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Abstract

Transaction Level Modeling (TLM) is an emerging de-
sign practice for overcoming increasing design complexity.
It aims at simplifying the design flow of embedded systems
by designing and verifying a system at different abstraction
levels. In this context, transactors play a fundamental role
since they allow communication between the system compo-
nents, implemented at different abstraction levels. Reuse of
RTL IPs into TLM systems is a meaningful example of key
advantage guaranteed by exploiting transactors. Neverthe-
less, transactors implementation is still manual, tedious and
error-prone, and the effort spent to verify their correctness
often overcomes the benefits of the TLM-based design flow.
In this paper we present a methodology to automatically
generate transactors for RTL IPs. We show how the trans-
actor code can be automatically generated by exploiting the
testbench of any RTL IP.

1. Introduction

TLM is nowadays the reference modeling style for
HW/SW design and verification of digital systems [9].
TLM greatly speeds up the verification process by provid-
ing designers with different abstraction levels whereby dig-
ital systems are modeled and verified. Thus, the complexity
of the modern systems can be handled by designing and ver-
ifying them through successive refinement steps [12].

Top-down and bottom-up approaches are often mixed
in a TLM-based design flow (see Figure 1). The system
is firstly modeled at high-level in order to check the pure
functionality, disregarding details related to the target ar-
chitecture. Due to the lack of implementation details, the
simulation speed is some orders of magnitude faster than at
RTL [8]. Then, step by step, designers refine and verify the
system description more accurately, towards the final im-
plementation.
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Figure 1. Top-down and bottom-up ap-
proaches in TLM design flows.

On the other hand, reuse of previously-developed In-
tellectual Properties (IP) modules (i.e., RTL computational
cores, RTL buses, etc.) is another key strategy that guaran-
tees considerable saving of time in TLM [5]. In fact, mod-
eling a complex system entirely at transaction level could
be inconvenient when IP cores are already available on the
market, usually modeled at RTL.

In this context, EDA companies and academic re-
searchers have proposed modeling and verification method-
ologies based on transactors [7, 16, 14]. Despite technical
differences, all of them exploit the concept of a transac-
tor to allow the mixed TLM-RTL co-verification based on
simulation. A transactor works as a translator from TLM
function calls to sequences of RTL statements, that is, it pro-
vides the mapping between transaction-level requests, made
by TLM components, and detailed signal-level protocols on
the interface of RTL IPs.

Even if transaction-based verification (TBV) is increas-
ingly used, the problem of transaction generation for TLM-
RTL co-simulation has been only partially explored being a

978-3-9810801-3-1/DATE08 © 2008 EDAA 

 

978-3-9810801-3-1/DATE08 © 2008 EDAA 

 



new challenge for designers and verification engineers. De-
signers actually implement transactors by interpreting ei-
ther the communication protocol specifications or the RTL
code of the related IP. As a consequence, the effort spent to
implement transactors and to verify their correctness often
overcomes the benefits of the TLM-based design flow.

Considering the state of the art, the transactor generation
in TLM can be seen as a special case of automatic genera-
tion of adapters for incompatible protocols in the RTL con-
text [15, 18, 3, 17]. A technique is presented in [15] for in-
terfacing standard components that have incompatible pro-
tocols. Given an RTL HDL description of the two protocols,
an interface process is generated to allow the two protocols
to communicate with each other. In [18, 3, 17], different ap-
proaches based on finite automata are presented. In all these
works, designers have to manually specify the protocols by
using some formalism such as regular expressions [13] or
temporal logic [19]. Starting from the accurate description
of control and data lines, and the sequence of data transfers
over those lines, a synthesis process generates the protocol
converter.

The generation of transactors specific for TLM-RTL
communication has been more recently analyzed in [4] and
[6]. Both works present an approach based on finite au-
tomata, in which the protocol specifications have to be de-
scribed in Property Specification Language (PSL) in the
first paper while Extended Finite State Machines (EFSMs)
are exploited in the second paper. Nevertheless, generation
time and correctness of the result fully depend on the de-
signer accuracy and capability which manually describes
the formal model of the communication protocols.

