
Hard- and Software Modularity of the NOVA MPSoC Platform

Christian Sauer, Matthias Gries, Sebastian Dirk
Infineon Technologies, Communications Solutions, Munich, Germany

{Christian.Sauer, Matthias.Gries}@infineon.com

Abstract
The Network-Optimized Versatile Architecture Plat-

form (NOVA) encapsulates embedded cores, tightly and
loosely coupled coprocessors, on-chip memories, and I/O
interfaces by special sockets that provide a common
packet passing and communication infrastructure. To ease
the programming of the heterogeneous multiprocessor
target for the application developer, a component based
framework is used for describing packet processing appli-
cations in a natural and productive way. Leveraging iden-
tical application and hardware communication semantics,
code generators and off-the-shelf tool chains can automate
the software implementation process. Using a prototype
with four processing cores we quantify the overhead of
modularity and programmability for the platform.

1. Introduction
Platforms have been introduced for coping with the in-

creased pressure on time-to-market, as well as design and
manufacturing costs [5]. They particularly make sense in
price-sensitive application domains, such as access net-
works, where application-specific optimizations are re-
quired to reach defined objectives on costs and perform-
ance. In addition, sufficient flexibility of the platform is
required to deal with emerging trends. The main design
goal is therefore to integrate as much functionality as pos-
sible while preserving as much flexibility as needed, keep-
ing constraints on performance and costs. We have devel-
oped the heterogeneous NOVA platform for comprehen-
sive exploration of design alternatives in hardware and
software, where the refinement process is driven by net-
work access applications.

The systematic development of a flexible platform aims
at the following design principles:

Seamless trade-off analysis: The developer must be
able to isolate the impact of different design decisions on
the overall design quality. The platform concept must not
restrict the designer on predefined design choices.

Enabling reuse: The platform must be general enough
so that existing design knowledge can be incorporated to

avoid starting from scratch. At the same time, reuse must
not constrain the designer to after-effects of reusing one
particular design block.

Customization path from standard components: If stan-
dard components are employed, there must be clear ways
for improving design criteria by following defined cus-
tomization paths if design targets are not met.

For achieving these goals with our NOVA platform, we
apply the following design rules:

Modularity: Generalized sockets are used to encapsu-
late hardware building blocks so that interfacing to proc-
essing resources can be decoupled from interfacing to the
interconnect infrastructure. Similarly, our software frame-
work is organized in exchangeable components that repre-
sent computational kernels.

Keep it simple: We advocate this discipline for all de-
sign decisions. Consequently, we prefer to, e.g., replace an
existing bus interface with another one rather than writing
a wrapper for the existing interface. It also means that we
carefully reduce the complexity of standard processing
elements as needed, e.g., by removing MMU, caches, and
certain functional units.

Scalability: The platform must be able to accommodate
a wide range of I/O interfaces and processing elements to
handle different processing and communication require-
ments. The NOVA socket and message format allow the
integration of traditional shared buses, as well as better
scalable Network-on-Chip (NoC) techniques. A processing
subsystem in NOVA is core-agnostic since we do not rely
on proprietary interfaces for, e.g., coprocessor coupling.

Customization where needed: If the most flexible solu-
tion does not meet design criteria, NOVA provides design
points for customization. Some of the PEs allow applica-
tion-specific instruction set extensions. Coprocessors, ei-
ther tightly or loosely coupled, can be used without break-
ing the representation of the application.

This paper describes the NOVA platform that leverages
commodity blocks by unified sockets and enables the dis-
ciplined exploration of all design space aspects. Besides
platform concepts, this paper quantifies feasible tradeoffs
between the costs of modularity and performance. In the

978-3-9810801-2-4/DATE07 © 2007 EDAA

next section, we introduce the hardware aspect of NOVA
and describe its modularity. Section 3 discusses the asso-
ciated programming model. The FPGA implementation of
a prototype running a real world application is explained
in Sec. 4. The results section (5) evaluates design trade-
offs due to modularity and programmability. Related work
is surveyed in Section 6. We conclude in Section 7.

2. NOVA Platform
The NOVA platform provides concepts, templates, and

various building blocks for the systematic application-
driven design space exploration of network processors.
NOVA eases the use of commodity IP modules. They are
encapsulated by the NOVA socket, which provides a uni-
fied interface to the on-chip network. In this way, all plat-
form elements can be connected to each other and form
arbitrary on-chip communication topologies.

