
A Time Predictable Java Processor

Martin Schoeberl
Institute of Computer Engineering

Vienna University of Technology, Austria
mschoebe@mail.tuwien.ac.at

Abstract

This paper presents a Java processor, called JOP, de-
signed for time-predictable execution of real-time tasks. JOP
is the implementation of the Java virtual machine in hard-
ware. We propose a processor architecture that favors low
worst-case execution time (WCET) over average case per-
formance. The resulting processor is an easy target for the
low-level WCET analysis.

1 Introduction

This paper introduces the concept of a Java processor [9]
for embedded real-time systems, in particular the design of a
small processor for resource-constrained devices with time-
predictable execution of Java programs. This Java processor
is called JOP – which stands for Java Optimized Processor –,
based on the assumption that a full native implementation of
all Java bytecode instructions [3] is not a useful approach.

Worst-case execution time (WCET) estimates of tasks
are essential for designing and verifying real-time systems.
Static WCET analysis is necessary for hard real-time sys-
tems. In order to obtain a low WCET value, a good processor
model is necessary. Traditionally, only simple processors can
be analyzed using practical WCET boundaries. Architectural
advancements in modern processor designs tend to abide by
the rule: ‘Make the average case as fast as possible’. This
is orthogonal to ‘Minimize the worst case’ and has the ef-
fect of complicating WCET analysis. This paper tackles this
problem from the architectural perspective – by introducing
a processor architecture in which simpler and more accurate
WCET analysis is more important than average case perfor-
mance.

In the following section a brief overview of the architec-
ture of JOP is given, followed by a more detailed description
of the microcode. In Section 4 we will show that the execu-
tion time of Java bytecodes can be exactly predicted in terms
of the number of clock cycles.

Comparison between JOP and a number of different so-
lutions for embedded Java with respect to the resource usage
and general performance can be found in [8]. This paper does
not deal with the issues of Java for real-time applications (see
[1] and [5]) or real-time garbage collection.

2 JOP Architecture

JOP is a stack computer with its own instruction set,
called microcode in this paper. Java bytecodes are translated
into microcode instructions or sequences of microcode. The
difference between the Java virtual machine (JVM) and JOP
is best described as the following:

The JVM is a CISC stack architecture, whereas
JOP is a RISC stack architecture.

Figure 1 shows JOP’s major function units. A typical con-
figuration of JOP contains the processor core, a memory in-
terface and a number of IO devices. The module extension
provides the link between the processor core, and the mem-
ory and IO modules.

The processor core contains the three microcode pipeline
stages microcode fetch, decode and execute and an additional
translation stage bytecode fetch. The ports to the other mod-
ules are the address and data bus for the bytecode instruc-
tions, the two top elements of the stack (A and B), input to the
top-of-stack (Data) and a number of control signals. There
is no direct connection between the processor core and the
external world.

The memory interface provides a connection between the
main memory and the processor core. It also contains the
bytecode cache. The extension module controls data read
and write. The busy signal is used by the microcode instruc-
tion wait to synchronize the processor core with the memory
unit. The core reads bytecode instructions through dedicated
buses (BC address and BC data) from the memory subsys-
tem. The request for a method to be placed in the cache
is performed through the extension module, but the cache
hit detection and load is performed by the memory interface
independently of the processor core (and therefore concur-
rently).

2.1 The Processor Pipeline

JOP is a pipelined architecture with single cycle execu-
tion of microcode instructions and a novel approach to map-
ping Java bytecode to these instructions. Three stages form
the JOP core pipeline, executing microcode instructions. An
additional stage in the front of the core pipeline fetches Java
bytecodes – the instructions of the JVM – and translates these
bytecodes into addresses in microcode. Bytecode branches

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



JOP Core Memory Interface

Extension

I/O Interface

Bytecode
Fetch

Fetch

Decode

Execute

Bytecode
Cache

Multiplier

Busy

BC Address

BC Data

Control

Data

A

B

Interrupt

Data

Data

Control

Control

Figure 1. Block diagram of JOP

are also decoded and executed in this stage. The second
pipeline stage fetches JOP instructions from the internal mi-
crocode memory and executes microcode branches. Besides
the usual decode function, the third pipeline stage also gener-
ates addresses for the stack RAM. The last pipeline stage per-
forms ALU operations, load, store, and stack spill or fill. At
the execution stage, operations are performed with the two
topmost elements of the stack. A stack machine with two
explicit registers for the two topmost stack elements and au-
tomatic fill/spill needs neither an extra write-back stage nor
any data forwarding. Details of this two-level stack architec-
ture are described in [7]. The short pipeline results in short
branch delays. Therefore, a hard to analyze (with respect to
WCET) branch prediction logic can be avoided.

