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Abstract 
The Network-Optimized Versatile Architecture Plat-

form (NOVA) encapsulates embedded cores, tightly and 
loosely coupled coprocessors, on-chip memories, and I/O 
interfaces by special sockets that provide a common 
packet passing and communication infrastructure. To ease 
the programming of the heterogeneous multiprocessor 
target for the application developer, a component based 
framework is used for describing packet processing appli-
cations in a natural and productive way. Leveraging iden-
tical application and hardware communication semantics, 
code generators and off-the-shelf tool chains can automate 
the software implementation process. Using a prototype 
with four processing cores we quantify the overhead of 
modularity and programmability for the platform. 

 

1. Introduction 
Platforms have been introduced for coping with the in-

creased pressure on time-to-market, as well as design and 
manufacturing costs [5]. They particularly make sense in 
price-sensitive application domains, such as access net-
works, where application-specific optimizations are re-
quired to reach defined objectives on costs and perform-
ance. In addition, sufficient flexibility of the platform is 
required to deal with emerging trends. The main design 
goal is therefore to integrate as much functionality as pos-
sible while preserving as much flexibility as needed, keep-
ing constraints on performance and costs. We have devel-
oped the heterogeneous NOVA platform for comprehen-
sive exploration of design alternatives in hardware and 
software, where the refinement process is driven by net-
work access applications.  

The systematic development of a flexible platform aims 
at the following design principles: 

Seamless trade-off analysis: The developer must be 
able to isolate the impact of different design decisions on 
the overall design quality. The platform concept must not 
restrict the designer on predefined design choices. 

Enabling reuse: The platform must be general enough 
so that existing design knowledge can be incorporated to 

avoid starting from scratch. At the same time, reuse must 
not constrain the designer to after-effects of reusing one 
particular design block.  

Customization path from standard components: If stan-
dard components are employed, there must be clear ways 
for improving design criteria by following defined cus-
tomization paths if design targets are not met.  

For achieving these goals with our NOVA platform, we 
apply the following design rules:   

Modularity: Generalized sockets are used to encapsu-
late hardware building blocks so that interfacing to proc-
essing resources can be decoupled from interfacing to the 
interconnect infrastructure. Similarly, our software frame-
work is organized in exchangeable components that repre-
sent computational kernels.  

Keep it simple: We advocate this discipline for all de-
sign decisions. Consequently, we prefer to, e.g., replace an 
existing bus interface with another one rather than writing 
a wrapper for the existing interface. It also means that we 
carefully reduce the complexity of standard processing 
elements as needed, e.g., by removing MMU, caches, and 
certain functional units.  

Scalability: The platform must be able to accommodate 
a wide range of I/O interfaces and processing elements to 
handle different processing and communication require-
ments. The NOVA socket and message format allow the 
integration of traditional shared buses, as well as better 
scalable Network-on-Chip (NoC) techniques. A processing 
subsystem in NOVA is core-agnostic since we do not rely 
on proprietary interfaces for, e.g., coprocessor coupling.  

Customization where needed: If the most flexible solu-
tion does not meet design criteria, NOVA provides design 
points for customization. Some of the PEs allow applica-
tion-specific instruction set extensions. Coprocessors, ei-
ther tightly or loosely coupled, can be used without break-
ing the representation of the application.  

This paper describes the NOVA platform that leverages 
commodity blocks by unified sockets and enables the dis-
ciplined exploration of all design space aspects. Besides 
platform concepts, this paper quantifies feasible tradeoffs 
between the costs of modularity and performance. In the 
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next section, we introduce the hardware aspect of NOVA 
and describe its modularity. Section 3 discusses the asso-
ciated programming model. The FPGA implementation of 
a prototype running a real world application is explained 
in Sec. 4. The results section (5) evaluates design trade-
offs due to modularity and programmability. Related work 
is surveyed in Section 6. We conclude in Section 7. 

2. NOVA Platform 
The NOVA platform provides concepts, templates, and 

various building blocks for the systematic application-
driven design space exploration of network processors. 
NOVA eases the use of commodity IP modules. They are 
encapsulated by the NOVA socket, which provides a uni-
fied interface to the on-chip network. In this way, all plat-
form elements can be connected to each other and form 
arbitrary on-chip communication topologies. 

