
A Formal Model and Efficient Traversal
Algorithm for Generating Testbenches for Verification of

IEEE Standard Floating Point Division

David W. Matula, Lee D. McFearin
Department of Computer Science and Engineering

Southern Methodist University
Dallas, TX 75275

email : {matula,mcfearin}@engr.smu.edu

Abstract

We utilize a formal model of division for determining
a testbench of p-bit (dividend, divisor) pairs whose output
2p-bit quotients have properties characterizing these in-
stances as the most challenging for verifying any division
algorithm design and implementation. Specifically, our
test suites yield 2p-bit quotients where the leading p-bits
traverse all or a pseudo-random sample of leading bit
combinations, and the next p-bits comprise a round bit
followed by (p-1) identical bits. These values are pro ven
to be closest to the p-bit quotient rounding boundaries
and shown to possess other desirable coverage properties.
We introduce an efficient method of generating these test-
benches. We also describe applications of these testbench-
es at the design simulation stage and the product evalua-
tion stage.

1. Introduction

The IEEE floating point standard [IEEE] requires all
conforming implementations of division and square root
to correctly round the result as if the infinitely precise re-
sult had been calculated and then rounded to the target
precision. As processors become larger and these imple-
mentations become more complex, the chances for expen-
sive flaws increase [SB94]. Single precision unary func-
tions such as square root and square root reciprocal have
only 16 million distinct inputs and may be exhaustively
tested. However, division has two arguments generating
64 trillion distinct normalized single precision input cases,
and almost a quintillion times as many distinct double
precision input cases.

Since division can not be exhaustively tested in a rea-
sonable amount of time, selective, statistical test suites are
typically used for verification. One such type of test suite
focuses on those instances which yield infinitely precise

quotients extremely close to the rounding bound-
aries[Ka87,Pa99, MM02, MM03]. These instances are
the most sensitive to calculation errors as a very small ap-
proximation error may cause the result to cross a rounding
boundary and round incorrectly.

Note that the problem of determining extremal round-
ing boundary cases for transcendentals has no known con-
veniently scalable solution for higher precisions and has
been termed the "table maker’s dilemma"
[Mu97,LM98,LM04,Zi91,DE05]. While a body of excel-
lent research on search techniques has evolved for finding
extremal "hardest-to-round" cases for double precision
and some double extended precision transcendental func-
tions, it appears to be very hard to obtain a general char-
acterization.

In contrast, the problem of determining extremal
rounding boundary cases for division has a firm number
theoretic foundation that is conveniently scalable to high-
er precisions. Our solution herein improves the efficiency
of generating benchmark sets for this problem and is in-
structive in that it comprises fundamental elementary re-
sults from three distinct number types as follows.

i. Radix Arithmetic: the problem of determining ex-
tremal rounding boundary cases for floating point division
is initially cast as a problem with binary radix floating
point inputs and outputs.

ii. Rational Arithmetic: The extremal rounding boundary
cases are recharacterized employing rational arithmetic
where Farey fractions and continued fractions convenient-
ly identify the desired extremal cases.

iii. Residue Arithmetic: The core computational steps
are simplified by utilizing properties of the multiplicative
inverse modulo 2k . This is the principle addition herein to
our previously published methodology.

3-9810801-0-6/DATE06 © 2006 EDAA

2. Background

The size of a floating point division operation is char-
acterized by the size of the significand of the arguments.
A positive p − bit number is a binary rational of the form
2ei, where 1 ≤ i ≤ 2p − 1 and i is odd. Thus, the precision
p ≥ 1 provides a measure of the size of the p-bit number’s
significand bit string in the normalized floating point fac-
tored format z = 2e′(1. b1b2 . . . b p−1).

A p×p bit fraction denotes a fraction n
d where the nu-

merator and denominator are positive p-bit inte-
gers[MM00,MM03]. The rational value q = n

d is termed
the infinitely precise p×p bit quotient. For our purposes
herein a normalized p×p bit fraction has the denominator
in the range 1 ≤ d ≤ 2p − 1, and the numerator in the
range d ≤ n < 2d , so then the normalized p×p bit quotient
is in the standard binade 1 ≤ q = n

d = 1. b1b2 . . . < 2. Note
that if this normalization yields a numerator greater than
2p, it must be even to be a p-bit number.

