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Abstract - The effectiveness of stochastic power management 
relies on the accurate system and workload model and effective 
policy optimization. Workload modeling is a machine learning 
procedure that finds the intrinsic pattern of the incoming tasks 
based on the observed workload attributes. Markov Decision 
Process (MDP) based model has been widely adopted for 
stochastic power management because it delivers provable 
optimal policy. Given a sequence of observed workload 
attributes, the hidden Markov model (HMM) of the workload 
is trained. If the observed workload attributes and states in the 
workload model do not have one-to-one correspondence, the 
MDP becomes a Partially Observable Markov Decision Process 
(POMDP). This paper presents a framework of modeling and 
optimization for stochastic power management using HMM 
and POMDP. The proposed technique discovers the HMM of 
the workload by maximizing the likelihood of the observed 
attribute sequence. The POMDP optimization is formulated 
and solved as a quadraticly constrained linear programming 
(QCLP). Compared with traditional optimization technique, 
which is based on value iteration, the QCLP based optimization 
provides superior policy by enabling stochastic control.  

 
1. Introduction 

Dynamic power management (DPM) - a mechanism that 
selectively shut-off or slow-down those system components that are 
idle or underutilized – has become a popular technique for power 
reduction at system level. The effectiveness of power management 
relies heavily on the accuracy of the workload modeling and the 
efficiency of policy optimization techniques.  

Workload modeling is a machine learning procedure that finds 
the intrinsic pattern of the incoming tasks based on the observed 
workload attributes. In [1], the idle intervals are modeled and 
predicated using the exponential-average approach. In [2], a 
regression function is used to predict the next task incoming time. 
The nature of the workload of a complex computing system is 
random and uncertain because it is determined by user context and 
the sophisticated hardware/software. Stochastic methods are 
naturally selected for modeling and optimization of such system.  

Stochastic models such as Markov decision process ([4]), Semi-
Markov decision process ([5]), and Partially Observable Markov 
Decision process ([6], [7]) have been investigated by previous 
DPM research. All of these models assume that the workload is 
intrinsically Markovian and this embedded Markov model can be 
reconstructed (or trained) based on the given observation sequence.  

In most of the cases, the states of the embedded Markov model 
and the observed workload attributes do not have one-to-one 

correspondence because the workload is not only controlled by the 
hardware and software but also affected by user and environment. 
For example, user working style and user mood have significant 
impact of the workload distribution of a computer system. Consider 
a power manager (PM) of a wireless adapter. The observed 
workload attribute is the frequency and the size of the 
incoming/outgoing TCP/IP packets. During a teleconference, the 
user may choose to send a video image, send the audio message, 
share files or share the image on whiteboard. Different operations 
generate different communication requirements. An accurate 
workload model of the wireless adapter must reflect how the user 
switches from one operation to another. However, this information 
is not observable by the PM. A hidden Markov model (HMM) is an 
embedded stochastic process with an underlying stochastic process 
that is not observable, but can only be observed through another set 
of stochastic processes that produce the sequence of observations 
[10]. Among all the stochastic models mentioned above, only the 
POMDP model is capable to provide the optimal control policy for 
an HMM [8]. How to train the HMM based on the observed 
information and how to find the optimal control policy are two 
major challenges. While most of the previous researches focus on 
the second challenge, this paper addresses both of them. 

The authors of [6] consider an integrated circuit under process, 
voltage and temperature variations as a partially observable system. 
POMDP is applied to search for the optimal power management 
policy of such system. Online and offline algorithm have been 
proposed. For both algorithms, it is assumed that the state space of 
the HMM is attained from the pre-characterized temperature-
performance relation. The offline algorithm assumes the 
availability of the entire HMM while the online algorithm estimates 
the transition and observation probability of the HMM using 
maximum-likelihood estimation. Both algorithms utilize value 
iteration for policy optimization.  The authors of [7] discuss several 
partially observable scenarios of an on-chip system and their HMM 
modeling. However, the discussion focuses on the calculation of 
the observation probability instead of the overall HMM. The 
optimal policy is obtained using value iteration and the controller 
can be implemented as a finite state automaton. Although very 
effective and theoretically optimal, the value iteration algorithm is 
limited by high memory requirement. Therefore, it can find the 
optimal policy only for simple systems with a small state and 
observation space [11]. Furthermore, the value iteration algorithm 
only considers the deterministic policy, which turns the device 
on/off with probability 1. It is impossible to constrain the size of 
the controller. Sometimes, a finite state automaton with hundreds of 
states is needed to implement the controller. 