In this paper, we present a methodology that automates
the transactor generation for RTL IP components to be
reused into TLM systems. Assuming that an RTL testbench
is released with the RTL IP component, the methodology
automates each step of the generation process. Protocol in-
formation is extracted from the testbench and represented
by the Extended Finite State Machine (EFSM) model [10].
Finally, relying on a TLM APIs library, the SystemC code
of the transactor is automatically generated.

The paper is organized as follows. Section 2 presents an
overview of the transactor object and the main categories of
transactors. Section 3 describes the proposed methodology
and each step of the generation process. Implementation
details and experimental results are presented in Section 4,
while concluding remarks in Section 5.

2. Transactor Overview

A transactor is associated with two API’s, one for the
side at the higher level of abstraction (i.e., TLM) and one
for the lower level side (i.e., RTL). It works as a translator
from function calls to sequences of statements implemented
at a lower abstraction level and viceversa. The two main
functionalities of transactors are the following:
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Figure 2. Examples of transactor applica-
tions.

1. Mapping of TLM API to RTL API. On one side, de-
pending on the abstraction level of the TLM compo-
nent, different function calls and different data struc-
tures can be used to define the TLM API. On the other
side, RTL APIs can differ in data and control ports de-
pending on the adopted communication protocol.

2. Translation of TLM function calls to sequences of RTL
signals (i.e., RTL handshaking sequences) and vicev-
ersa. Since TLM components usually do not imple-
ment any ”low level” communication protocol, hand-
shaking and accurate temporization towards the RTL
component must be carried out by the transactor.

Let us classify transactors in two main categories de-
pending on their RTL side.

2.1 Transactors for standard RTL commu-
nication protocols

Transactors for buses are meaningful examples of this
category. Different buses are available in the commerce,
which present accurate communication protocols, that are
well defined by formal specifications (i.e., AMBA AHB,
STBus, OCP-IP, etc.). Figure 2(a) shows an example, where
three TLM components (one master and two slaves) com-
municate through a RTL bus synchronized by using trans-
actors. Because of the TLM compositional approach, the
three modules (master and slaves) and the bus are imple-
mented at different abstraction levels. This model repre-
sents the majority of cases in which an existent RTL bus
is reused and transactors are exploited to bridge the ab-
straction gap between the TLM and RTL modules. Thus,
a Master-transactor, translates TLM master calls into se-
quences of RTL signals for the bus and viceversa, while a
Slave-transactor translates RTL signals of the bus into TLM
function calls for the slave and viceversa. This configura-
tion, for example, is adopted when performance analysis re-
lated to the communication protocol of the system is taken
by monitoring the clock accurate RTL bus.



2.2 Transactors for non-standard RTL
communication protocols

Figure 2(b) shows an application example in which the
master (CPU) and the bus compose the TLM side of the
system, while the slaves (IP1, IP2) are implemented at RTL.
In this case, the configuration is suitable for two different
purposes:

1. The RTL IP is reused and connected to the system to
analyze the whole system integrity and correctness.

2. The RTL IP is under development and its refinement
process strictly depends on the environment, which is
implemented at TLM.

In this case, the bus is actually implemented at a level of
abstraction in which the very simple communication mech-
anism relies on TLM function calls (i.e., write(), read(),
put(), get()). On the other side, the API of the RTL com-
ponents have been embedded depending on the component
functionality rather than following any standard or well
known communication protocols.

In the transactor generation, unlike the TLM side in
which APIs are quite simple, controlled by a reference stan-
dard (i.e., OSCI TLM) and in any case limited in number,
the main difficulties arise in the implementation of the RTL
side. As explained in Section 1, even the methodologies that
aim at automating the transactor generation needs a manual
intervention to accurately describes the RTL protocol. Dif-
ferently to transactors for standard protocols for which a
library of formal specification could be created and reused,
the manual step of RTL protocol description is needed to
generate transactors implementing non-standard protocols.
The methodology presented in Section 3 aims at avoiding
this manual step, by extracting the corresponding informa-
tion from the RTL testbench released with the RTL IP.