Following the literature on continued fractions and
Farey series, two fractions are adjacent if their cross prod-
uct is unity [HW79,MK85]. With this background, the
extremal rounding boundary instances of p×p bit frac-
tions n

d for round-to-nearest floating point division have
been characterized by three distinct, and provably equiv-
alent definitions[MM00, MM02, MM03]:

(i) [Distance form] the distance of n
d from a closest p-bit

midpoint i
2p satisfies | n

d − i
2p | < 1

22p−1 .

(ii) [Binary expansion form] n
d has the standard binary ex-

pansion n
d = 1. b1b2 . . . b p−1b p . . . where the tail "round-

ing critical" b pb p+1 . . . b2p is either 100...01 or 011..10
containing the maximum length run of p − 1 like valued
bits opposite to the round bit b p.

(iii) [Best rational approximation form] n
d is the best ratio-

nal approximation of a p-bit midpoint, and is given by the
closest continued fraction convergent to a p-bit midpoint

i
2p .

The set of p×p bit fractions equivalently defined by these
characterizations for a given p is denoted by RN p. For ex-
ample, the set RN5 of extremal midpoint rounding bound-
ary 5×5 bit fractions has ten members and can be devel-
oped employing the multiplicative inv erse as illustrated in
Table 1. For any odd integer a with 1 ≤ a ≤ 31, let a−1 be

the unique odd integer with 1 ≤ a−1 ≤ 31 and aa−1 ≡ 1
(mod 32). Traversing the rows for a = 1, 3, 5, . . . , 31 in
Table 1, the fractions 32+a

32 traverse the midpoints of the
five bit intervals [i

16 , i+1
16) for 16 ≤ i ≤ 31.

Let n and n′ be determined by (32 + a)a−1 = 32n + 1
and (32 + a)(32 − a−1)= 32n′ − 1. This assures that
32+a

32 − n
a−1 = 1

32a−1 and n′
32−a−1 − 32+a

32 = 1
32(32−a−1) . Then

n′
32−a−1 ∈ RN5 when 1 ≤ a−1 ≤ 15 and n′ is a 5 bit number
(i.e. either n′ < 32 or n′ is even). Similarly n

a−1 ∈ RN5
when 17 ≤ a−1 ≤ 31 and n is a 5 bit number.

a n
a−1

32+a
32

n′
32−a−1 Extremal Value

1 - 33
32

32
31 1.0000 10000 10000

3 - 35
32

23
21 1.0001 10000 11000

5 - 37
32

22
19 1.0010 10000 11010

7 28
23

39
32 - 1.0011 01111 01001

9 32
25

41
32 - 1.0100 01111 01011

11 - 43
32 -

13 - 45
32

38
27 1.0110 10000 10010

15 - 47
32

25
17 1.0111 10000 11110

17 26
17

49
32 - 1.1000 01111 00001

19 - 51
32 -

21 48
29

53
32 - 1.1010 01111 01110

23 - 55
32 -

25 - 57
32 -

27 - 59
32 -

29 40
21

61
32 - 1.1110 01111 00111

31 - 63
32 -

Table 1: 5×5 bit Extremal Midpoint Rounding Boundary
Instances

3. Enumeration of Extremal Rounding
Boundary Instances

For any precision p ≥ 2, the set of extremal midpoint
rounding boundary p×p bit fractions can be determined
as follows.

Observation 1 Let a be a p-bit odd integer and a−1 its p-
bit multiplicative inverse. Then
(i) if 2p−1 + 1 ≤ a−1 ≤ 2p − 1 let n = (2p+a)a−1−1

2p . If n is even

or n < 2p, then n
a−1 ∈ RN p,

(ii) if 1 ≤ a−1 ≤ 2p−1 − 1 let n′ = (2p+a)(2p−a−1)+1
2p . If n′ is

even or n′ < 2p, then n′
2p−a−1 ∈ RN p.