This work presents a complete framework for POMDP based 
power management, including novel modeling and optimization 
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techniques. First, the HMM of the workload is trained from the 
observation sequences using Baum-Welch algorithm [10]. The 
policy optimization problem is then formulated and solved using 
quadraticly constrained linear programming (QCLP). The technical 
contribution of this work can be characterized as the followings. 

1. The modeling technique iteratively utilizes the Baum-Welch 
algorithm to find the local optimal HMM that maximizes the 
likelihood of the observed sequence.  

2. No prior knowledge of the state space, transition probability or 
observation probability is assumed during model construction. 

3. To demonstrate the effectiveness of the proposed modeling 
technique, several real-life traces of the workload attributes of 
the PC hard disk system are investigated and their HMMs are 
trained. Compared with other modeling techniques, the 
average likelihood of the observed sequences under the HMM 
model is 65.4% higher. 

4. The QCLP based formulation is able to find the optimal power 
management policy of large systems with hundreds of states. 

5. The generated power management policy is represented as a 
fixed-size stochastic controller. The size of the controller is 
defined by user. 

6. When applied to the power management of hard disk system, 
the proposed policy optimization technique gives better 
energy-performance tradeoffs than some heuristic policies and 
the value-iteration based policy.  

The remainder of this paper is organized as follows. Section 2 
gives the background of HMM and POMDP model. Section 3 
discusses the model construction and the QCLP based policy 
optimization. Our experimental results and analysis are presented in 
Section 4. Finally, we conclude our work in Section 5. 

 
2. Background 

In this section, we briefly introduce some necessary 
backgrounds of hidden Markov models and POMDP model. 

2.1. Hidden Markov models 

A hidden Markov model (HMM) is an embedded stochastic 
process with an underlying stochastic process that is not observable 
(it is hidden), but can only be observed through another set of 
stochastic processes that produce the sequence of observations [10]. 
An HMM can be characterized as a 4-tuple: },,,{ BPOS=λ , 
where S = {s1, s2, … , sN} denotes a finite set of states, O = {o1, 
o2, … , oM } denotes a finite set of observations, P is an N×N matrix 
with its ijth entry denotes the state transition probability pij = P[sj |si] 
and B is an M×N matrix with its ijth entry denotes the observation 
probability  bj(k) = P[ok | sj]. Through the parameters P and B, the 
uncertainties in the system can be modeled. 

We adopt the notation in [10] and denote an observation 
sequence and a model as O and λ respectively. To apply HMM to 
model real-world applications, three basic problems are of great 
interests and should be solved properly. 

1. How well a given HMM model matches a given observation 
sequence. This can be interpreted as how to efficiently 
compute the probability P(O|λ). 

2. How to unveil the hidden part of the model. That is, if we have 
a observations sequence and a HMM, how to find the real 
state sequence that best “explains” the observations. 

3. How to determine the optimal model },,,{ BPOS=λ  to 
maximize the probability P(O|λ) 

In this work, we are more interested in the first the third problem. 
We adopt the HMM to model the process of the incoming 
workloads, and try to find the HMM that maximizes the likelihood 
of the observed sequence of workload attributes. Given several 
HMMs trained based on the same observation sequence, we 
compare their accuracy by comparing the probability P(O|λ). 
Forward-backward algorithm and Baum-Welch algorithm are well 
established techniques to solve the above mentioned problems. For 
more details of these two algorithms, refer to [10].  

2.2. POMDP 

The Partially Observable Markov Decision Process (POMDP) 
combines the strength of the HMMs and the Markov Decision 
Process (MDP). A POMDP can be defined as a tuple 

},,,,,{ RAOS BP=λ , where 
• S denotes a finite set of states. 
• O denotes a finite set of observations.  
• P specifies the probability of the system transition from state s 

to state s’, given that action a is taken at state s, i.e. 
],|[ assPp ij

a
ij = . 

• B denotes the observation function, i.e. ],|[ asoPb ik
a
ik = .   

• A denotes a finite set of actions. 
• R(s, a) denotes a reward function. The reward could be 

negative if there is a cost when taking action a in the state s. 

The first five parameters form an HMM whose transition and 
observation probability is controlled by the selected actions, while 
the last two parameters are special for Markov decision process.  