2.2 Cache

A pipelined processor architecture calls for a high mem-
ory bandwidth. A standard technique to avoid processing
bottlenecks due to the higher memory bandwidth is caching.
However, standard cache organizations improve the average
execution time but are difficult to predict for WCET anal-
ysis. Two time-predictable caches are proposed for JOP: a
stack cache as a substitution for the data cache and a method
cache to cache the instructions. As the stack is a heavily ac-
cessed memory region, the stack – or part of it – is placed in
on-chip memory. This part of the stack is referred to as the
stack cache and described in [7]. Fill and spill of the stack
cache is subjected to microcode control and therefore time-
predictable. In [6], a novel way to organize an instruction
cache, as method cache, is given. The cache stores complete
methods, and cache misses only occur on method invocation
and return. Cache block replacement depends on the call
tree, instead of instruction addresses. This method cache is
easy to analyze with respect to worst-case behavior and still
provides substantial performance gain.

3 Microcode

The following discussion concerns two different instruc-
tion sets: bytecode and microcode. Bytecodes are the in-
structions that make up a compiled Java program. These
instructions are executed by a Java virtual machine (JVM).
The JVM does not assume any particular implementation
technology. Microcode is the native instruction set for JOP.
Bytecodes are translated, during their execution, into JOP
microcode. Both instruction sets are for a stack machine.

3.1 Translation of Bytecodes to Microcode

To date, no hardware implementation of the JVM exists
that is capable of executing all bytecodes in hardware alone.
This is due to the following: some bytecodes, such as new,
which creates and initializes a new object, are too complex
to implement in hardware. These bytecodes have to be emu-
lated by software.

To build a self-contained JVM without an underlying op-
erating system, direct access to the memory and I/O devices
is necessary. There are no bytecodes defined for low-level
access. These low-level services are usually implemented in
native functions, which mean that another language (e.g. C)
is native to the processor. However, for a Java processor,
bytecode is the native language.

One way to solve this problem is to implement simple
bytecodes in hardware and to emulate the more complex and
native functions in software with a different instruction set
(sometimes called microcode). However, a processor with
two different instruction sets results in a complex design.
Another common solution, used in Sun’s picoJava [10], is
to execute a subset of the bytecode native and to use a soft-
ware trap to execute the remainder. This solution entails an
overhead (min. 16 cycles in picoJava) for this software trap.

In JOP, this problem is solved in a much simpler way. JOP
has a single native instruction set, the so-called microcode.
During execution, every Java bytecode is translated to either
one, or a sequence of microcode instructions. This transla-
tion merely adds one pipeline stage to the core processor and
results in no execution overheads. With this solution, we are
free to define the JOP instruction set to map smoothly to the
stack architecture of the JVM, and to find an instruction cod-
ing that can be implemented with minimal hardware. The
implementation of Java bytecodes by a sequence of single
cycle microcode instructions also simplifies the calculation
of the WCET for individual bytecodes (see Section 4).

3.2 Compact Microcode

For the JVM to be implemented efficiently, the microcode
has to fit to the Java bytecode. Since the JVM is a stack ma-
chine, the microcode is also stack-oriented. However, the
JVM is not a pure stack machine. Method parameters and
local variables are defined as locals. These locals can reside



dup: dup nxt // 1 to 1 mapping

// a and b are scratch variables at
// the microcode level.
dup_x1: stm a // save TOS

stm b // and TOS-1
ldm a // duplicate former TOS
ldm b // restore TOS-1
ldm a nxt // restore TOS and fetch

// the next bytecode

Figure 2. Implementation of dup and dup x1

in a stack frame of the method and are accessed with an off-
set relative to the start of this locals area. Additional local
variables (16) are available at the microcode level. These
variables serve as scratch variables, like registers in a con-
ventional CPU. However, arithmetic and logic operations are
performed on the stack.