2.1. On-chip communication 
NOVA supports two types of on-chip communication 

in hardware: message passing and memory accesses. Mes-
sages are primarily used to transfer packet descriptors be-
tween processing nodes and are akin to the packet stream-
ing semantics of the application domain. In addition, proc-
essing nodes can exchange system messages, e.g. for OS-
like functions. Messages use on-chip routing headers and 
are between 12 and 64 bytes long. Message passing usu-
ally is non-blocking. A backpressure scheme implemented 
by the interconnect network, however, provides means to 
block a producer if desired. 

Memory accesses may be split transactions, as long as 
the sequential order is maintained. Depending on the type 
of processing element, memory accesses can be imple-
mented as blocking or non-blocking.  

2.2. NOVA socket 
The socket decouples the on-chip communication net-

work from the processing nodes and provides unified in-
terfaces between them. This is, for instance, helpful for the 
exploration of different communication schemes. Figure 1 
shows the concept. The socket encapsulates an IP module 
and provides external interfaces. The figure shows three 
interfaces as they are implemented by our prototype (cf. 
Sec. 4): to the packet descriptor (PD), the system message 
(SM), and the memory access networks. The internal inter-
faces are specialized to the particular IP module. 

Usually, NxM on-chip interfaces are required to explore 
M communication schemes for N different IP modules. By 
defining a handshake protocol between IP and NoC inter-
faces, the socket reduces this to an N+M complexity.  

A welcome side effect of this approach is the option to 
insert FIFOs for globally asynchronous communication 
schemes. In Figure 1, the message passing networks are 
asynchronous, whereas the memory access network is 

connected synchronously.  Optionally, DMA engines can 
be included in the sockets. These units can be customized 
to convert streaming interfaces into memory accesses and 
vice versa. The IO interface (cf. Figure 2), for instance, 
uses them to transfer packets to/from the memory.  

IP-Module MEM
IF

PD/IP IF SM/IP IF

M S M S

M
em

or
y 

A
cc

es
se

s

Packet Descriptors System Messages  
Figure 1: NOVA socket concept. 

2.3. Platform building blocks 
Deploying the socket and communication concepts, 

NOVA defines different types of building blocks. 
Processing elements (PE): A PE is an embedded ‘stan-

dard’ processor that can be programmed in a high-level 
language. This processor and its subsystem, e.g. code and 
data memories, are encapsulated to form the PE. The PE in 
this paper uses a 32b MIPS 4K with Harvard architecture.   

Coprocessors: These are specialized engines and accel-
erators, which cannot be programmed in a high-level lan-
guage. They are deployed either tightly coupled in a proc-
essing elements’ subsystem or loosely coupled as special-
ized processing node. NOVA uses coprocessors, e.g., for 
security functions and memory management. 

On-chip memories: NOVA supports arbitrary on-chip 
memories. Currently the memory interface defines 32 bit 
wide addresses and data words and assumes pipelined syn-
chronous memories. If encapsulated in sockets, memories 
can form co-processors accessed via system messages. 

 

Figure 2: NOVA Ethernet IO module. 
Off-chip interfaces: Off-chip interfaces are mostly off-

the-shelf units encapsulated by NOVA sockets. Current 
emphasis is on network and memory IO. Figure 2 shows a 
Fast Ethernet MAC with its interface to the socket. Apart 
the MAC with memories, the module contains DMAs that 
autonomously store and forward packets, and parser 
/unparser units for the handling of packet descriptors. 



2.4. Memory layout and hierarchy 
NOVA does not impose any memory layout or hierar-

chy. PEs may use transparent cache hierarchies or deploy 
memories that are visible to and managed by the pro-
grammer. Memories shared between PEs require a unique 
resource manager either in hardware or software. Memo-
ries and all resources accessed by a PE are mapped into 
the individual PE’s data memory map.  

3. Programming Model & Deployment 
In this section we show how concurrency and modular-

ity is supported in our software description and generation 
process. We start from modular Click descriptions that we 
use for modeling functionality hardware independently. 
We use this input for code generation on embedded proc-
essors. Wrapper elements in Click and a thin OS layer 
used by the generated code take care of the specifics of the 
underlying multiprocessor system. 

We use Click [3] for modeling the functionality of 
packet processing systems. Click descriptions are modular, 
executable, independent of a particular hardware architec-
ture, and capture inherent parallelism in packet flows and 
dependencies among elements (Click components). Click 
elements describe computational network kernels, whereas 
connections specify the flow of packets (i.e. data) between 
elements. Application state is kept local within elements. 
Due to defined element interfaces, a Click description can 
quickly be customized to new protocols and environments 
by exchanging individual elements. Finally, all processing 
activity is initiated by the transportation of packets. 