3. Generation Flow

Figure 3 shows the overview of the methodology for
transactors generation that is detailed in the following sub-
sections. We assume that an RTL testbench is available to-
gether with the RTL IP. The RTL testbench actually sends
testvectors to and receives results from the IP core by per-
forming an ordered sequence of write and read operations
in compliance with the IP communication protocol. We call
RTL driver that sequence of write and read operations on
the PIs and POs of the IP interface.

The proposed methodology exploits the RTL driver in-
formation to implement the RTL side of transactors while
the TLM side is settled by exploiting any standard TLM
API (e.g., the OSCI TLM core interfaces).

A preliminary manual effort is required to identify the
EFSMs actually implementing the RTL communication
protocol and to provide mapping information between TLM
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Figure 3. Testbench-centric methodology

I/O values and RTL I/O ports (step 1). Once the prelimi-
nary step has been settled, the EFSM representing the RTL
driver and the RTL interface are extracted from the tagged
RTL testbench (step 2). A formal model is needed to rep-
resent the communication protocol for both TLM and RTL
sides of transactors. The EFSM model has been chosen for
three main reasons:

1. The Finite State Machine (FSM) model has been ex-
tensively used to model and verify protocols [11]. EF-
SMs are an extension of FSMs.

2. The EFSM model maintains controlled the state explo-
sion problem by adding expressivity to the transitions
[21].

3. Thanks to the expressiveness of transitions, transactor
code can be automatically generated starting from the
EFSM representation.

Then, the SystemC code representing the RTL and TLM
sides is extracted respectively from the EFSM of RTL driver
(step 3) and from the TLM API library (step 4). Finally, the
infrastructure supporting data-exchange between the TLM
and RTL side is generated by exploiting the previously de-
fined mapping function (step 5).

3.1 Preliminary step (step 1)

A preprocessing stage is required to provide those infor-
mation which cannot be automatically determined, and it
represents the only necessary manual task. Once the pre-
liminary information is settled, a fully functional transactor
is generated without needing any additional manual modifi-
cation.

Two types of information are needed:

• EFSM borders. EFSMs of the RTL drivers represent-
ing WRITE and READ operations are identified in the
testbench by tagging the initial and final states visited
during an access for sending data to or receiving data
from the RTL IP (see Figure 4). This provides the
necessary support to extract information of the RTL
protocol encapsulated in the testbench. For the sake
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of clarity, it is assumed that WRITE and READ opera-
tions are performed through the RTL interface by two
distinct EFSMs. In fact, if the testbench implements a
single EFSM performing both operations, the EFSMs
performing WRITE and READ will be treated as being
distinct but equal. Figure 4 shows an example of the
tagging process. The initial and finals state of EFSM
performing WRITE operations are tagged with BEGIN
WRITE and END WRITE. Similarly, BEGIN READ
and END READ tags are used to identify the EFSM
performing READ operations.

• Mapping between TLM values and RTL ports. A set of
“relevant” I/O objects is settled for representing data
shared between the TLM and RTL sides. Any object
of this set corresponds to a PI or a PO that is present
in both the TLM interface (i.e., as function call para-
meter) and the RTL interface (i.e., as input or output
port). For example, data ports (i.e., input ports, result
ports) of the RTL IP core can be considered relevant
rather than control ports specific to the RTL protocol
(i.e., ports for enabling flags, ports for acknowledg-
ment, etc.). This provides the support to generate the
data-exchange structures which ensure a proper com-
munication between the TLM and RTL sides.