2.1. On-chip communication
NOVA supports two types of on-chip communication

in hardware: message passing and memory accesses. Mes-
sages are primarily used to transfer packet descriptors be-
tween processing nodes and are akin to the packet stream-
ing semantics of the application domain. In addition, proc-
essing nodes can exchange system messages, e.g. for OS-
like functions. Messages use on-chip routing headers and
are between 12 and 64 bytes long. Message passing usu-
ally is non-blocking. A backpressure scheme implemented
by the interconnect network, however, provides means to
block a producer if desired.

Memory accesses may be split transactions, as long as
the sequential order is maintained. Depending on the type
of processing element, memory accesses can be imple-
mented as blocking or non-blocking.

2.2. NOVA socket
The socket decouples the on-chip communication net-

work from the processing nodes and provides unified in-
terfaces between them. This is, for instance, helpful for the
exploration of different communication schemes. Figure 1
shows the concept. The socket encapsulates an IP module
and provides external interfaces. The figure shows three
interfaces as they are implemented by our prototype (cf.
Sec. 4): to the packet descriptor (PD), the system message
(SM), and the memory access networks. The internal inter-
faces are specialized to the particular IP module.

Usually, NxM on-chip interfaces are required to explore
M communication schemes for N different IP modules. By
defining a handshake protocol between IP and NoC inter-
faces, the socket reduces this to an N+M complexity.

A welcome side effect of this approach is the option to
insert FIFOs for globally asynchronous communication
schemes. In Figure 1, the message passing networks are
asynchronous, whereas the memory access network is

connected synchronously. Optionally, DMA engines can
be included in the sockets. These units can be customized
to convert streaming interfaces into memory accesses and
vice versa. The IO interface (cf. Figure 2), for instance,
uses them to transfer packets to/from the memory.

IP-Module MEM
IF

PD/IP IF SM/IP IF

M S M S

M
em

or
y

A
cc

es
se

s

Packet Descriptors System Messages
Figure 1: NOVA socket concept.

2.3. Platform building blocks
Deploying the socket and communication concepts,

NOVA defines different types of building blocks.
Processing elements (PE): A PE is an embedded ‘stan-

dard’ processor that can be programmed in a high-level
language. This processor and its subsystem, e.g. code and
data memories, are encapsulated to form the PE. The PE in
this paper uses a 32b MIPS 4K with Harvard architecture.

Coprocessors: These are specialized engines and accel-
erators, which cannot be programmed in a high-level lan-
guage. They are deployed either tightly coupled in a proc-
essing elements’ subsystem or loosely coupled as special-
ized processing node. NOVA uses coprocessors, e.g., for
security functions and memory management.

On-chip memories: NOVA supports arbitrary on-chip
memories. Currently the memory interface defines 32 bit
wide addresses and data words and assumes pipelined syn-
chronous memories. If encapsulated in sockets, memories
can form co-processors accessed via system messages.

Figure 2: NOVA Ethernet IO module.
Off-chip interfaces: Off-chip interfaces are mostly off-

the-shelf units encapsulated by NOVA sockets. Current
emphasis is on network and memory IO. Figure 2 shows a
Fast Ethernet MAC with its interface to the socket. Apart
the MAC with memories, the module contains DMAs that
autonomously store and forward packets, and parser
/unparser units for the handling of packet descriptors.

2.4. Memory layout and hierarchy
NOVA does not impose any memory layout or hierar-

chy. PEs may use transparent cache hierarchies or deploy
memories that are visible to and managed by the pro-
grammer. Memories shared between PEs require a unique
resource manager either in hardware or software. Memo-
ries and all resources accessed by a PE are mapped into
the individual PE’s data memory map.

3. Programming Model & Deployment
In this section we show how concurrency and modular-

ity is supported in our software description and generation
process. We start from modular Click descriptions that we
use for modeling functionality hardware independently.
We use this input for code generation on embedded proc-
essors. Wrapper elements in Click and a thin OS layer
used by the generated code take care of the specifics of the
underlying multiprocessor system.