Our CRACC [9] single processor code generator takes 
a Click description and instantiates elements from a library 
written in C. CRACC elements are connected and config-
ured at compile-time. Also, CRACC’s memory footprint is 
much more compact than Click’s C++ description. These 
techniques are necessary since our code generation targets 
are embedded processors, where optimization for code size 
and performance is most important.   

3.1. Wrappers for heterogeneous platforms 
A heterogeneous platform such as NOVA may contain 

many different building blocks. To incorporate their be-
havior into Click representations and the code generator, 
we distinguish between functionality that is made explicit 
in Click and functions that should be hidden from the ap-
plication developer. In this subsection, we look at Click-
conforming representations by using wrapper elements 
that encapsulate interfacing with hardware-specifics. Other 
functions are addressed in the following subsection. 

Packet descriptor passing: If two Click or CRACC 
elements communicate with each other, pointers to context 
information are normally handed from element to element 
on the same processor. If these elements are mapped onto 
different processors, the message passing interface must be 

used, i.e. the context data must be copied into the interface 
buffers and routing information must be added, such as the 
on-chip destination address. FromIO and ToIO elements 
have been implemented for encapsulation of receive and 
send functionality of message passing hardware, respec-
tively. Several FromIO and ToIO elements can be associ-
ated with the same message passing interface in hardware. 
The different software instances are distinguished by a 
unique graph ID that is also contained in the routing in-
formation of the message.  

Hardwired coprocessors and network I/O: For model-
ing the function of coprocessors and off-chip communica-
tion interfaces, Click elements are needed that emulate the 
behavior of the module, e.g., for verification purposes with 
artificial traffic sources. For these elements code genera-
tion might not be necessary at all, but the full model is 
executable in Click. Click wrapper elements can also be 
used for configuring hardware blocks, i.e. code generation 
takes care of initializing the hardware block accordingly.   

Mapping annotations: On a multiprocessor platform, 
the designer has the choice to partition the application onto 
several processing elements. For CRACC together with 
NOVA, this is a manual process where the designer anno-
tates certain Click elements with mapping targets. A map-
ping target is defined by a node ID in the system. The part 
of a Click graph subject to mapping is specified by a 
unique graph ID so that the specification of mapping for 
individual elements can be avoided. From- and ToIO ele-
ments described earlier inherently are start and end-points 
of partial Click graphs. It is sufficient to specify a mapping 
for the FromIO element. This information is propagated 
during the CRACC code generation phase.  

3.2. Multi-core and OS extensions for CRACC  
Apart from Click wrappers we need additional services 

for messages, timers, task scheduling, and resource sharing 
among several processing elements. Since such mecha-
nisms are not part of the Click syntax, these features are 
hidden from the Click representation and only partly visi-
ble for a library programmer. 

System messages: Apart from the message passing 
mechanism that is visible in Click, we use message pass-
ing for exchanging information used by the OS, such as 
status messages, hardware module configuration data and 
requests for a certain shared resource. These system mes-
sages are shorter than packet descriptor messages but use 
the same routing specification (message header).   

Visibility of memory hierarchy: In CRACC, a library 
programmer can explicitly address different memory areas, 
e.g. private local and shared slow memories. Every shared 
memory is associated with a unique memory manager that 
can be mapped to any PE, e.g. a coprocessor or a pro-
grammable core. Requests for memory access, allocation, 
and deletion are sent by system messages to the associated 
manager, which replies accordingly.  



Timers: CRACC provides an API for timers that can be 
used, for instance, by timed Click elements. Timed ele-
ments register themselves for wakeup at a certain expira-
tion date. Timers encapsulate the specifics of a target’s 
implementation, e.g. a hardware timer that is register 
mapped, memory mapped, or a co-processor. 

Split transactions: A direct consequence of using sys-
tem messages in a GALS platform is the support of split 
transactions for latency hiding. If the sender of a system 
message is waiting for a response, it registers itself for 
wakeup by the scheduler on the respective processing core 
when the corresponding reply message arrives. Context 
switches caused by split transactions are explicit and re-
quire only minimal state embedded in the registration at 
the scheduler. The register file does not need to be saved.  

