
A Framework of Stochastic Power Management Using Hidden Markov Model

Ying Tan, Qinru Qiu
Department of Electrical and Computer Engineering

Binghamton University, State University of New York
Binghamton, New York 13902, USA

{ying, qqiu}@binghamton.edu

Abstract - The effectiveness of stochastic power management
relies on the accurate system and workload model and effective
policy optimization. Workload modeling is a machine learning
procedure that finds the intrinsic pattern of the incoming tasks
based on the observed workload attributes. Markov Decision
Process (MDP) based model has been widely adopted for
stochastic power management because it delivers provable
optimal policy. Given a sequence of observed workload
attributes, the hidden Markov model (HMM) of the workload
is trained. If the observed workload attributes and states in the
workload model do not have one-to-one correspondence, the
MDP becomes a Partially Observable Markov Decision Process
(POMDP). This paper presents a framework of modeling and
optimization for stochastic power management using HMM
and POMDP. The proposed technique discovers the HMM of
the workload by maximizing the likelihood of the observed
attribute sequence. The POMDP optimization is formulated
and solved as a quadraticly constrained linear programming
(QCLP). Compared with traditional optimization technique,
which is based on value iteration, the QCLP based optimization
provides superior policy by enabling stochastic control.

1. Introduction

Dynamic power management (DPM) - a mechanism that
selectively shut-off or slow-down those system components that are
idle or underutilized – has become a popular technique for power
reduction at system level. The effectiveness of power management
relies heavily on the accuracy of the workload modeling and the
efficiency of policy optimization techniques.

Workload modeling is a machine learning procedure that finds
the intrinsic pattern of the incoming tasks based on the observed
workload attributes. In [1], the idle intervals are modeled and
predicated using the exponential-average approach. In [2], a
regression function is used to predict the next task incoming time.
The nature of the workload of a complex computing system is
random and uncertain because it is determined by user context and
the sophisticated hardware/software. Stochastic methods are
naturally selected for modeling and optimization of such system.

Stochastic models such as Markov decision process ([4]), Semi-
Markov decision process ([5]), and Partially Observable Markov
Decision process ([6], [7]) have been investigated by previous
DPM research. All of these models assume that the workload is
intrinsically Markovian and this embedded Markov model can be
reconstructed (or trained) based on the given observation sequence.

In most of the cases, the states of the embedded Markov model
and the observed workload attributes do not have one-to-one

correspondence because the workload is not only controlled by the
hardware and software but also affected by user and environment.
For example, user working style and user mood have significant
impact of the workload distribution of a computer system. Consider
a power manager (PM) of a wireless adapter. The observed
workload attribute is the frequency and the size of the
incoming/outgoing TCP/IP packets. During a teleconference, the
user may choose to send a video image, send the audio message,
share files or share the image on whiteboard. Different operations
generate different communication requirements. An accurate
workload model of the wireless adapter must reflect how the user
switches from one operation to another. However, this information
is not observable by the PM. A hidden Markov model (HMM) is an
embedded stochastic process with an underlying stochastic process
that is not observable, but can only be observed through another set
of stochastic processes that produce the sequence of observations
[10]. Among all the stochastic models mentioned above, only the
POMDP model is capable to provide the optimal control policy for
an HMM [8]. How to train the HMM based on the observed
information and how to find the optimal control policy are two
major challenges. While most of the previous researches focus on
the second challenge, this paper addresses both of them.

The authors of [6] consider an integrated circuit under process,
voltage and temperature variations as a partially observable system.
POMDP is applied to search for the optimal power management
policy of such system. Online and offline algorithm have been
proposed. For both algorithms, it is assumed that the state space of
the HMM is attained from the pre-characterized temperature-
performance relation. The offline algorithm assumes the
availability of the entire HMM while the online algorithm estimates
the transition and observation probability of the HMM using
maximum-likelihood estimation. Both algorithms utilize value
iteration for policy optimization. The authors of [7] discuss several
partially observable scenarios of an on-chip system and their HMM
modeling. However, the discussion focuses on the calculation of
the observation probability instead of the overall HMM. The
optimal policy is obtained using value iteration and the controller
can be implemented as a finite state automaton. Although very
effective and theoretically optimal, the value iteration algorithm is
limited by high memory requirement. Therefore, it can find the
optimal policy only for simple systems with a small state and
observation space [11]. Furthermore, the value iteration algorithm
only considers the deterministic policy, which turns the device
on/off with probability 1. It is impossible to constrain the size of
the controller. Sometimes, a finite state automaton with hundreds of
states is needed to implement the controller.