3.2 Data-exchange structure generation
(step 2)

Data structures providing support for exchanging data
between TLM and RTL side are generated by exploiting
the mapping functions defined in the preliminary step. It
is composed of the following parts:

• A request extension record whose field names corre-
spond to the names of RTL ports involved in sending
data operations.

• A response extension record whose field names corre-
spond to the names of RTL ports involved in receiving
data operations.

a
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Figure 5. Generation examples of request ex-
tension (a) and response extension (b)

Figure 5 shows an example in which three shared I/O
objects compose the TLM-RTL mapping table. Variables
address, data and result of the TLM request are
respectively mapped into RTL ports ADDR, IN DATA and
OUT DATA. The Request extension record with fields ADDR
and DATA, and the Response extension records with fields
ADDR and RES are thus generated.

It is important to note that these data structures com-
pose the actual border layer between TLM and RTL. Thus,
even if this step adds a degree of redundancy concerning
the exchanged data, it ensures modularity in the generation
process of transactors. In fact, different TLM interfaces can
be chosen for composing the TLM side of the transactors,
as explained in Section 3.4.

3.3 RTL side generation (steps 3, 4)

The RTL side is composed of the following parts, that are
automatically generated from the tagged RTL testbench:

• The set of input and output ports composing the RTL
interface. They correspond to the testbench ports that
are directly linked to the RTL IP core.

• The EFSMs implementing write and read operations
through the RTL interface. They correspond to the
EFSM sub-graphs included into the EFSMs of the
testbench, which perform the corresponding write and
read operations.

The automatically extracted EFSMs are elaborated to
support communication with the TLM side, by exploiting
the data-exchange structures generated at the previous step.
Thus, request values are received by the TLM side of the
transactor and they are available to the RTL side through
the request extension record. Similarly, the values of RTL
ports are available to the TLM side through the response
extension record.

In this context, only transaction-specific values (e.g.,
address, data, result, etc.) are considered in the data-
exchanged structures, as they represent the only informa-
tion which flows between the TLM and RTL sides through
the communication layer.

On the other hand, protocol details specific to the RTL
interface (i.e., handshaking sequences, pipelining, burst cy-



cles, etc.) are extracted from the RTL testbench and pre-
served in the RTL side. Thus, from the TLM point of
view, data exchanging is performed disregarding these de-
tails, since they are inherited from the testbench and trans-
parently handled by the transactor.

3.4 TLM side generation (step 5)

TLM communication is based on API function calls
(e.g., read(), write(), put(), get()) and it is usu-
ally controlled by a standard (i.e., OSCI TLM library). In
this context, the TLM interfaces do not present the same
variety of their RTL counterparts and they are limited in
number.

Three properties characterize the TLM communication
protocols:

• type of communication primitives (i.e., blocking func-
tion calls, non-blocking function calls);

• temporization of communication primitives (i.e., un-
timed function calls, timed function calls);

• type of communication channels (i.e., bidirectional in-
terface, unidirectional interface).

A taxonomy of TLM communication protocols can be
drawn up by combining these properties each other. The
most relevant are the following:

1. Bidirectional Blocking Untimed. An initiator writes
data to and reads data from a target, for example, by
sending a request packet (i.e., REQ) and receiving the
response (i.e., RSP) through an atomic function call,
as in the follows:
void transport(const REQ&, RSP&);

2. Bidirectional Blocking Timed. In this context, timing
annotation is added as function parameter to the
atomic function call:
void transport(const REQ&, RSP&,
sc time&);

3. Unidirectional Blocking Untimed. A write or read
transaction is split into a sequence of blocking func-
tion calls. For example, an initiator firstly requests a
transaction by means of put(const REQ&). Once
the request has succeeded, the initiator peeks the chan-
nel for a response, by means of peek(RSP&), wait-
ing in a suspended state in case the channel is empty.
Finally, it gets the response from the channel by means
of get(RSP&).