We use Click [3] for modeling the functionality of
packet processing systems. Click descriptions are modular,
executable, independent of a particular hardware architec-
ture, and capture inherent parallelism in packet flows and
dependencies among elements (Click components). Click
elements describe computational network kernels, whereas
connections specify the flow of packets (i.e. data) between
elements. Application state is kept local within elements.
Due to defined element interfaces, a Click description can
quickly be customized to new protocols and environments
by exchanging individual elements. Finally, all processing
activity is initiated by the transportation of packets.

Our CRACC [9] single processor code generator takes
a Click description and instantiates elements from a library
written in C. CRACC elements are connected and config-
ured at compile-time. Also, CRACC’s memory footprint is
much more compact than Click’s C++ description. These
techniques are necessary since our code generation targets
are embedded processors, where optimization for code size
and performance is most important.

3.1. Wrappers for heterogeneous platforms
A heterogeneous platform such as NOVA may contain

many different building blocks. To incorporate their be-
havior into Click representations and the code generator,
we distinguish between functionality that is made explicit
in Click and functions that should be hidden from the ap-
plication developer. In this subsection, we look at Click-
conforming representations by using wrapper elements
that encapsulate interfacing with hardware-specifics. Other
functions are addressed in the following subsection.

Packet descriptor passing: If two Click or CRACC
elements communicate with each other, pointers to context
information are normally handed from element to element
on the same processor. If these elements are mapped onto
different processors, the message passing interface must be

used, i.e. the context data must be copied into the interface
buffers and routing information must be added, such as the
on-chip destination address. FromIO and ToIO elements
have been implemented for encapsulation of receive and
send functionality of message passing hardware, respec-
tively. Several FromIO and ToIO elements can be associ-
ated with the same message passing interface in hardware.
The different software instances are distinguished by a
unique graph ID that is also contained in the routing in-
formation of the message.

Hardwired coprocessors and network I/O: For model-
ing the function of coprocessors and off-chip communica-
tion interfaces, Click elements are needed that emulate the
behavior of the module, e.g., for verification purposes with
artificial traffic sources. For these elements code genera-
tion might not be necessary at all, but the full model is
executable in Click. Click wrapper elements can also be
used for configuring hardware blocks, i.e. code generation
takes care of initializing the hardware block accordingly.

Mapping annotations: On a multiprocessor platform,
the designer has the choice to partition the application onto
several processing elements. For CRACC together with
NOVA, this is a manual process where the designer anno-
tates certain Click elements with mapping targets. A map-
ping target is defined by a node ID in the system. The part
of a Click graph subject to mapping is specified by a
unique graph ID so that the specification of mapping for
individual elements can be avoided. From- and ToIO ele-
ments described earlier inherently are start and end-points
of partial Click graphs. It is sufficient to specify a mapping
for the FromIO element. This information is propagated
during the CRACC code generation phase.

3.2. Multi-core and OS extensions for CRACC
Apart from Click wrappers we need additional services

for messages, timers, task scheduling, and resource sharing
among several processing elements. Since such mecha-
nisms are not part of the Click syntax, these features are
hidden from the Click representation and only partly visi-
ble for a library programmer.

System messages: Apart from the message passing
mechanism that is visible in Click, we use message pass-
ing for exchanging information used by the OS, such as
status messages, hardware module configuration data and
requests for a certain shared resource. These system mes-
sages are shorter than packet descriptor messages but use
the same routing specification (message header).

Visibility of memory hierarchy: In CRACC, a library
programmer can explicitly address different memory areas,
e.g. private local and shared slow memories. Every shared
memory is associated with a unique memory manager that
can be mapped to any PE, e.g. a coprocessor or a pro-
grammable core. Requests for memory access, allocation,
and deletion are sent by system messages to the associated
manager, which replies accordingly.

Timers: CRACC provides an API for timers that can be
used, for instance, by timed Click elements. Timed ele-
ments register themselves for wakeup at a certain expira-
tion date. Timers encapsulate the specifics of a target’s
implementation, e.g. a hardware timer that is register
mapped, memory mapped, or a co-processor.

Split transactions: A direct consequence of using sys-
tem messages in a GALS platform is the support of split
transactions for latency hiding. If the sender of a system
message is waiting for a response, it registers itself for
wakeup by the scheduler on the respective processing core
when the corresponding reply message arrives. Context
switches caused by split transactions are explicit and re-
quire only minimal state embedded in the registration at
the scheduler. The register file does not need to be saved.