This work presents a complete framework for POMDP based
power management, including novel modeling and optimization

978-3-9810801-3-1/DATE08 © 2008 EDAA

techniques. First, the HMM of the workload is trained from the
observation sequences using Baum-Welch algorithm [10]. The
policy optimization problem is then formulated and solved using
quadraticly constrained linear programming (QCLP). The technical
contribution of this work can be characterized as the followings.

1. The modeling technique iteratively utilizes the Baum-Welch
algorithm to find the local optimal HMM that maximizes the
likelihood of the observed sequence.

2. No prior knowledge of the state space, transition probability or
observation probability is assumed during model construction.

3. To demonstrate the effectiveness of the proposed modeling
technique, several real-life traces of the workload attributes of
the PC hard disk system are investigated and their HMMs are
trained. Compared with other modeling techniques, the
average likelihood of the observed sequences under the HMM
model is 65.4% higher.

4. The QCLP based formulation is able to find the optimal power
management policy of large systems with hundreds of states.

5. The generated power management policy is represented as a
fixed-size stochastic controller. The size of the controller is
defined by user.

6. When applied to the power management of hard disk system,
the proposed policy optimization technique gives better
energy-performance tradeoffs than some heuristic policies and
the value-iteration based policy.

The remainder of this paper is organized as follows. Section 2
gives the background of HMM and POMDP model. Section 3
discusses the model construction and the QCLP based policy
optimization. Our experimental results and analysis are presented in
Section 4. Finally, we conclude our work in Section 5.

2. Background

In this section, we briefly introduce some necessary
backgrounds of hidden Markov models and POMDP model.

2.1. Hidden Markov models

A hidden Markov model (HMM) is an embedded stochastic
process with an underlying stochastic process that is not observable
(it is hidden), but can only be observed through another set of
stochastic processes that produce the sequence of observations [10].
An HMM can be characterized as a 4-tuple: },,,{ BPOS=λ ,
where S = {s1, s2, … , sN} denotes a finite set of states, O = {o1,
o2, … , oM } denotes a finite set of observations, P is an N×N matrix
with its ijth entry denotes the state transition probability pij = P[sj |si]
and B is an M×N matrix with its ijth entry denotes the observation
probability bj(k) = P[ok | sj]. Through the parameters P and B, the
uncertainties in the system can be modeled.

We adopt the notation in [10] and denote an observation
sequence and a model as O and λ respectively. To apply HMM to
model real-world applications, three basic problems are of great
interests and should be solved properly.

1. How well a given HMM model matches a given observation
sequence. This can be interpreted as how to efficiently
compute the probability P(O|λ).

2. How to unveil the hidden part of the model. That is, if we have
a observations sequence and a HMM, how to find the real
state sequence that best “explains” the observations.

3. How to determine the optimal model },,,{ BPOS=λ to
maximize the probability P(O|λ)

In this work, we are more interested in the first the third problem.
We adopt the HMM to model the process of the incoming
workloads, and try to find the HMM that maximizes the likelihood
of the observed sequence of workload attributes. Given several
HMMs trained based on the same observation sequence, we
compare their accuracy by comparing the probability P(O|λ).
Forward-backward algorithm and Baum-Welch algorithm are well
established techniques to solve the above mentioned problems. For
more details of these two algorithms, refer to [10].

2.2. POMDP

The Partially Observable Markov Decision Process (POMDP)
combines the strength of the HMMs and the Markov Decision
Process (MDP). A POMDP can be defined as a tuple

},,,,,{ RAOS BP=λ , where
• S denotes a finite set of states.
• O denotes a finite set of observations.
• P specifies the probability of the system transition from state s

to state s’, given that action a is taken at state s, i.e.
],|[assPp ij

a
ij = .

• B denotes the observation function, i.e.],|[asoPb ik
a
ik = .

• A denotes a finite set of actions.
• R(s, a) denotes a reward function. The reward could be

negative if there is a cost when taking action a in the state s.