Note that the multiplicative inv erse pairs a, a−1 are dis-
tinct odd value pairs except for the four cases
a = 1, 2p−1 − 1, 2p−1 + 1, and 2p − 1, where a is its own
multiplicative inv erse.

Once a multiplicative inv erse pair a,a−1 is identified, n or
n′ may be calculated via multiplication giving an extremal
instance in most cases. On average 11 total extremal
rounding boundary instances for round-to-nearest and di-
rected rounding may be calculated from n

a−1 (or n′
2p−a−1) us-

ing addition via the symmetric properties discussed in
[MM01] and demonstrated in Example 1.

Example 1 Given a multiplicative inverse pair modulo 32
(ak,a−1

k) = (3, 11), the multiplication step described earli-
er, produces n′ = 23. From Observation 1,

n
a−1 = 23

21 ∈RN p. Furthermore, from [MM01], 40
21 , 22

19 , 38
27 ,

48
29 ∈RN p, and 25

21 , 38
21 , 25

19 , 32
27 , 32

19 ∈ RD p.

After the multiplicative inv erse pair a, a−1 and n (or
n−1) has been determined, the computational cost for each
group of extremal rounding boundary instances as found
in Example 1 is 22 additions. Past approaches have gen-
erated these multiplicative inv erse pairs by using the Eu-
clidean GCD Algorithm for each pair. The key to the cre-
ation of an efficient algorithm based on Observation 1 lies
in the systematic modular generation of the 2p−2 + 2 mul-
tiplicative inv erse pairs.

Observation 2 For p ≥ 3, let ak ≡ 3k (mod 2p) and a−1
k ≡

32p−2−k (mod 2p) be standard residues modulo 2p for
k = 0, 1, 2, . . . , 2p−3. Then the 2p−2 + 2 multiplicative in-
verse pairs (ak, ak−1) and (2p − ak, 2p − ak−1) for
0 ≤ k ≤ 2p−3 contain all 2p−1 odd integers in [1, 2p − 1].

Tables 2 and 3 illustrate the use of exponential
residues 3k(mod2p) in generating the multiplicative in-
verse pairs a, a−1 for p = 5 employing Observation 2.

Exponential Residues
k 3k(mod32) 38−k(mod32)
0 1 1
1 3 11
2 9 25
3 27 19
4 17 17

Table 2: The 10 multiplicative inv erse residues modulo 32.

Multiplicative Inv erse Pairs
k (ak,a−1

k) (32 − ak,32 − ak)
0 (1, 1) (31, 31)
1 (3, 11) (29, 21)
2 (9, 25) (23, 7)
3 (27, 19) (5, 13)
4 (17, 17) (15, 15)

Table 3: The 10 multiplicative inv erse pairs modulo 32.

This method requires only a multiplication with two
shift-and-add operations for determining a multiplicative
inverse pair along with an n or n′. Using this computa-
tional cost along with the cost of finding the symmetries
in [MM01] an average cost can be determined.

Lemma 1 The average cost of 11 extremal rounding
boundary instances is 1 multiplication and 24 additions
providing a cost of slightly over 2 additions per extremal
rounding boundary instance.

Using Observation 2, we may determine all the ex-
tremal rounding boundary instances for p×p bit binary
floating point division. The following steps outline the
process.

• Create a storage array containing 2p−3 elements for
a ≡ 3k(mod2p) as ARRAY; and a similar array for
a−1 ≡ 32p−3−k(mod2p) as INV_ARRAY.

• Compute ARRAY[1] as 3k (mod 2p), where k is the
starting value, possibly 1.

• Compute ARRAY[n + 1] = 3 × ARRAY[n] (mod 2p).
Note this can be computed as ARRAY[n + 1] = (AR-
RAY[n] + (ARRAY[n] << 1)) (mod 2p) where << is
a binary shift operation.

• The last element of ARRAY is the last element of
INV_ARRAY.

• Compute INV_ARRAY[n − 1] = 3 × INV_ARRAY[n]
(mod 2p).