3.3. Deployment
The software partitioning and development process that

we follow can be summarized as follows:
 1. Evaluation of Click model: The full system function
is modeled in Click. In this way, the required packet proc-
essing can be determined and simulated with real or artifi-
cial network traffic on any Linux computer.
 2. Profiling on single-core: The Click graph can be
used by our code generator CRACC [9] to map the system
function on a single core target, where it can be profiled in
terms of per-packet processing requirements.
 3. Partitioning of Click graph: Based on the profiling
results of the preceding step, hot spots can be identified
and feasible partitions of the graph onto several processing
elements can be determined manually, as described earlier.
 4. Multiprocessor code generation using CRACC: The
mapping annotation is used to individually generate code
for different processor targets.
 5. Determine performance and reiterate: The proper-
ties of the full implementation can now be determined
(e.g., speed, code size) by simulation or on the actual plat-
form hardware. Reiterate starting at step 3 by repartition-
ing the Click graph until objectives are met.

Following these steps, a functionally correct implemen-
tation of the application can be derived quickly using
Click. The subsequent performance optimization can then
focus on individual elements and the partitioning of ele-
ments onto processing cores. This systematic approach
leads to improved design productivity and simplifies reuse.

4. Platform Prototype
We have implemented a 4PE prototype of the NOVA

platform that realizes a Digital Subscriber Line Access
Multiplexer (DSLAM). Figure 3 shows the block diagram
of the 4PE NOVA prototype. The device is dimensioned
for the use as DSLAM line card processor and employs
four of the MIPS processing elements (shown in Figure 3).

Leveraging the FPGA-based Raptor20001 prototyping
environment the system implements four Fast Ethernet IOs
(Figure 2) that are connected to external PHYs and shared
off-chip SRAM memory. The on-chip communication is
based on three OCP busses for system messages, packet
descriptors, and memories. In this way, high priority de-
livery of system messages is assured. The prototype also
integrates a statistics and profiling module to derive run-
time performance information.

SRAM Interface

Memory-Bus

Profiling
Co-Processor

MIPS
PE

I/O
Module 0

MIPS
PE

MIPS
PE

MIPS
PE

I/O
Module 1

I/O
Module 2

I/O
Module 3

PD-Bus

SYS-Bus

Memory
Controller

Figure 3: 4PE NOVA prototype.

4.1. DSLAM application
Our NOVA prototype runs the DSLAM application as

described in [8]. Most of the functionality is mapped on
the four PEs, only the Ethernet functions are absorbed in
hardware by the NOVA IO modules. Using the NOVA
realization on the Raptor2000 system, we connect the pro-
totype to a set of traffic sources and sinks that represent
DSL customers’ voice, video, and best effort traffic with
different Quality-of-Service requirements (cf. Figure 4).

SRAM Interface

Performance
Measurement
Co-Processor

MIPS
PE

I/O
Module 0

MIPS
PE

MIPS
PE

MIPS
PE

I/O
Module 1

I/O
Module 2

I/O
Module 3

Memory
Controller

NOVA Platform

Figure 4: 4PE NOVA application setup.

4.2. Profiling support
The statistics and profiling coprocessor is connected to

all resources and collects data from nodes and the on-chip
network. It derives information about the packet through-
put and loss, the processor load and software profile (by
tracing the instruction address stream), and the utilization
of the on-chip communication system at run-time.

1 www.raptor2000.de

5. Performance Results
To evaluate the overhead of programmability and

modularity we synthesize the 4PE prototype for the FPGA
based Raptor2000 prototyping environment and a 90nm
ASIC design flow. On a Xilinx XC2V6000-4 device the
system runs at a convenient clock frequency of 25MHz.

5.1. Hardware modularity
The NOVA socket interfaces to three on-chip commu-

nication networks. Its area is dominated by the transfer
queues for packet descriptors and system messages.

1 2 3 4 5 6 7
8 9

10
11

12
1

2
3

4
8

12
16

25,00%

28,00%

31,00%

34,00%

37,00%

40,00%

43,00%

46,00%

O
ve

rh
ea

d

Number of Sys-Messages Number of

Packet -Descrip
tors

Figure 5: Relative area overhead of the
NOVA Fast Ethernet IO socket.