A POMDP consists of a set of decisions over an infinite 
sequence of states. At each stage, an action is chosen by the control 
agent based on the history of observations. The objective of the 
agent is to maximize/minimize the expected discounted sum of 
rewards/costs. The discount factor, 0 ≤ γ < 1, is introduced to 
maintain finite sums over the infinite time horizon.  

To avoid remembering the entire histories, finite-state 
controllers are used to represent POMDP policies [11]. To 
distinguish from the state in an HMM or POMDP, in the rest of the 
paper, we will refer the state of the controller as node and denote it 
as q. The node transition of the controller is based on the 
observation sequence and the agent determines its action based on 
the controller node. The action selection and controller state 
transition are stochastic, in order to make up for limited memory. 
The finite state controller can formally be defined by the tuple (Q, 
ψ, η), where Q is the finite set of controller nodes, ψ is the action 
selection model )|( qaP  that specifies the selection probability of 
action a for controller node q, and η is the node transition model 

),,|'( vaqqP that specifies the node transition probability from q 
to q’ under action a and observation v.  

3. System modeling and policy optimization 

In this section, we propose a framework of modeling and 
optimization for the power management of a partially observable 
system. Our model is general enough to be applied to many 
systems and can handle large problems with hundreds of states. The 
optimal policy obtained by our framework is stochastic instead of 
deterministic [7]. To the best of our knowledge, this is the first time 
that the stochastic policy is used for power management in a 
partially observable system. 



In order not to lose generality, consider a system composed of 
three components: service requestor (SR), service provider (SP), 
and service queue (SQ). The SR generates service requests that 
need to be treated by the SP. The service requests are first stored in 
the SQ, and will then be processed by the SP. The service time of 
the requests is a random variable. Such service requester-provider 
based architecture generally exists in many real world computing 
systems. For example, the SR may be the software applications that 
require reading data from or writing data into the hard disk, the SP 
may be the hard disk, and the SQ may be the read or write queue 
implemented in the OS. The power manager monitors the state of 
the system which is the joint state of the three components (SR, SQ 
and SP), and issues appropriate actions to the SP. 

3.1. System modeling 

We assume that the underlying system states are Markovian, as 
assumed in [4] and [12], which means the transition of the states 
solely depends on the current state, but has nothing to do with the 
history of the system states. However, the system may appear to be 
non-Markovian to the power manager as a result of the incomplete 
or noisy observations made by the power manager. 

The service requester, in general, presents the highest 
uncertainty and is the least observable among the three system 
components. This is why the workload modeling is always 
challenging. This paper will focus on the HMM modeling of SR. 
The rest of the system (including SP and SQ) will be modeled in 
the similar way as the previous works [4].  

Given an observation sequence O and a finite set of states, the 
transition probabilities and the observation probabilities of an 
HMM λ with locally maximized P(O|λ) can be trained using 
Baum-Welch method [10]. In this work, we iteratively augment the 
state set and train the HMM model using Baum-Welch method until 
the likelihood function P(O|λ) reaches the local maxima. The 
likelihood function can be calculated using forward-backward 
method [10]. 

Figure 1 gives the flow of our modeling algorithm for the SR. 
The input of this algorithm is a sequence of observed workload 
attributes, the user defined observation set and the initial state set. 
The observed workload attributes are first classified into different 
states in the observation set. This step usually involves information 
aggregation in order to reduce the complexity of the training 
process. After the observation sequence is generated, the HMM is 
trained and evaluated. If the likelihood of the observation sequence 
is still improving, then we augment the state set S and repeat the 
previous steps. 

 

 

 

 

 

 
 

Figure 1. SR modeling algorithm 

We use a power-managed hard disk as our example of system 
modeling. We traced three Windows XP systems for their hard disk 
access requests. All the data were collected using the performance 
monitoring facility which is built in Windows XP. We created a 
specific counter of our own in the monitoring tool, and logged all 
the data in a text file. The minimum time interval between two data 

reporting by the monitoring tool is 1 second. This interval is chosen 
to maintain the balance between the accuracy of workload 
information and the overhead introduced by the monitoring tool. 
The monitored attribute of hard disk workload is the number of 
transfers per second. It is the addition of the number of reads per 
second and the number of writes per second. Table 1 shows the 
characteristics of the transfer sequences on the three systems. 

