 15], P [0, 15])

Therefore, the additional node fans out a redundant copy of the signal
from the 15th position. Note that full fault diagnostic resolution can
be achieved for all the three additional nodes as well.

Without loss of generality, this approach can be applied to make
each member of any ambiguity group distinguishable, thus elevating
the diagnostic capability to full resolution for all the PPAs. For an am-
biguity group of n members, n−1 new nodes need to be added. Table
3 lists the number of extra nodes needed to achieve full resolution in
each of the PPA designs. It also shows the average hardware overhead
of repair for one node based on the original PPA. According to tables
2 and 3, the hardware overhead for repair is significantly reduced for
the online diagnosis approach. Moreover, the full diagnostic resolution
approach cuts down significantly the hardware repair cost.

4.3 Inconsistent fault manifestation
The erroneous output in an online environment depends on the 1)

the faulty component, and 2) the input combination. Basically, a fault
manifests only when the input combination stimulates the fault and
sensitizes its propagation path towards the output. Similarly, if an in-
ternal faulty signal is not directly connected to the output, it might
lose its observability when it reaches the output positions, after going
through intermediate components.

In the example of figure 3, a faulty output of the black block fans out
to three output positions {5, 13, 14}. Of the three positions, the fault
will definitely manifest at the 5th position, since the faulty signal goes
directly to the output there. Whether the fault will manifest at the 13th
output position, however, depends on the input to the node as well as
the internal logic of the node which the faulty signal goes through be-
fore reaching the output. Certainly, an annihilation of the faulty signal
at the 13th output position makes it impossible for any fault effect to
propagate to the 14th one. Otherwise, whether the fault manifests at
the 14th output position depends on the nodes it propagates through at
the 14th position.

Such an inconsistent fault manifestation makes online diagnosis chal-
lenging, since each fault might have a number of possible fanout signa-
tures. This increases fault aliasing possibility, thus directly impacting
diagnostic resolution. In general, any online diagnosis approach relies
on certain fault manifestation signatures to identify the faulty compo-
nents, thus suffering from loss of certainty in fault signatures, due to
inconsistent fault manifestation. The following observations regarding
inconsistent fault manifestation can help improve diagnostic resolu-
tion:

• Inconsistent fault manifestation occurs when a faulty signal goes
through certain computation units before finally reaching the
output. Therefore, for faulty signals that can directly reach an
output position, the manifestation is consistent. For example, in
figure 3, the 5th output position has consistent fault manifesta-
tion for the faulty unit marked as black.

• Inconsistent fault manifestation has unidirectional impact; for
any faulty unit, the output bits reachable from it might be incor-

16-bit adder Brent-Kung Kogge-Stone Hybrid
Number of extra nodes 7 14 6

Avg repair cost for one faulty node 1.27 1.29 1.19

Table 3: HW overhead / repair cost for full diagnostic resolution

Brent−Kung adder

a

b

d

c

Figure 5: An example of achieving full diagnostic resolution

rect or correct, yet the output bits that are not reachable from the
faulty block are always correct.

• Whether a faulty signal propagates through a unit and manifests
at the output depends on two issues: the internal logic of the
unit, and the other inputs of the unit. For a PPA, the internal
logic of each prefix operator is known. Under the assumption of
uniformly distributed input signals, the inconsistent fault mani-
festation at the output side can be quantified and evaluated in a
probabilistic sense.

Although inconsistent fault manifestation introduces challenges to
online diagnostic resolution, it has no impact on fault detection or
fault masking. Since inconsistent fault manifestation unidirectionally
changes faulty output positions to fault-free ones, neither fault detec-
tion nor fault masking capability will be compromised, since the only
thing that matters in these two schemes is the correctness of the results,
i.e., the signals on the output side.

5. CONCLUSION
One of the most severe challenges for nanoelectronic systems is

the reliability challenge, which has been known to require tremendous
hardware overhead to overcome. The fundamental question of whether
reliability can be achieved efficiently determines the success of the fu-
ture nanoelectronic systems. In this paper, we propose a novel way
to enhance the reliability of parallel prefix adders for nanoelectronic
systems in a highly efficient approach.

We identify the extant correlation in parallel prefix computation and
exploit it for fault tolerance purposes. We develop a number of tech-
niques to construct fault detection, fault masking and online fault diag-
nosis approaches utilizing the extant hardware redundancy. The pro-
posed approach for parallel prefix adders provides an efficient means
of enhancing the reliability of the basic arithmetic building blocks in
the nanoelectronic environment. Moreover, the proposed techniques
open up a new way to develop powerful fault tolerance schemes with
very low overhead and overcome the reliability challenge in nanoelec-
tronic systems efficiently.