The first five parameters form an HMM whose transition and
observation probability is controlled by the selected actions, while
the last two parameters are special for Markov decision process.

A POMDP consists of a set of decisions over an infinite
sequence of states. At each stage, an action is chosen by the control
agent based on the history of observations. The objective of the
agent is to maximize/minimize the expected discounted sum of
rewards/costs. The discount factor, 0 ≤ γ < 1, is introduced to
maintain finite sums over the infinite time horizon.

To avoid remembering the entire histories, finite-state
controllers are used to represent POMDP policies [11]. To
distinguish from the state in an HMM or POMDP, in the rest of the
paper, we will refer the state of the controller as node and denote it
as q. The node transition of the controller is based on the
observation sequence and the agent determines its action based on
the controller node. The action selection and controller state
transition are stochastic, in order to make up for limited memory.
The finite state controller can formally be defined by the tuple (Q,
ψ, η), where Q is the finite set of controller nodes, ψ is the action
selection model)|(qaP that specifies the selection probability of
action a for controller node q, and η is the node transition model

),,|'(vaqqP that specifies the node transition probability from q
to q’ under action a and observation v.

3. System modeling and policy optimization

In this section, we propose a framework of modeling and
optimization for the power management of a partially observable
system. Our model is general enough to be applied to many
systems and can handle large problems with hundreds of states. The
optimal policy obtained by our framework is stochastic instead of
deterministic [7]. To the best of our knowledge, this is the first time
that the stochastic policy is used for power management in a
partially observable system.

In order not to lose generality, consider a system composed of
three components: service requestor (SR), service provider (SP),
and service queue (SQ). The SR generates service requests that
need to be treated by the SP. The service requests are first stored in
the SQ, and will then be processed by the SP. The service time of
the requests is a random variable. Such service requester-provider
based architecture generally exists in many real world computing
systems. For example, the SR may be the software applications that
require reading data from or writing data into the hard disk, the SP
may be the hard disk, and the SQ may be the read or write queue
implemented in the OS. The power manager monitors the state of
the system which is the joint state of the three components (SR, SQ
and SP), and issues appropriate actions to the SP.

3.1. System modeling

We assume that the underlying system states are Markovian, as
assumed in [4] and [12], which means the transition of the states
solely depends on the current state, but has nothing to do with the
history of the system states. However, the system may appear to be
non-Markovian to the power manager as a result of the incomplete
or noisy observations made by the power manager.

The service requester, in general, presents the highest
uncertainty and is the least observable among the three system
components. This is why the workload modeling is always
challenging. This paper will focus on the HMM modeling of SR.
The rest of the system (including SP and SQ) will be modeled in
the similar way as the previous works [4].

Given an observation sequence O and a finite set of states, the
transition probabilities and the observation probabilities of an
HMM λ with locally maximized P(O|λ) can be trained using
Baum-Welch method [10]. In this work, we iteratively augment the
state set and train the HMM model using Baum-Welch method until
the likelihood function P(O|λ) reaches the local maxima. The
likelihood function can be calculated using forward-backward
method [10].

Figure 1 gives the flow of our modeling algorithm for the SR.
The input of this algorithm is a sequence of observed workload
attributes, the user defined observation set and the initial state set.
The observed workload attributes are first classified into different
states in the observation set. This step usually involves information
aggregation in order to reduce the complexity of the training
process. After the observation sequence is generated, the HMM is
trained and evaluated. If the likelihood of the observation sequence
is still improving, then we augment the state set S and repeat the
previous steps.

Figure 1. SR modeling algorithm

We use a power-managed hard disk as our example of system
modeling. We traced three Windows XP systems for their hard disk
access requests. All the data were collected using the performance
monitoring facility which is built in Windows XP. We created a
specific counter of our own in the monitoring tool, and logged all
the data in a text file. The minimum time interval between two data

reporting by the monitoring tool is 1 second. This interval is chosen
to maintain the balance between the accuracy of workload
information and the overhead introduced by the monitoring tool.
The monitored attribute of hard disk workload is the number of
transfers per second. It is the addition of the number of reads per
second and the number of writes per second. Table 1 shows the
characteristics of the transfer sequences on the three systems.