Some bytecodes, such as ALU operations and the short
form access to locals, are directly implemented by an equiv-
alent microcode instruction (with a different encoding). Ad-
ditional instructions are available to access internal registers,
main memory and I/O devices. A relative conditional branch
(zero/non zero of TOS) performs control flow decisions at
the microcode level. For optimum use of the available mem-
ory resources, all instructions are 8 bits long. There are no
variable-length instructions and every instruction, with the
exception of wait, is executed in a single cycle.

The example in Figure 2 shows the implementation of a
single cycle bytecode and an infrequent bytecode as a se-
quence of JOP instructions. In this example, the dup byte-
code is mapped to the equivalent dup microcode and exe-
cuted in a single cycle, whereas dup x1 takes five cycles to
execute, and after the last instruction (ldm a nxt), the first
instruction for the next bytecode is executed.

3.3 Flexible Implementation of Bytecodes

As mentioned above, some Java bytecodes are very com-
plex. One solution already described is to emulate them
through a sequence of microcode instructions. However,
some of the more complex bytecodes are very seldom used.
To further reduce the resource implications for JOP, in this
case local memory, bytecodes can even be implemented
by using Java bytecodes. During the assembly of the mi-
crocoded JVM, all labels that represent an entry point for the
bytecode implementation are used to generate the translation
table. For all bytecodes for which no such label is found, i.e.
there is no implementation in microcode, a not-implemented
address is generated. The instruction sequence at this ad-
dress invokes a static method from a system class. This class
contains 256 static methods, one for each possible bytecode,
ordered by the bytecode value. The bytecode is used as the
index in the method table of this system class. This feature
also allows to trade resource usage against performance.

4 Worst-Case Execution Time

Worst-case execution time (WCET) estimates of tasks
are essential for designing and verifying real-time systems.
WCET estimates can be obtained either by measurement or
static analysis. The problem with using measurements is that
the execution times of tasks tend to be sensitive to their in-
puts. As a rule, measurement does not guarantee safe WCET
estimates. Instead, static analysis is necessary for hard real-
time systems. Static analysis is usually divided into a number
of different phases:

Path analysis generates the control flow graph (a directed
graph of basic blocks) of the program and annotates (manual
or automatic) loops with bounds.

Low-level analysis determines the execution time of ba-
sic blocks obtained by the path analysis. A model of the pro-
cessor and the pipeline provides the execution time for the
instruction sequence.

Global low-level analysis determines the influence of
hardware features such as caches on program execution time.
This analysis can use information from the path analysis to
provide less pessimistic values.

WCET Calculation collapses the control flow graph to
provide the final WCET estimate. Alternative paths in the
graph are collapsed to a single value (the largest of the al-
ternatives) and loops are collapsed once the loop bound is
known.

For the low-level analysis, a good timing model of the
processor is needed. The main problem for the low-level
analysis is the execution time dependency of instructions in
modern processors that are not designed for real-time sys-
tems. JOP is designed to be an easy target for WCET analy-
sis. The WCET of each bytecode can be predicted in terms
of number of cycles it requires. There are no dependencies
between bytecodes.

Each bytecode is implemented by microcode. We can ob-
tain the WCET of a single bytecode by performing WCET
analysis at the microcode level. To prove that there are no
time dependencies between bytecodes, we have to show that
no processor states are shared between different bytecodes.

4.1 Microcode Path Analysis

To obtain the WCET values for the individual bytecodes
we perform the path analysis at the microcode level. First,
we have to ensure that a number of restrictions (from [4]) of
the code are fulfilled:

• Programs must not contain unbounded recursion. This
property is satisfied by the fact that there exists no call
instruction in microcode.

• Function pointers and computed gotos complicate the
path analysis and should therefore be avoided. Only
simple conditional branches are available at the mi-
crocode level.



• The upper bound of each loop has to be known. This
is the only point that has to be verified by inspection of
the microcode.