6. REFERENCES

[1] ITRS, International Technology Roadmap for Semiconductors
Emerging Research Devices, 2006.

[2] M. A. Kastner, “The Single-Electron Transistor”, Review of Mod-
ern Physics, vol. 64, pp. 849–858, 1992.

[3] P. Mazumder, S. Kulkarni, M. Bhattacharya, J. P. Sun and G. I.
Haddad, “Digital Circuit Applications of Resonant Tunneling
Devices”, Proceedings of the IEEE, vol. 86, n. 4, pp. 664–686,
April 1998.

[4] P. Avouris, J. Appenzeller, R. Martel and S. Wind, “Carbon Nan-
otube Electronics”, Proceedings of the IEEE, vol. 91, n. 11,
pp. 1772–1784, 2003.

[5] C. S. Lent, P. D. Tougaw, W. Porod and G. H. Bernstein, “Quan-
tum Cellular Automata”, Nanotechnology, vol. 4, pp. 49–57,
1993.

[6] Y. G. Krieger, “Molecular Electronics: Current State and Future
Trends”, J. Structural Chem, vol. 34, pp. 896–904, 1993.

[7] P. Beckett and A. Jennings, “Towards Nanocomputer Architec-
ture”, in Asia-Pacific Computer System Architecture Conference,
pp. 141–150, 2002.

[8] M. Forshaw, R. Stadler, D. Crawley and K. Nikolic, “A Short Re-
view of Nanoelectronic Architectures”, Nanotechnology, vol. 15,
pp. 220–223, 2004.

[9] W. Rao, A. Orailoglu and R. Karri, “Fault Identification in Re-
configurable Carry Lookahead Adders Targeting Nanoelectronic
Fabrics”, in ETS, pp. 63–68, 2006.

[10] D. B. Strukov and K. K. Likharev, “CMOL FPGA: A Recon-
figurable Architecture for Hybrid Digital Circuits with Two-
terminal Nanodevices”, Nanotechnology, vol. 16, pp. 888–900,
Apr 2005.

[11] B. Parhami, Computer Arithmetic Algorithms and Hardware De-
signs, Oxford University Press, 2000.

[12] R. J. Sellers, M. Hsiao and L. W. Bearnson, Error Detecting
Logic for Digital Computer, McGraw-Hill, 1968.

[13] B. W. Johnson, J. H. Aylor and H. H. Hana, “Efficient Use of
Time and Hardware Redundancy for Concurrent Error Detection
in a 32-bit VLSI Adder”, IEEE Journal of Solid-State Circuits,
pp. 208–215, February 1988.

[14] J. G. G. Langdon and C. K. Tang, “Concurrent Error Detection
for Group Look-ahead Binary Adders”, IBM J. Res. Develop, pp.
563–573, Sep 1970.

[15] M. Nicolaidis, “Carry Checking/Parity Prediction Adders and
ALUs”, IEEE Transactions on VLSI Systems, vol. 11, pp. 121–
128, Jan 2003.

[16] D. P. Vasudevan and P. K. Lala, “A Technique for Modular De-
sign of Self-Checking Carry-Select Adder”, in DFT, pp. 325–
333, 2005.

[17] B. K. Kumar and P. K. Lala, “On-line Detection of Faults in
Carry-Select Adders”, in ITC, pp. 912–918, 2003.

[18] K. Nikolic, A. Sadek and M. Forshaw, “Architectures for Reliable
Computing with Unreliable Nanodevices”, in IEEE-NANO, pp.
254–259, 2001.

[19] A. DeHon and M. J. Wilson, “Nanowire-based Sublithographic
Programmable Logic Arrays”, in FPGA, pp. 123–132, 2004.

[20] S. C. Goldstein, M. Budiu, M. Mishra and G. Venkataramani,
“Reconfigurable Computing and Electronic Nanotechnology”, in
ASAP, pp. 132–143, 2003.

[21] S. Peng and R. Manohar, “Fault Tolerant Asynchronous Adder
through Dynamic Self-reconfiguration”, in ICCD, pp. 171–179,
2005.

[22] G. C. Cardarilli, M. Ottavi, S. Pontarelli, M. Re and A. Salsano,
“Fault Localization, Error Correction, and Graceful Degradation
in Radix 2 Signed Digit-Based Adders”, IEEE Transactions on
Computers, vol. 55, pp. 534–540, May 2006.

[23] M. Abramovici, M. A. Breuer and A. D. Friedman, Digital Sys-
tems Testing and Testable Design, IEEE Press, 1990.

[24] P. K. Lala, Self-Checking and Fault-Tolerant Digital Design,
Morgan Kaufmann, 2000.

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