Table 1. Characteristics of the SR observation sequences. 
Name of 
sequence 

Duration 
(in sec) 

Largest # of 
transfers/sec 

Smallest # of 
transfers/sec 

Average # of 
transfers/sec 

Dell-Q 10000 1033.124 1.971134 7.984103 
Dell-L 8640 428.7265 0.80002 3.99056 
Dell-T 10000 273.2839 1.969355 4.889311 

We classify the observed transfer rates into five levels, each 
corresponding an observation in SR. O1 and O2 represent the 
transfers at a rate smaller than 3/sec, larger than 3/sec but smaller 
than 20/sec, respectively. O3, O4 and O5 represent the transfers at a 
rate larger than 20/sec but smaller than 50/sec, larger than 50/sec 
but smaller than 100/sec, larger than 100/sec, respectively. The 
quantization is not equalized as most of the observed transfer rate is 
below 50/sec.  

Figure 2 shows the probability distributions of the durations of 
O1 and O2. As we can see, the distribution of O2 fits nicely to an 
exponential distribution, while the distribution of O1 is totally 
different from the exponential distribution. The duration of the 
other three observations have the similar distribution as O2. The 
distribution of O1 is special because it indicates the time when the 
SR is almost idle, since the transfers in O1 are at a rate below 3/sec. 
As a matter of fact, most of the disk transfer during this time is due 
to the monitoring tool itself. The non-exponential distribution of O1 
indicates that observation sequence appears to be non-Markovian to 
the power manager and there maybe some hidden states in the 
workload model.  
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(a) Histogram of duration of observation 1. 

Histogram of duration of Observation 2
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(b) Histogram of duration of observation 2. 

Figure 2. Distributions of the durations of two observations in SR. 
 
 
 
 
 
 

 
 
Figure 3. The size of S has impact on the likelihood of observation. 
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    Figure 3 shows how the likelihood of the observation sequence 
changes when we keep on augmenting the size of the state set of the 
HMM. In the plot, the x-axis represent the number of states in the 
HMM and the y-axis represent log[P(O|λ)]. As we can see, the 
likelihood the observation first increase then remains stable as the 
size of S increases. Table 2 lists the best P(O|λ) of the trained 
HMM, the P(O|λ) of uniform selection and the P(O|λ) of trained 
HMM with less states. 

Table 2. Log[P(O|λ)] for trained HMM and uniform selection. 
Name of 
sequence 

Best Trained 
HMM 

Uniform 
Selection 

Trained HMM 
with less states 

Dell-Q -5534.3 -16094.4 -7062.9 
Dell-L -4398.8 -6209.3 -4504.2 
Dell-T -6738.5 -16094.4 -8300.6 

Given the HMM of the SR, a synthesized workload can be 
generated. Figure 4 shows the synthesized observation sequence 
that is generated from the HMM model for Dell-L as well as the 
original observation sequence that is collected from the same 
machine. We can see from the figure that the generated sequence 
reflects the original sequence very well.  

The system consists of three components, SR, SQ and SP, the 
system state can be represented as the composition of the states of 
each component. It is represented by a triplet (s, r, q) where s∈S, 
r∈R, and q∈Q. The probability to switch from state (s, r, q) to (s’, 
r’, q’) under power control action a can be calculated as: 

)',()',()',())',','(),,,(( , qqPrrPssPqrsqrsP sr
aa ××=  

where )',( ssPa  is the probability for SP to switch from s to s’ 

under action a, )',( rrP  is the probability for SR to switch from r 

to r’ and )',(, qqP sr  is the probability for SQ to switch from q to 

q’ when SR is in state r and SP is in state s. )',(, qqP sr  depends on 
the SR incoming rate and the SP service rate.  
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(b) Original observation sequence 

Generated observation sequence
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(b) Generated observation sequence 

Figure 4. Observation sequence of SR. 
 
3.2. Policy Optimization 

The policy optimization is a constrained optimization which 
minimizes the power consumption with the respect of a given 
performance constraint. The expected latency of a request as well 

as the request loss rate are the most widely used performance 
criteria. These two criteria are not independent to each other. Given 
an SQ with fixed length, the average request latency can be 
controlled to a certain degree if the request loss rate is under 
control. Furthermore, a lost request will have more significant 
impact to the overall performance of a general purpose computing 
system than a delayed request. Therefore, we consider the request 
loss rate as the only performance constraint in this work. Note that 
the QCLP framework allows us to formulate the request latency as 
another performance constraint, however, at the cost of increased 
complexity. 