Table 1. Characteristics of the SR observation sequences.
Name of
sequence

Duration
(in sec)

Largest # of
transfers/sec

Smallest # of
transfers/sec

Average # of
transfers/sec

Dell-Q 10000 1033.124 1.971134 7.984103
Dell-L 8640 428.7265 0.80002 3.99056
Dell-T 10000 273.2839 1.969355 4.889311

We classify the observed transfer rates into five levels, each
corresponding an observation in SR. O1 and O2 represent the
transfers at a rate smaller than 3/sec, larger than 3/sec but smaller
than 20/sec, respectively. O3, O4 and O5 represent the transfers at a
rate larger than 20/sec but smaller than 50/sec, larger than 50/sec
but smaller than 100/sec, larger than 100/sec, respectively. The
quantization is not equalized as most of the observed transfer rate is
below 50/sec.

Figure 2 shows the probability distributions of the durations of
O1 and O2. As we can see, the distribution of O2 fits nicely to an
exponential distribution, while the distribution of O1 is totally
different from the exponential distribution. The duration of the
other three observations have the similar distribution as O2. The
distribution of O1 is special because it indicates the time when the
SR is almost idle, since the transfers in O1 are at a rate below 3/sec.
As a matter of fact, most of the disk transfer during this time is due
to the monitoring tool itself. The non-exponential distribution of O1
indicates that observation sequence appears to be non-Markovian to
the power manager and there maybe some hidden states in the
workload model.

Histogram of duration of Observation 1

0
200
400
600
800

1000
1200
1400

1 2 3 4 5 6

Duration (sec)

Dell-Q

(a) Histogram of duration of observation 1.

Histogram of duration of Observation 2

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10

Duration (sec)

Dell-Q

(b) Histogram of duration of observation 2.

Figure 2. Distributions of the durations of two observations in SR.

Figure 3. The size of S has impact on the likelihood of observation.

A u g m en t S i f th e v a lu e o f P (O | λ) is s t il l in c rem en tin g

C lassify th e o b se rv ed w o rk lo ad a tt rib u te

In p u t: O , S , o b se rv ed w o rk lo ad a tt rib u te seq u e n ce

T ra in th e H M M λ = (S , O , P , B) us in g B a u m -W e lch m e th o d

C a lcu la te th e lik e lih o o d fu n c t io n P (O | λ)

A u g m en t S i f th e v a lu e o f P (O | λ) is s t il l in c rem en tin g

C lassify th e o b se rv ed w o rk lo ad a tt rib u teC lassify th e o b se rv ed w o rk lo ad a tt rib u te

In p u t: O , S , o b se rv ed w o rk lo ad a tt rib u te seq u e n ceIn p u t: O , S , o b se rv ed w o rk lo ad a tt rib u te seq u e n ce

T ra in th e H M M λ = (S , O , P , B) us in g B a u m -W e lch m e th o dT ra in th e H M M λ = (S , O , P , B) us in g B a u m -W e lch m e th o d

C a lcu la te th e lik e lih o o d fu n c t io n P (O | λ)C a lcu la te th e lik e lih o o d fu n c t io n P (O | λ)

-7500
-7000
-6500
-6000
-5500
-5000 5 7 9 11 13 15 17 19

Number of States

L
og

 P
ro

ba
bi

lit
y

-7500
-7000
-6500
-6000
-5500
-5000 5 7 9 11 13 15 17 19

Number of States

L
og

 P
ro

ba
bi

lit
y

-7500
-7000
-6500
-6000
-5500
-5000 5 7 9 11 13 15 17 19

Number of States

L
og

 P
ro

ba
bi

lit
y

 Figure 3 shows how the likelihood of the observation sequence
changes when we keep on augmenting the size of the state set of the
HMM. In the plot, the x-axis represent the number of states in the
HMM and the y-axis represent log[P(O|λ)]. As we can see, the
likelihood the observation first increase then remains stable as the
size of S increases. Table 2 lists the best P(O|λ) of the trained
HMM, the P(O|λ) of uniform selection and the P(O|λ) of trained
HMM with less states.