3.3. Deployment 
The software partitioning and development process that 

we follow can be summarized as follows: 
 1. Evaluation of Click model: The full system function 
is modeled in Click. In this way, the required packet proc-
essing can be determined and simulated with real or artifi-
cial network traffic on any Linux computer.  
 2. Profiling on single-core: The Click graph can be 
used by our code generator CRACC [9] to map the system 
function on a single core target, where it can be profiled in 
terms of per-packet processing requirements.  
 3. Partitioning of Click graph: Based on the profiling 
results of the preceding step, hot spots can be identified 
and feasible partitions of the graph onto several processing 
elements can be determined manually, as described earlier.  
 4. Multiprocessor code generation using CRACC: The 
mapping annotation is used to individually generate code 
for different processor targets.  
 5. Determine performance and reiterate: The proper-
ties of the full implementation can now be determined 
(e.g., speed, code size) by simulation or on the actual plat-
form hardware. Reiterate starting at step 3 by repartition-
ing the Click graph until objectives are met.  

Following these steps, a functionally correct implemen-
tation of the application can be derived quickly using 
Click. The subsequent performance optimization can then 
focus on individual elements and the partitioning of ele-
ments onto processing cores. This systematic approach 
leads to improved design productivity and simplifies reuse. 

4. Platform Prototype 
We have implemented a 4PE prototype of the NOVA 

platform that realizes a Digital Subscriber Line Access 
Multiplexer (DSLAM). Figure 3 shows the block diagram 
of the 4PE NOVA prototype. The device is dimensioned 
for the use as DSLAM line card processor and employs 
four of the MIPS processing elements (shown in Figure 3). 

Leveraging the FPGA-based Raptor20001 prototyping 
environment the system implements four Fast Ethernet IOs 
(Figure 2) that are connected to external PHYs and shared 
off-chip SRAM memory. The on-chip communication is 
based on three OCP busses for system messages, packet 
descriptors, and memories. In this way, high priority de-
livery of system messages is assured. The prototype also 
integrates a statistics and profiling module to derive run-
time performance information.  
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Figure 3: 4PE NOVA prototype. 

4.1. DSLAM application 
Our NOVA prototype runs the DSLAM application as 

described in [8]. Most of the functionality is mapped on 
the four PEs, only the Ethernet functions are absorbed in 
hardware by the NOVA IO modules. Using the NOVA 
realization on the Raptor2000 system, we connect the pro-
totype to a set of traffic sources and sinks that represent 
DSL customers’ voice, video, and best effort traffic with 
different Quality-of-Service requirements (cf. Figure 4).  
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Figure 4: 4PE NOVA application setup. 

4.2. Profiling support 
The statistics and profiling coprocessor is connected to 

all resources and collects data from nodes and the on-chip 
network. It derives information about the packet through-
put and loss, the processor load and software profile (by 
tracing the instruction address stream), and the utilization 
of the on-chip communication system at run-time. 
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5. Performance Results 
To evaluate the overhead of programmability and 

modularity we synthesize the 4PE prototype for the FPGA 
based Raptor2000 prototyping environment and a 90nm 
ASIC design flow. On a Xilinx XC2V6000-4 device the 
system runs at a convenient clock frequency of 25MHz.  

5.1. Hardware modularity 
The NOVA socket interfaces to three on-chip commu-

nication networks. Its area is dominated by the transfer 
queues for packet descriptors and system messages. 
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Figure 5: Relative area overhead of the  
NOVA Fast Ethernet IO socket. 

Looking at NOVA’s Fast Ethernet IO module in Figure 
5, we determine the area of its socket compared to the em-
bedded Ethernet MAC for the ASIC version. Depending 
on the number of queue entries and assuming equally sized 
receive and transmit queues the socket overhead is be-
tween 25% and 46%. Simple SoC bus interfaces without 
buffering and NoC capabilities require less area. A single 
PLB bus interface without memories, e.g., is only 1% of 
the MAC area. Buffers included, notably more area is re-
quired. Using a single Wishbone interface the overhead is 
more than 60% for Opencore’s MAC. This indicates that 
the area for traditional SoC bus interfaces is similarly 
dominated by buffering. The required area for the socket is 
within the range of common bus interfaces. 

5.2. Software modularity 
To determine the runtime overhead of our modular pro-

gramming environment, we use the CRACC code genera-
tor [9] and run the IP-DSLAM benchmark. This “out-of-
box” version strictly preserves Click’s modularity and 
object-oriented runtime features, such as virtual functions.  
In a second step, we de-virtualize functions and resolve 
push and pull chains statically (CRACC optimized). 

In Figure 6, this is compared to a simple ANSI-C pro-
gram (straight calls) that calls all functions directly from a 
central loop, without Click’s function call semantics. The 
figure reveals that CRACC with static optimizations does 
not impose more overhead than the straight-function-call 
approach (for a given granularity). There is still a penalty 
of 30% for the structured and modular approach compared 

to a program that inlines all functions into a single packet 
processing loop (all-in-one). 
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Figure 6: Overhead of modular software. 