The power management policy is represented as a stochastic 
controller (Q, ψ, η). To further control the complexity of the 
optimization problem, we assume that state set Q of the controller 
is fixed while the state transition function ψ and observation 
function η are unknown. Fixing the state set may limit the degree of 
freedom of the optimization. However, this will be compensated by 
using stochastic action at each state. 

We consider power and loss rate as two cost functions of the 
system. For each cost, there is a value function associated with each 
node-state pair (q, s), where q∈Q and s∈S. The value function 
gives the average discounted total cost if the system starts from 
state s and the controller starts from node q. It can be calculated 
using Bellman equation: 

∑ += a asRqaPsqV ),()[|(),(  

          ∑∑ ∑ '' )]','(),,|'(),'|(),|'( qs o sqVoaqqPasobassPγ  

We denote the value function of power consumption cost as 
),( sqy . To calculate y(q, s), the reward function ),( asR  is defined 

as the power consumption of the system at state s when action a is 
selected and it will be denoted as power(s, a). We also denote the 
value function of request loss rate as ),( sqv . To calculate ),( sqv , 
the reward function ),( asR  is defined by a function )(sl , which is 
given as the following: 





=
otherwise                0

 full is  if        /1
)(

SQ
sl

µ
, where µ is the request generating 

rate which is determined by the state of SR. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. QCLP formulation of policy optimization 
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Let b0(s) denote the initial state distribution of the POMDP, q0 
denote the initial node of the controller, and x(q’, a, q, o) represent 
P(q’, a|q, o). Figure 5 gives the QCLP formulation of the 
optimization problem. The objective is to minimize the expected 
value function of power consumption. In this formulation, Equation 
(1) and (2) specify how the value function of power consumption 
and request loss rate are calculated. Equation (3) specifies the 
performance constraint on loss rate. Equation (4) specifies that the 
summation of the node transition probability should be 1 while 
Equation (5) specifies that the action selection probability at 
different node is independent to the observation. 

The action selection probability P(a|q) can be calculated as 
∑= ' ),,,'()|( q oqaqxqaP .  While the node transition probabilities 

P(q’|q, a, o) can be calculated using the following equation: 
),,|'()|(),,','( oaqqPqaPoqaqx = . 

It is believed that the optimization complexity of QCLP 
problems primarily depends on the controller size, not the size of 
the POMDP [11], so this QCLP algorithm can be used to solve 
POMDP models for large state space problems. 

It is proved that an optimal solution of the QCLP results in an 
optimal stochastic controller for the given size and initial state 
distribution [11]. For this paper, we use a free nonlinearly 
constrained optimization solver SNOPT available on the NEOS 
server [13]. It implements an algorithm finding solutions by a 
method called sequential quadratic programming (SQP). For more 
information on the algorithm of SQP, please refer to reference [15]. 
The POMDP model and QCLP problem are described using a 
standard optimization language AMPL [16]. 

4. Experimental Results and Analysis 
The effectiveness of our proposed POMDP modeling and 

stochastic policy optimization is evaluated in terms of energy 
saving, average latency and service queue overflow rate by a series 
of experiments. 

We first consider a typical partially observable situation with 
three service requester states (SR), five service queue states (SQ) 
and two service provider states (SP). The SQ and SP states are fully 
observable to the power manager, while there are some hidden SR 
states. The hidden states are those states that are totally 
unobservable to the power manager. We do not have enough 
information to distinguish these states from each other. For a set of 
hidden states H={h0, h1, …, hn}, there is only one observation z. 
The observation function is defined as: 1)|( =ihzP , ∀hi∈H. The 
transition of the SR states is illustrated in Figure 6. The number 
associate with each arrow is the probability that SR transits from 
the source state to the sink state. 

 
Figure 6. Illustration of the SR states of the system. 

The three SR states r1,1, r1,2 and r2 associate the request 
generating rates 0.2, 0.2 and 0.8, respectively. The state r2 can only 
be reached from state r1,2, while it cannot go back to state r1,2 but 
goes to state r1,1 only. r1,1 and r1,2 are two hidden states and they are 
observed as the same SR state by the power manager. The SP is 
considered as a hard disk drive (HDD) in the simulation with two 
power modes, sleep and active. Table 3 lists the characteristics of 

the HDD. Pactive and Psleep are the power consumption while the 
HDD is in active state and sleep state. Pon and Poff refer to the 
power consumed when SP transits from and to the sleep state. We 
also consider the time for transition, which are denoted as Ton and 
Toff, corresponding to the required time when switching from and to 
the sleep state. The service rate of SP is 0.7. The SQ can hold up to 
4 waiting requests, so there are five different states of SQ including 
the state when there is no waiting request in the queue. 