Table 2. Log[P(O|λ)] for trained HMM and uniform selection.
Name of
sequence

Best Trained
HMM

Uniform
Selection

Trained HMM
with less states

Dell-Q -5534.3 -16094.4 -7062.9
Dell-L -4398.8 -6209.3 -4504.2
Dell-T -6738.5 -16094.4 -8300.6

Given the HMM of the SR, a synthesized workload can be
generated. Figure 4 shows the synthesized observation sequence
that is generated from the HMM model for Dell-L as well as the
original observation sequence that is collected from the same
machine. We can see from the figure that the generated sequence
reflects the original sequence very well.

The system consists of three components, SR, SQ and SP, the
system state can be represented as the composition of the states of
each component. It is represented by a triplet (s, r, q) where s∈S,
r∈R, and q∈Q. The probability to switch from state (s, r, q) to (s’,
r’, q’) under power control action a can be calculated as:

)',()',()',())',','(),,,((, qqPrrPssPqrsqrsP sr
aa ××=

where)',(ssPa is the probability for SP to switch from s to s’

under action a,)',(rrP is the probability for SR to switch from r

to r’ and)',(, qqP sr is the probability for SQ to switch from q to

q’ when SR is in state r and SP is in state s.)',(, qqP sr depends on
the SR incoming rate and the SP service rate.

Original observation sequence

0

1

2

3

4

5

6

0 2000 4000 6000 8000 10000

Length of the sequence

O
bs

er
va

tio
n

Dell-L

(b) Original observation sequence

Generated observation sequence

0

1

2

3

4

5

6

0 2000 4000 6000 8000 10000

Length of the sequence

O
bs

er
va

tio
n

Dell-L

(b) Generated observation sequence

Figure 4. Observation sequence of SR.

3.2. Policy Optimization

The policy optimization is a constrained optimization which
minimizes the power consumption with the respect of a given
performance constraint. The expected latency of a request as well

as the request loss rate are the most widely used performance
criteria. These two criteria are not independent to each other. Given
an SQ with fixed length, the average request latency can be
controlled to a certain degree if the request loss rate is under
control. Furthermore, a lost request will have more significant
impact to the overall performance of a general purpose computing
system than a delayed request. Therefore, we consider the request
loss rate as the only performance constraint in this work. Note that
the QCLP framework allows us to formulate the request latency as
another performance constraint, however, at the cost of increased
complexity.

The power management policy is represented as a stochastic
controller (Q, ψ, η). To further control the complexity of the
optimization problem, we assume that state set Q of the controller
is fixed while the state transition function ψ and observation
function η are unknown. Fixing the state set may limit the degree of
freedom of the optimization. However, this will be compensated by
using stochastic action at each state.

We consider power and loss rate as two cost functions of the
system. For each cost, there is a value function associated with each
node-state pair (q, s), where q∈Q and s∈S. The value function
gives the average discounted total cost if the system starts from
state s and the controller starts from node q. It can be calculated
using Bellman equation:

∑ += a asRqaPsqV),()[|(),(

 ∑∑ ∑ '')]','(),,|'(),'|(),|'(qs o sqVoaqqPasobassPγ

We denote the value function of power consumption cost as
),(sqy . To calculate y(q, s), the reward function),(asR is defined

as the power consumption of the system at state s when action a is
selected and it will be denoted as power(s, a). We also denote the
value function of request loss rate as),(sqv . To calculate),(sqv ,
the reward function),(asR is defined by a function)(sl , which is
given as the following:





=
otherwise 0

 full is if /1
)(

SQ
sl

µ
, where µ is the request generating

rate which is determined by the state of SR.

Figure 5. QCLP formulation of policy optimization

For variables:

Minimize

Subject to quadratic constraints:

Subject to linear constraints:

,
)','(),,,'()'|(),|'(

),(),,,'(
),(

''

'∑



















∑∑∑

+







∑

=
a

aos

q

sqyoqaqxsoOassP

aspoweroqaqx
sqy

γ

),(),,(),,,,'(sqvsqyoqaqx

sq,∀

∑
s

sqysb),()(00

,
)','(),,,'()'|(),|'(

)(),,,'(
),(,,

''

'∑



















∑∑∑

+









∑

=∀
a

aos

q

sqvoqaqxsoOassP

sloqaqx
sqvsq

γ
sq,∀

∑ =∀
aq

oqaqxoq
,'