5.3. Runtime performance 
After discussing hard- and software design trade offs 

we now look at the impact of modularity and programma-
bility on the runtime performance. We analyze two aspects 
of the 4PE NOVA prototype: the packet latency through 
the system and the maximum packet throughput. 

 

Packet latency. The latency of packets through a system 
can be significantly larger than their actual processing time 
due to receive and transmit related overhead. For the 
analysis, we therefore focus on the essential functionality 
that is required to set up the packet descriptor and move 
the packet content from network interface to network in-
terface. For this measurement, buffer management is im-
plemented in software on one PE. The path through the 
system, as displayed in Figure 7 in clock cycles, starts at 
the ingress Ethernet interface. The I/O module requests 
shared memory space by sending a system message to the 
buffer manager (BM). The BM replies with an address of a 
free segment. The BM accesses the shared memory for 
updating segment context information (not shown as sepa-
rate entity). The packet contents can now be transferred to 
shared memory and the reception signaled to the down-
stream processing node, in our case the egress I/O module. 
This module finally reads out the packet (finished after 
375 cycles) and releases the memory segment.  
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Figure 7: Latency of a 64 Byte packet. 
We can recognize the benefit of implementing message 

passing in hardware that supports the data-driven activa-
tion of processing elements. In this way, much of the la-
tency due to signaling packet events can be avoided. In 
[4], it is shown that the Intel IXP 1200 needs about 1500 
cycles for handing 64B packets from and to the network 
interfaces alone. From Figure 7 we learn that these parts 



need less than 200 cycles in NOVA. Even if we consider 
that we use SRAM whereas the IXP employs SDRAM, we 
can recognize a clear acceleration of the interaction be-
tween interfaces and PEs. 

 

Maximum packet throughput. We are interested in the 
bounds on the packet throughput due to sockets and the 
interaction with network interfaces. In Figure 8, we com-
pare wire speed on Fast Ethernet (100 Mbps) with meas-
urements on the 4PE prototype for the same setup used in 
Figure 7, i.e. buffer management is implemented in soft-
ware. We recognize that we achieve line speed for 
Ethernet frame lengths larger than 200 Byte, which corre-
sponds to a usable cycle budget of about 350 cycles per 
core and 1000 cycles for three PEs, respectively. 

Since the ASIC implementation is one order of magni-
tude faster, already the 4PE prototype is powerful enough 
to support common DSLAM linecard configurations. 
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Figure 8: 4PE NOVA packet throughput.     

6. Related Work 
We find related work on network platforms with respect 

to software development, hardware architectures, and inte-
grated platform approaches. 

Platform approach: StepNP [7] is a framework for 
network processors that uses Click as application descrip-
tion. The software is based on C++ and provides message 
passing programming abstractions. Examples of commer-
cial platform solutions for wireless and multimedia do-
mains are Nomadik from ST Microelectronics, and Philips 
Nexperia. The VSI alliance has a broad scope and aims at 
virtual IP sockets to enable reuse and integration. 

Network processor software: Click [6] is implemented 
for Linux using C++. SMP-Click [2] is a multi-threaded 
Linux variant. NP-Click [10] uses Click as a programming 
model for the Intel IXP network processor. Shangri-La [1] 
allows the automatic merging and partitioning of packet 
processing kernels onto several processing engines based 
on heuristics and profiling results.   

Network processor hardware: A survey of the broad 
variety of network processor architectures can, e.g., be 
found in [11]. Commercial tools for customizing the mi-
cro-architecture of processing elements include CoWare's 
LISATek and Tensilica's Xtensa [3]. Networks on Chip 

(NoC) are, for instance, offered and used by Arteris SA, 
ST Microelectronics, and Sonics Inc.  

7. Conclusions 
NOVA is a modular and programmable hardware plat-

form for packet-processing systems. It is based on unify-
ing sockets and common packet passing and communica-
tion infrastructure for integrating various building blocks. 
Heterogeneous NOVA multiprocessors can be pro-
grammed intuitively and productively in a component-
based framework. Due to matching communication se-
mantics of application and architecture, a thin OS layer 
and code generation framework ease the application to 
architecture mapping significantly. Our results show that 
the overhead of hardware and software modularity is rea-
sonable for NOVA compared to state-of-art techniques; 
and that NOVA is usable for the systematic application-
driven design space exploration of network processors. 
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