Table 3. Characteristics of the hard disk drive (HDD). 
Device Pactive Psleep Pon Poff Ton Toff 

HDD 2.0W 0.6W 2.8W 2.1W 1/0.5 1/0.9 

The system is modeled as a QCLP problem and is described by a 
standard optimization language AMPL [16]. We use a web based 
solver SNOPT to solve this nonlinearly constrained optimization 
problem. The output of SNOPT consists of three components, the 
optimal value of variables x(q’, a, q, o), q’, q∈Q, a∈A and o∈O, 
the optimal value of the objective function and the values of other 
variables. Given the values of x(q’, a, q, o), node transition 
probability P(q’|q, a, o) and action selection probability P(a|q) of 
the controller can be calculated. A simulator is developed to test the 
effectiveness of the controller. The simulator reports the discounted 
total energy, latency and request loss during 10000 cycles of 
simulation. Our experiments show good correlation between the 
simulated results of these three parameters and their theoretical 
value function that is defined by equation (1). Therefore, in this 
paper, we only report the theoretical value. 

In the first experiment, we compare our optimized stochastic 
policy with the N-policy and the deterministic policy [7]. The N-
policy keeps SP in sleep state until there are N service requests 
waiting in the queue, and it keeps the SP in active state until the 
number of service requests in the queue goes back to zero. The 
deterministic policy is generated using a value iteration software 
which is available online [14]. It allows SP to either go to active 
state or go to sleep state with probability 1. The comparison of 
these three policies for the same system configuration is shown in 
Figure 7. By varying the number N, we get a set of different 
energy-performance tradeoffs for the N-policy. In our case, the 
service queue is only capable of 4 waiting requests, so the N varies 
from 1 to 4. Similarly, different energy-performance tradeoffs can 
be obtained by varying the performance weight of the deterministic 
policy as described in [7]. The weight varies from 0.1 to 1.0 with 
the step of 0.1. However, those 10 performance weights only give 
out two different determinist policies. The loss rate of the stochastic 
policy is constrained to be equal to that of the N-policy.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Comparison of three policies. 
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Figure 7 shows that the deterministic policy leads the SP to be 
either in sleep state or in active state for the most of the time, 
resulting in the system to either have a very large power 
consumption and small queue latency, or have a very small power 
consumption and an unacceptable large overflow. N-policy also 
provides sub-optimal power management because it does not 
consider the hidden states and the future impact of the current 
decision on SP action.  

As shown in figure 7, the QCLP formulated policy optimization 
finds the stochastic controller that allows the system to precisely 
meet the performance requirement (i.e. the loss rate constraint) at 
minimum energy dissipation.  

Our POMDP modeling and QCLP policy optimization can also 
be applied to large systems with hundreds of system states, which is 
not possible to be solved using value iteration based techniques. We 
assume a system with ten different SR states, five SQ states and 
two SP states, and half of the SR states are hidden states that cannot 
be seen by the power manager. The ten SR states represent ten 
different incoming request rates: {0.05, 0.1, 0.2, 0.3, ... 0.9}. The 
parameters of SP are the same as the previous experiments, and the 
values are listed in table 3. Figure 8 shows the performance of the 
optimal stochastic policies compared with N-policy. Clearly, 
stochastic policy provides better energy-performance tradeoffs. 

Energy vs . Latency

1

2

3

4

5

3.2 3.4 3.6 3.8 4 4.2
Latency

E
ne

rg
y

N-policy
Statistic Policy

Energy vs . Overf lo w

0

1

2

3

4

5

2.15 2.2 2.25 2.3 2.35 2.4
Overf lo w

En
er

gy

N-policy
Statistic Policy

 
Figure 8. Performance of stochastic policy on large model. 

 
5. Conclusions 

In this paper we present a complete framework for POMDP 
based power management, including novel modeling and 
optimization techniques. To model a partially observable system, 
the Baum-Welch algorithm is adopted to derive the Hidden Markov 
Model of such system. And the policy optimization problem is 
solved by a Quadratically Constrained Linear Programming 
formulation. Experimental results shows that the average accuracy 
of the trained HMM model is 65.4% higher than other modeling 
techniques. And the statistic policy optimization achieves 
significant performance improvement than deterministic policy and 
N-policy. Our framework can also be applied to very large systems. 
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