1),,,'(,,

∑ ∑=∀
' '

),,,'(),,,'(,,,
q q

koqaqxoqaqxaoq

(1)

(2)

(3)

(4)

lim00),()(Vsqvsb
s

≤∑

(5)

For variables:

Minimize

Subject to quadratic constraints:

Subject to linear constraints:

,
)','(),,,'()'|(),|'(

),(),,,'(
),(

''

'∑



















∑∑∑

+







∑

=
a

aos

q

sqyoqaqxsoOassP

aspoweroqaqx
sqy

γ

),(),,(),,,,'(sqvsqyoqaqx

sq,∀

∑
s

sqysb),()(00

,
)','(),,,'()'|(),|'(

)(),,,'(
),(,,

''

'∑



















∑∑∑

+









∑

=∀
a

aos

q

sqvoqaqxsoOassP

sloqaqx
sqvsq

γ
sq,∀

∑ =∀
aq

oqaqxoq
,'

1),,,'(,,

∑ ∑=∀
' '

),,,'(),,,'(,,,
q q

koqaqxoqaqxaoq

(1)

(2)

(3)

(4)

lim00),()(Vsqvsb
s

≤∑

(5)

Let b0(s) denote the initial state distribution of the POMDP, q0
denote the initial node of the controller, and x(q’, a, q, o) represent
P(q’, a|q, o). Figure 5 gives the QCLP formulation of the
optimization problem. The objective is to minimize the expected
value function of power consumption. In this formulation, Equation
(1) and (2) specify how the value function of power consumption
and request loss rate are calculated. Equation (3) specifies the
performance constraint on loss rate. Equation (4) specifies that the
summation of the node transition probability should be 1 while
Equation (5) specifies that the action selection probability at
different node is independent to the observation.

The action selection probability P(a|q) can be calculated as
∑= '),,,'()|(q oqaqxqaP . While the node transition probabilities

P(q’|q, a, o) can be calculated using the following equation:
),,|'()|(),,','(oaqqPqaPoqaqx = .

It is believed that the optimization complexity of QCLP
problems primarily depends on the controller size, not the size of
the POMDP [11], so this QCLP algorithm can be used to solve
POMDP models for large state space problems.

It is proved that an optimal solution of the QCLP results in an
optimal stochastic controller for the given size and initial state
distribution [11]. For this paper, we use a free nonlinearly
constrained optimization solver SNOPT available on the NEOS
server [13]. It implements an algorithm finding solutions by a
method called sequential quadratic programming (SQP). For more
information on the algorithm of SQP, please refer to reference [15].
The POMDP model and QCLP problem are described using a
standard optimization language AMPL [16].

4. Experimental Results and Analysis
The effectiveness of our proposed POMDP modeling and

stochastic policy optimization is evaluated in terms of energy
saving, average latency and service queue overflow rate by a series
of experiments.

We first consider a typical partially observable situation with
three service requester states (SR), five service queue states (SQ)
and two service provider states (SP). The SQ and SP states are fully
observable to the power manager, while there are some hidden SR
states. The hidden states are those states that are totally
unobservable to the power manager. We do not have enough
information to distinguish these states from each other. For a set of
hidden states H={h0, h1, …, hn}, there is only one observation z.
The observation function is defined as: 1)|(=ihzP , ∀hi∈H. The
transition of the SR states is illustrated in Figure 6. The number
associate with each arrow is the probability that SR transits from
the source state to the sink state.

Figure 6. Illustration of the SR states of the system.

The three SR states r1,1, r1,2 and r2 associate the request
generating rates 0.2, 0.2 and 0.8, respectively. The state r2 can only
be reached from state r1,2, while it cannot go back to state r1,2 but
goes to state r1,1 only. r1,1 and r1,2 are two hidden states and they are
observed as the same SR state by the power manager. The SP is
considered as a hard disk drive (HDD) in the simulation with two
power modes, sleep and active. Table 3 lists the characteristics of

the HDD. Pactive and Psleep are the power consumption while the
HDD is in active state and sleep state. Pon and Poff refer to the
power consumed when SP transits from and to the sleep state. We
also consider the time for transition, which are denoted as Ton and
Toff, corresponding to the required time when switching from and to
the sleep state. The service rate of SP is 0.7. The SQ can hold up to
4 waiting requests, so there are five different states of SQ including
the state when there is no waiting request in the queue.