To detect loops in the microcode we have to find all backward
branches (e.g. with a negative branch offset). The branch
offsets can be found in a VHDL file (offtbl.vhd) that is
generated during microcode assembly. In the current imple-
mentation of the JVM there are ten different negative off-
sets. However, not each offset represents a loop. Most of
these branches are used to share common code. All back-
ward branches found in jvm.asm are summarized below:

• Three branches are found in the initialization code of the
JVM. They are not part of a bytecode implementation
and can be ignored.

• Five branches are used by exceptions, the interrupt byte-
code, and for the call of Java implemented bytecodes.
The target of these branches is found in the implementa-
tion of invoke to share part of the microcode sequence.
These branches are therefore not part of a loop.

• One branch is found in the implementation of imul to
perform a fixed delay. The iteration count for this loop
is constant.

• Two backward branches share the same offset and are
used in loops to move data between the stack memory
and main memory. This loop is not part of a regular
bytecode. It is contained in a system function used by
the scheduler for the task switch. The bound for this
loop has to be determined in the scheduler code.

A few bytecodes are implemented in Java. The implementa-
tion can be found in the class com.jopdesign.sys.JVM and
can be analyzed in the same way as application code. The
bytecodes idiv and irem contain a constant loop. The byte-
codes new and anewarray contain loops to initialize (with
zero values) new objects or arrays. The loop is bound by the
size of the object or array. The bytecode lookupswitch1

performs a linear search through a table of branch offsets.
The WCET depends on the table size that can be found as
part of the instruction.

As the microcode sequences are very short, the calcula-
tion of the control flow graph for each bytecode is done man-
ually.

4.2 Microcode Low-level Analysis

To calculate the execution time of basic blocks in the mi-
crocode, we need to establish the timing of microcode in-
structions on JOP. All microcode instructions except wait

1lookupswitch is one way of implementing the Java switch statement.
The other bytecode, tableswitch, uses an index in the table of branch off-
sets and has therefore a constant execution time.

execute in a single cycle, reducing the low-level analysis to a
case of merely counting the instructions.

The wait instruction is used to stall the processor and wait
for the memory subsystem to finish a memory transaction.
The execution time of the wait instruction depends on the
memory system and, if the memory system is predictable,
has a known WCET. A main memory consisting of SRAM
chips can provide this predictability and this solution is there-
fore advised. The predictable handling of DMA, which is
used for the instruction cache fill, is explained in [6]. The
wait instruction is the only way to stall the processor.

Microcode is stored in on-chip memory with single cycle
access. Each microcode instruction is a single word long and
there is no need for either caching or prefetching at this stage.
We can therefore omit performing a low-level analysis. No
pipeline analysis [2], with its possible unbound timing ef-
fects, is necessary.

4.3 Bytecode Independency

We have seen that all microcode instructions except wait
take one cycle to execute and are therefore independent of
other instructions. This property directly translates to inde-
pendency of bytecode instructions.

The wait microcode instruction provides a convenient
way to hide memory access time. A memory read or write
can be triggered in microcode and the processor can continue
with microcode instructions. When the data from a memory
read is needed, the processor explicitly waits until it becomes
available.

For a memory store, this wait can be deferred until the
memory system is used next. It is possible to initiate the
store in a bytecode such as putfield and continue with the
execution of the next bytecode, even when the store has not
been completed. In this case, we introduce a dependency
over bytecode boundaries, as the state of the memory system
is shared. To avoid these dependencies that are difficult to
analyze, each bytecode that accesses memory waits (prefer-
ably at the end of the microcode sequence) for the memory
system.

Furthermore, the deferring of wait in a store operation
results in an additional wait in every read operation. Since
read operations are more frequent than write operations (15%
vs. 2.5%, see [9]), the performance gain from the hidden
memory store is lost.