Looking at NOVA’s Fast Ethernet IO module in Figure
5, we determine the area of its socket compared to the em-
bedded Ethernet MAC for the ASIC version. Depending
on the number of queue entries and assuming equally sized
receive and transmit queues the socket overhead is be-
tween 25% and 46%. Simple SoC bus interfaces without
buffering and NoC capabilities require less area. A single
PLB bus interface without memories, e.g., is only 1% of
the MAC area. Buffers included, notably more area is re-
quired. Using a single Wishbone interface the overhead is
more than 60% for Opencore’s MAC. This indicates that
the area for traditional SoC bus interfaces is similarly
dominated by buffering. The required area for the socket is
within the range of common bus interfaces.

5.2. Software modularity
To determine the runtime overhead of our modular pro-

gramming environment, we use the CRACC code genera-
tor [9] and run the IP-DSLAM benchmark. This “out-of-
box” version strictly preserves Click’s modularity and
object-oriented runtime features, such as virtual functions.
In a second step, we de-virtualize functions and resolve
push and pull chains statically (CRACC optimized).

In Figure 6, this is compared to a simple ANSI-C pro-
gram (straight calls) that calls all functions directly from a
central loop, without Click’s function call semantics. The
figure reveals that CRACC with static optimizations does
not impose more overhead than the straight-function-call
approach (for a given granularity). There is still a penalty
of 30% for the structured and modular approach compared

to a program that inlines all functions into a single packet
processing loop (all-in-one).

0,00

0,14

0,29

0,43

0,57

0,71

0,86

1,00

1,14

1,28

All-in-one Straight calls CRACC optimized CRACC out-of-box

-29%

-28%

Figure 6: Overhead of modular software.

5.3. Runtime performance
After discussing hard- and software design trade offs

we now look at the impact of modularity and programma-
bility on the runtime performance. We analyze two aspects
of the 4PE NOVA prototype: the packet latency through
the system and the maximum packet throughput.

Packet latency. The latency of packets through a system
can be significantly larger than their actual processing time
due to receive and transmit related overhead. For the
analysis, we therefore focus on the essential functionality
that is required to set up the packet descriptor and move
the packet content from network interface to network in-
terface. For this measurement, buffer management is im-
plemented in software on one PE. The path through the
system, as displayed in Figure 7 in clock cycles, starts at
the ingress Ethernet interface. The I/O module requests
shared memory space by sending a system message to the
buffer manager (BM). The BM replies with an address of a
free segment. The BM accesses the shared memory for
updating segment context information (not shown as sepa-
rate entity). The packet contents can now be transferred to
shared memory and the reception signaled to the down-
stream processing node, in our case the egress I/O module.
This module finally reads out the packet (finished after
375 cycles) and releases the memory segment.

Ethernet IF 0

Send SM

Buffer manager (PE)

Memory transfers

Send PD

5

12

204 (malloc)

11

32 (wr ite)

18

Ethernet IF 1 16

64 (read)

6

malloc_request
malloc_response

Packet delay

7

375

Time [cycles]

14

93 (free)

dist_free

Figure 7: Latency of a 64 Byte packet.
We can recognize the benefit of implementing message

passing in hardware that supports the data-driven activa-
tion of processing elements. In this way, much of the la-
tency due to signaling packet events can be avoided. In
[4], it is shown that the Intel IXP 1200 needs about 1500
cycles for handing 64B packets from and to the network
interfaces alone. From Figure 7 we learn that these parts

need less than 200 cycles in NOVA. Even if we consider
that we use SRAM whereas the IXP employs SDRAM, we
can recognize a clear acceleration of the interaction be-
tween interfaces and PEs.

Maximum packet throughput. We are interested in the
bounds on the packet throughput due to sockets and the
interaction with network interfaces. In Figure 8, we com-
pare wire speed on Fast Ethernet (100 Mbps) with meas-
urements on the 4PE prototype for the same setup used in
Figure 7, i.e. buffer management is implemented in soft-
ware. We recognize that we achieve line speed for
Ethernet frame lengths larger than 200 Byte, which corre-
sponds to a usable cycle budget of about 350 cycles per
core and 1000 cycles for three PEs, respectively.

Since the ASIC implementation is one order of magni-
tude faster, already the 4PE prototype is powerful enough
to support common DSLAM linecard configurations.