Table 3. Characteristics of the hard disk drive (HDD).
Device Pactive Psleep Pon Poff Ton Toff

HDD 2.0W 0.6W 2.8W 2.1W 1/0.5 1/0.9

The system is modeled as a QCLP problem and is described by a
standard optimization language AMPL [16]. We use a web based
solver SNOPT to solve this nonlinearly constrained optimization
problem. The output of SNOPT consists of three components, the
optimal value of variables x(q’, a, q, o), q’, q∈Q, a∈A and o∈O,
the optimal value of the objective function and the values of other
variables. Given the values of x(q’, a, q, o), node transition
probability P(q’|q, a, o) and action selection probability P(a|q) of
the controller can be calculated. A simulator is developed to test the
effectiveness of the controller. The simulator reports the discounted
total energy, latency and request loss during 10000 cycles of
simulation. Our experiments show good correlation between the
simulated results of these three parameters and their theoretical
value function that is defined by equation (1). Therefore, in this
paper, we only report the theoretical value.

In the first experiment, we compare our optimized stochastic
policy with the N-policy and the deterministic policy [7]. The N-
policy keeps SP in sleep state until there are N service requests
waiting in the queue, and it keeps the SP in active state until the
number of service requests in the queue goes back to zero. The
deterministic policy is generated using a value iteration software
which is available online [14]. It allows SP to either go to active
state or go to sleep state with probability 1. The comparison of
these three policies for the same system configuration is shown in
Figure 7. By varying the number N, we get a set of different
energy-performance tradeoffs for the N-policy. In our case, the
service queue is only capable of 4 waiting requests, so the N varies
from 1 to 4. Similarly, different energy-performance tradeoffs can
be obtained by varying the performance weight of the deterministic
policy as described in [7]. The weight varies from 0.1 to 1.0 with
the step of 0.1. However, those 10 performance weights only give
out two different determinist policies. The loss rate of the stochastic
policy is constrained to be equal to that of the N-policy.

Figure 7. Comparison of three policies.

Energy vs. Latency

0 10000 20000 30000 40000
Latency

0

5000

10000

15000

20000

25000

En
er

gy

Deterministic
N_policy
Stochastic

Energy vs. Latency

0 10000 20000 30000 40000
Latency

0

5000

10000

15000

20000

25000

En
er

gy

Deterministic
N_policy
Stochastic

DeterministicDeterministic
N_policyN_policy
StochasticStochastic

Energy vs. Overflow

0 1000 2000 3000 4000 5000
Overflow

0

5000

10000

15000

20000

25000

En
er

gy

Energy vs. Overflow

0 1000 2000 3000 4000 5000
Overflow

0

5000

10000

15000

20000

25000

En
er

gy

Figure 7 shows that the deterministic policy leads the SP to be
either in sleep state or in active state for the most of the time,
resulting in the system to either have a very large power
consumption and small queue latency, or have a very small power
consumption and an unacceptable large overflow. N-policy also
provides sub-optimal power management because it does not
consider the hidden states and the future impact of the current
decision on SP action.

As shown in figure 7, the QCLP formulated policy optimization
finds the stochastic controller that allows the system to precisely
meet the performance requirement (i.e. the loss rate constraint) at
minimum energy dissipation.

Our POMDP modeling and QCLP policy optimization can also
be applied to large systems with hundreds of system states, which is
not possible to be solved using value iteration based techniques. We
assume a system with ten different SR states, five SQ states and
two SP states, and half of the SR states are hidden states that cannot
be seen by the power manager. The ten SR states represent ten
different incoming request rates: {0.05, 0.1, 0.2, 0.3, ... 0.9}. The
parameters of SP are the same as the previous experiments, and the
values are listed in table 3. Figure 8 shows the performance of the
optimal stochastic policies compared with N-policy. Clearly,
stochastic policy provides better energy-performance tradeoffs.