4. Unidirectional Non-blocking Untimed. In the non-
blocking interface, function calls are not allowed to
wait in a suspended state. Thus, every call returns a
boolean value to indicate whether the non-blocking ac-
cess succeeded. Thus, an initiator initiates a transac-
tion by calling nb put(const REQ&) in a polling-
based mechanism. Once the correct conditions for the

call succeed, nb peek(RSP&) and nb get(RSP&)
are called in the same way to peek and get the response.

5. Unidirectional Non-blocking Timed.. The semantic of
this communication protocol preserves the sequence
of unidirectional non-blocking function calls. Nev-
ertheless, the function calls are provided with timing
annotations. Thus, put, peek and get functions are
still called with the polling mechanism, in which a
delay or a latency is explicitly expressed for each
call (i.e., nb put(const REQ&, sc time&),
nb peek(RSP&, sc time&), nb get(RSP&,
sc time&)).

4. Experimental Results

The presented methodology has been implemented in
TGEN, a tool built on the top of HIFSuite [1]. The effective-
ness of the methodologies has been evaluated by generating
transactors of two different types: for standard and non-
standard RTL communication protocols (see Section 2). In
particular, transactors have been generated for the the fol-
lowing RTL designs:

• AMBA AHB Bus.

• STBus type 2.

• Fast Fourier Transform (FFT).

• FIR Filter.

The first two designs have been provided by STMicro-
electronics while FFT and FIR are RTL designs provided
with the example set of SystemC 2.2 [2]. The transac-
tor codes have been generated in SystemC, considering the
OSCI TLM library [20] as reference library. For the spe-
cific architectural choices, the communication mechanism
has been implemented in the Unidirectional Blocking Un-
timed form (see Section 3.4).

Table 1 shows the obtained results. Columns Testbench
shows the number of lines of code of the testbenches which
have been analyzed by the TGEN parser for extracting the
RTL drivers. Column RTL ports reports the number of I/O
ports of the RTL design interface. The number of rele-
vant objets manually settled for representing data shared
between the TLM and RTL sides is reported in Column Rel-
evant I/O objects. Columns READ RTL driver and WRITE
RTL driver shows the number of states and transitions of the
EFSMs extracted from the RTL testbench, which model the
read and write operations towards the design. Columns RTL
side and TLM side report respectively the number of code
lines of the RTL and TLM sides of the transactors. Finally,
column Transactor shows the total number of code lines of
the transactor implementations.

For each design, few minutes of manual work have been
spent for the preliminary step. Then, the automatic trans-
actor generation has been instantaneously accomplished by



Design Testbench RTL ports Relevant I/O READ RTL driver WRITE RTL driver RTL side TLM side Transactor
(loc) (#) objects (#) #states #trans #states #trans (loc) (loc) (loc)

AMBA AHB 79 15 4 3 3 3 3 110 26 237
STBus t2 89 9 4 3 3 3 3 56 26 187

FFT 244 10 4 2 2 2 2 75 26 208
FIR 280 8 2 1 1 1 1 24 26 139

Table 1. Experimental results

the TGEN tool. On the other hand, 3 days/man have been
spent for manually implementing the four transactors. Cor-
rectness of the obtained results has been proven by using
testbenches provided by STMIcroelectronics.

5. Concluding Remarks

The paper addressed the problem of automatic transactor
generation for reusing RTL IPs in TLM designs. We pro-
posed a methodology that automates the generation process,
assuming that an RTL testbench is released with the RTL
IP component. This aims at obtaining their correct-by-
construction implementation. After a manual preliminary
step, the methodology extracts the protocol information
from the testbench by exploiting the Extended Finite State
Machines (EFSMs) model. Finally, relying on a TLM APIs
library, the SystemC code of the transactor is automatically
generated. Even if the preliminary manual step can be con-
sidered a limitation, it is much easier and quicker than com-
pletely coding transactors from scratch. The methodology
effectiveness and correctness have been shown by generat-
ing transactors of different RTL designs which implement
both standard and non-standard protocols.
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