Once ARRAY and INV_ARRAY hav e been comput-
ed, each ARRAY[m] and INV_ARRAY[m] represent an
a, a−1 pair. Additionally 2p − a, 2p − a−1 is a second pair.
Note that the full set of 2p−2 + 2 multiplictive inv erse pairs
can be generated employing only 2p−2 shift-and-add oper-
ations and 2p−2 + 2 complement operations. The comple-
ment operation is a 1’s complement since the values are
odd integers. With at least one of these complementary
pairs, extremal rounding boundary instances can be calcu-
lated with a multiplication as mentioned in Observation 1.
Using all k as discussed in Observation 2 generates the
entire set RN p. The benchmark set RN24 for testing IEEE
standard single precision division implementations is enu-
merated and available at the site [MM04]. Using this pro-
cedure the number of extremal midpoint rounding bound-
ary cases |RN p | was computed for 3 ≤ p ≤ 28 and is
shown in Table 4.

p |RN p| p |RN p|
3 3 16 22710
4 6 17 45393
5 10 18 90920
6 24 19 181620
7 40 20 363536
8 87 21 726476
9 173 22 1453890
10 359 23 2906902
11 703 24 5815346
12 1424 25 11628333
13 2832 26 23259306
14 5695 27 46515099
15 11319 28 93035551

Table 4: Number of Extremal Midpoint Rounding Bound-
ary Cases for Precisions 3 to 28

To compute a psuedo random subset of RN p with this
method, a subsequence of the enumeration may be select-
ed at random. Specifically, a first element may be picked
at random for ARRAY and the "turning point" last ele-
ment of INV_ARRAY may be obtained with the extended
Euclidean algorithm from the "turning point" last element
of ARRAY. It is possible to avoid the need for the Eu-
clidean algorithm by restricting the turning points to ele-
ments a for which a−1 is computable by a single addition.

Observation 3 provides a set of such multiplicative inv erse
pairs that are uniformly spaced throughout the sequence
ak , a−1

k for a ≡ 3k (mod2p) as k traverses the range
k = 0, 1, . . . , 2p−2.

Observation 3 Let j ≥ 3 and n be odd satisfying
1 ≤ n ≤ 2 j+3 − 1. Then with

a = n2 j + 1,
a−1 = |(2 j − n)2 j + 1|22 j+3 ,

we obtain that a, a−1 is a multiplicative inv erse pair modu-
lo 22 j+3.

IEEE standard double precision has p = 53, which
would lead to 251 + 2 multiplicative inv erse pairs in the
full enumeration as given for p = 5 in Table 2. Employing
Observation 3 the full sequence can be partitioned into
subsequences of size 224 pairs selectable by a 27-bit ran-
dom integer seed q. Thus our enumeration procedure is
initiated at a = q226 + 1, and the turning point occurs after
223 shift-and-adds when a′ = |3223

(q226 + 1)|253 = q′225 + 1
with q′ odd. This provides a reasonable size psuedo ran-
dom sample of about 16 million multiplicative inv erse
pairs using only the addition operation, which would pro-
vide a psuedo random subset of RN53 of size about 22
million.

4. Applications

The sets RN24 and RD24 along with a C++ program
for generating RN p for 3 ≤ p ≤ 28 are provided by the
link [MM04]. The sets RN24 and RD24 were developed
for and used in the design verification stage to test the
floating point divide implementation on the one watt x86
compatible Geode processor developed by National Semi-
conductor in 2001 and now available from AMD. The set
was also employed in an after-the-fact product evaluation
stage to search for division implementation errors in the
1993 Pentium Processor having the well known fdiv flaw
[SB94]. The test suites found the erroneous fdiv quotients
with a frequency much higher than that of random testing,
surprisingly some 10,000 times (4 orders of magnitude)
more frequent for single precision. For evidence that find-
ing these single precision erroneous quotients was not a
fortuitous "accident", further testing showed that these
distinct sets for the 15 precisions 22 ≤ p ≤ 36, uncovered
the flaw at each precision at a much higher frequency than
random testing[MM02].