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

11500

12000

12500

0 200 400 600 800 1000 1200 1400 1600

Ethernet frame length [Byte]

Th
ro

ug
h

pu
t[

K
Bp

s
]

measured troughput
maximum throughput

Figure 8: 4PE NOVA packet throughput.

6. Related Work
We find related work on network platforms with respect

to software development, hardware architectures, and inte-
grated platform approaches.

Platform approach: StepNP [7] is a framework for
network processors that uses Click as application descrip-
tion. The software is based on C++ and provides message
passing programming abstractions. Examples of commer-
cial platform solutions for wireless and multimedia do-
mains are Nomadik from ST Microelectronics, and Philips
Nexperia. The VSI alliance has a broad scope and aims at
virtual IP sockets to enable reuse and integration.

Network processor software: Click [6] is implemented
for Linux using C++. SMP-Click [2] is a multi-threaded
Linux variant. NP-Click [10] uses Click as a programming
model for the Intel IXP network processor. Shangri-La [1]
allows the automatic merging and partitioning of packet
processing kernels onto several processing engines based
on heuristics and profiling results.

Network processor hardware: A survey of the broad
variety of network processor architectures can, e.g., be
found in [11]. Commercial tools for customizing the mi-
cro-architecture of processing elements include CoWare's
LISATek and Tensilica's Xtensa [3]. Networks on Chip

(NoC) are, for instance, offered and used by Arteris SA,
ST Microelectronics, and Sonics Inc.

7. Conclusions
NOVA is a modular and programmable hardware plat-

form for packet-processing systems. It is based on unify-
ing sockets and common packet passing and communica-
tion infrastructure for integrating various building blocks.
Heterogeneous NOVA multiprocessors can be pro-
grammed intuitively and productively in a component-
based framework. Due to matching communication se-
mantics of application and architecture, a thin OS layer
and code generation framework ease the application to
architecture mapping significantly. Our results show that
the overhead of hardware and software modularity is rea-
sonable for NOVA compared to state-of-art techniques;
and that NOVA is usable for the systematic application-
driven design space exploration of network processors.

Acknowledgements
This project is founded by the German grant 01AK065A (PlaN-
etS), and the Bavarian grant IuK178/001 (SmartFlow). The
groups of Prof. U. Rückert, University of Paderborn, and Prof. A.
Herkersdorf, TU Munich, are contributing to this project.

References
[1] M.K. Chen, X.F. Li, et al.: Shangri-La: Achieving High Per-
formance from Compiled Network Applications while Enabling
Ease of Programming, PLDI, June 2005
[2] B. Chen, R. Morris: Flexible Control of Parallelism in a Mul-
tiprocessor PC Router, USENIX, June 2001
[3] R.E. Gonzalez: Xtensa: a configurable and extensible proc-
essor, IEEE Micro, 20(2), Mar./Apr. 2000
[4] M. Gries, C. Kulkarni, et al.: Comparing Analytical Model-
ing with Simulation for Network Processors, DATE, March 2003
[5] K. Keutzer, S. Malik, et al.: System Level Design: Orthogo-
nalization of Concerns and Platform-Based Design. IEEE Trans.
on CAD of Int. Circuits and Systems, 19(12), Dec. 2000
[6] E. Kohler, R. Morris, et al.: The Click modular router, ACM
Transactions on Computer Systems, 18(3), August 2000
[7] P. Paulin, C. Pilkington, E. Bensoudane: StepNP: A System-
Level Exploration Platform for Network Processors, IEEE De-
sign and Test of Computers,19(6), Nov./Dec. 2002
[8] C. Sauer, M. Gries, S. Sonntag: Modular Reference Imple-
mentation of an IP-DSLAM, ISCC, Spain, June 2005
[9] C. Sauer, M. Gries, S. Sonntag: Modular Domain-Specific
Implementation and Exploration Framework for Embedded
Software Platforms, DAC, June 2005
[10] N. Shah, W. Plishker, K. Keutzer: NP-Click: A Program-
ming Model for the Intel IXP1200, Network Processor Design,
vol. 2, Morgan Kaufmann, Nov. 2003
[11] B. Wheeler, L. Gwennap: A Guide to Network Processors,
7th Edition, The Linley Group, Dec. 2005
[12] Agilent Technologies: JTC 003: Mixed packet size through-
put, Journal of Internet Test Methodologies, Sept. 2004

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