Energy vs . Latency

1

2

3

4

5

3.2 3.4 3.6 3.8 4 4.2
Latency

E
ne

rg
y

N-policy
Statistic Policy

Energy vs . Overf lo w

0

1

2

3

4

5

2.15 2.2 2.25 2.3 2.35 2.4
Overf lo w

En
er

gy

N-policy
Statistic Policy

Figure 8. Performance of stochastic policy on large model.

5. Conclusions

In this paper we present a complete framework for POMDP
based power management, including novel modeling and
optimization techniques. To model a partially observable system,
the Baum-Welch algorithm is adopted to derive the Hidden Markov
Model of such system. And the policy optimization problem is
solved by a Quadratically Constrained Linear Programming
formulation. Experimental results shows that the average accuracy
of the trained HMM model is 65.4% higher than other modeling
techniques. And the statistic policy optimization achieves
significant performance improvement than deterministic policy and
N-policy. Our framework can also be applied to very large systems.

6. References

[1] C.H. Hwang, A.C. Wu, “A Predictive System Shutdown

Method for Energy Saving of Event-driven Computation,”
Proceedings of International Conference on Computer-Aided
Design, Nov. 1997.

[2] M. Srivastava, A Chandrakasan, and R Brodersen, ”Predictive
system shutdown and other architectural techniques for energy
efficient programmable computation,” IEEE transactions on
Very Large Scale Integration (VLSI) Systems, Vol. 4, pp. 42-
55, March 1996.

[3] L. Benini, A. Bogliolo, G. De Micheli, “A survey of design
techniques for system-level dynamic power management,”
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 8, pp. 299-316, June 2000.

[4] L. Benini, G. Paleologo, A. Bogliolo, and G. De Micheli,
“Policy optimization for dynamic power management,” IEEE
Transactions on Computer-Aided Design, Vol. 18, pp. 813–
33, June 1999.

[5] T. Simunic, L. Benini, and G. De Micheli, “Event-driven
power management,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 20, pp. 840-
857, July 2001.

[6] H. Jung, M. Pedram, “Dynamic power management under
uncertain information,” in Proceedings of Design Automation
& Test in Europe (DATE’07), Apr, 2007.

[7] Q. Qiu, Y. Tan, and Q, Wu, “Stochastic Modeling and
Optimization for Robust Power Management in a Partially
Observable System”, Proceedings of Design Automation and
Test in Europe (DATE’07), Apr 2007.

[8] G. Theocharous, S. Mannor, N. Shah, P. Gandhi, B. Kveton,
S. Siddiqi, and C-H. Yu, “Machine Learning for Adaptive
Power Management,” Intel Technology Journal, Vol. 10, pp.
299-312, November 2006.

[9] L. Benini, A. Bogliolo, and G. De Micheli, “A Survey of
Design Techniques for System-level Dynamic Power
Management”, IEEE Transactions on Very Large Scale
Integrated Systems, Vol. 8, Issue 3, pp.299-316, 2000.

[10] L.R. Rabiner, “A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition”, Proceedings of
the IEEE, Vol.77, No.2, February 1989.

[11] C. Amato, D.S. Bernstein, and S. Zilberstein, “Solving
POMDPs Using Quadratically Constrained Linear Programs”,
Proceedings of International Symposium on Artificial
Intelligence and Mathematics (AI&MATH’06), Florida, 2006.

[12] Q. Qiu, Q. Wu, M. Pedram, “Dynamic Power Management of
Complex Systems Using Generalized Stochastic Petri Nets,”
Proceedings of the Design Automation Conference, June 2000.

[13] http://www-neos.mcs.anl.gov/
[14] http://www.kanungo.us/software/software.html#umdhmm
[15] P.E. Gill, W. Murray, and M. Saunders, “Snopt: An SQP

algorithm for large-scale constrained optimization,” SIAM
Review, pp. 99-131, 2005.

[16] R. Fourer, D.M. Gay, and B.W. Kernighan, AMPL: A
Modeling Language for Mathematical Programming,
Thomason, 2003.

[17] P. Rong and M. Pedram, "Hierarchical dynamic power
management with application scheduling," Proc. of Symp. on
Low Power Electronics and Design, Aug. 2005.

[18] T Simunic, L Benini, P Glynn and G. D. Micheli, “Event-
driven power management,” IEEE Transactions on Computer-
Aided Design, Vol. 20, pp. 840-857, Jul. 2001.

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