5. Conclusions

The extremal rounding boundary instances provide a
natural testbench for design verification of any implemen-
tation of IEEE standard floating point division. They pro-
vide a large number of test cases, which can be calculated
with relative ease. As the size of the division problems
grow, a simple modular enumeration test suite can be
carefully controlled statistically and as a sample still
maintain a general coverage over the quotient, divisor, and
dividend ranges. As improved formal models reveal more
structured approaches to testing division, fewer flaws are
likely to appear in future designs.

6. Acknowledgments

We thank Jason Moore for his assistance in the devel-
opment of this paper.

This work was supported in part by the Semiconduc-
tor Research Corporation under contract RID 1289.

References
[DE05] F. de Dinechin, A. V. Ershov, and N. Gast, "Tow ards

the post-ultimate libm," Proc. 17th IEEE Symposium
on Computer Arithmetic. IEEE, 2005.

[HW79] C. H. Hardy and E. M. Wright, An Introduction to the
Theory of Numbers, 5th ed. London, England: Oxford
University Press, 1979.

[IEEE] IEEE Standard 754 for Binary Floating Point Arith-
metic, ANSI/IEEE Standard No. 754, American Na-
tional Standards Institute, Washington DC, 1988.

[Ka87] W. Kahan, Checking Whether Floating Point Division
is Correctly Rounded, monograph, April 11, 1987,
(see home page http://www.cs.berkeley.edu/~wkahan).

[LM98] V. Lefevre, Jean-Michel Muller, and A. Tisserand,
"The Table Maker’s Dilemma," IEEE Transactions on
Computers http://perso.ens-lyon.fr/jean-
michel.muller/Intro-to-TMD.htm, 1998

[LM04] V. Lefevre, and Jean-Michel Muller "Worst cases for
correct rounding of the elementary functions in double
precision. " http://perso.ens-lyon.fr/jean-
michel.muller/Intro-to-TMD.htm, 2004

[MK85] D. W. Matula, P. Kornerup "Finite Precision Rational
Arithmetic: Slash Number Systems." IEEE Transac-
tions on Computers, Vol. C-34 No. 1, January 1985.

[MM00] D. W. Matula, L. D. McFearin "Number Theoretic
Foundations of Binary Floating Point Division with
Rounding" Proceedings: Fourth Real Numbers and
Computers, April 2000, pp. 39-60.

[MM01] L. D. McFearin and D. W. Matula, "Generation and
Analysis of Hard to Round Cases for Binary Floating
Point Division." Proc. 15th IEEE Symposium on
Computer Arithmetic. IEEE, 2001. pp.119-126.

[MM01a]L. D. McFearin and D. W. Matula, Selecting Test
Suites for IEEE Standard Floating Point Division."
Proc. 19th IEEE International Conference on Com-
puter Design. IEEE, 2001.

[MM02] L. D. McFearin, "A p-Bit Model of Binary Floating
Point Division and Square Root with Emphasis on Ex-
tremal Rounding Boundaries.", Ph. D. Dissertation,
Southern Methodist University, Dallas, Texas, May
2002.

[MM03] D. W. Matula, L. D. McFearin "A pxp Bit Fraction
Model of Binary Floating Point Division and Extremal
Rounding Cases." Journal of Theoretical Computer
Science, 291:159-182, 2003.

[MM04] D. W. Matula, See home page http://www.en-
gr.smu.edu/~matula/extremal.html

[Mu97] J.-M. Muller, Elementary Functions, Algorithms and
Implementations. Birkhauser, Boston, 1997.

[Pa99] M. Parks, "Number-theoretic Test Generation for Di-
rected Rounding," Proc. 14th IEEE Symposium on
Computer Arithmetic. IEEE, 1999.

[SB94] H.P. Sharangpani, M. L. Barton, "Statistical Analysis
of Floating Point Flaw in the Pentium Processor", Intel
Corporation, 1994.

[Zi91] A. Ziv. Fast evaluation of elementary mathematical
functions with correctly rounded last bit. ACM Trans-
actions on Mathematical Software, 17(3):410-423,
Sept. 1991.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