4.4 WCET of Bytecodes

The control flow of the individual bytecodes together with
the basic block length (that directly corresponds with the ex-
ecution time) and the time for memory access result in the
WCET (and BCET) values of the bytecodes. The exact val-
ues for each bytecode can be found in [9].



final static int N = 5;

static void sort(int[] a) {
int i, j, v1, v2;
// loop count = N-1
for (i=N-1; i>0; --i) {

// loop count = (N-1)*N/2
for (j=1; j<=i; ++j) {

v1 = a[j-1];
v2 = a[j];
if (v1 > v2) {

a[j] = v1;
a[j-1] = v2;

}
}

}
}

Figure 3. Bubble Sort test program for the
WCET analysis

4.5 Evaluation

We conclude this section with a worst and best case anal-
ysis of a classic example, the Bubble Sort algorithm. The
values calculated are compared with the measurements of
the execution time on JOP on all permutations of the input
data. Figure 3 shows the test program in Java. The algo-
rithm contains two nested loops and one condition. We use
an array of five elements to perform the measurements for
all permutations (i.e. 5! = 120) of the input data. The num-
ber of iterations of the outer loop is one less than the array
size: c1 = N − 1, in this case four. The inner loop is exe-
cuted c2 = ∑c1

i=1 i = c1(c1 + 1)/2 times, i.e. ten times in our
example.

The annotated control flow graph (CFG) of the example
is shown in Figure 4. The edges contain labels showing how
often the path between two nodes is taken. We can identify
the outer loop, containing the blocks B2, B3, B4 and B8. The
inner loop consists of blocks B4, B5, B6 and B7. Block B6
is executed when the condition of the if statement is true.
The path from B5 to B7 is the only path that depends on the
input data.

The compiled version, i.e. the bytecodes of the test pro-
gram, split into basic blocks, is given in Table 1. The fourth
column contains the execution time of the bytecodes. In
Table 2 the basic blocks with their execution time in clock
cycles and the worst and best case execution frequency is
given. The values in the third and fifth columns (Count) of
Table 2 are derived from the CFG and show how often the
basic blocks are executed in the worst and best cases. The
WCET and BCET value for each block is calculated by mul-
tiplying the clock cycles by the execution frequency. The
overall WCET and BCET values are calculated by summing
the values of the individual blocks B1 to B8. The last block
(B9) is omitted, as the measurement does not contain the re-
turn statement.

The execution time of the program is measured using the

Table 1. Bytecode listing of the Bubble Sort
with basic blocks

Block Addr. Bytecode Cycles

B1 0: iconst 4 1
1: istore 1 1

B2 2: iload 1 1
3: ifle 53 4

B3 6: iconst 1 1
7: istore 2 1

B4 8: iload 2 1
9: iload 1 1
10: if icmpgt 47 4

B5 13: aload 0 1
14: iload 2 1
15: iconst 1 1
16: isub 1
17: iaload 29
18: istore 3 1
19: aload 0 1
20: iload 2 1
21: iaload 29
22: istore 4 2
24: iload 3 1
25: iload 4 2
27: if icmple 41 4

B6 30: aload 0 1
31: iload 2 1
32: iload 3 1
33: iastore 32
34: aload 0 1
35: iload 2 1
36: iconst 1 1
37: isub 1
38: iload 4 2
40: iastore 32

B7 41: iinc 2, 1 11
44: goto 8 4

B8 47: iinc 1, -1 11
50: goto 2 4

B9 53: return

Table 2. WCET and BCET in clock cycles of the
basic blocks

WCET BCET
Block Cycles Count Total Count Total

B1 2 1 2 1 2
B2 5 5 25 5 25
B3 2 4 8 4 8
B4 6 14 84 14 84
B5 74 10 740 10 740
B6 73 10 730 0 0
B7 15 10 150 10 150
B8 15 4 60 4 60
B9 1 1

Execution time calculated 1,799 1,069
Execution time measured 1,799 1,069



B1

B2

1

B3

4

B9

1

B4

4

B5

10

B8

4

B6

0-10

B7

0-10

4

0-10

10

Figure 4. The control flow graph of the Bubble
Sort example

cycle counter in JOP. The current time is taken at both the en-
try of the method and at the end, resulting in a measurement
spanning from block B1 to the beginning of block B9. The
last statement, the return, is not part of the measurement.
The difference between these two values (less the additional
8 cycles introduced by the measurement itself) is given as the
execution time in clock cycles (the last row in Table 2). The
measured WCET and BCET values are exactly the same as
the calculated values.

In Figure 5, the measured execution times for all 120 per-
mutations of the input data are shown. The vertical axis
shows the execution time in clock cycles and the horizon-
tal axis the number of the test run. The first input sample
is an already sorted array and results in the lowest execution
time. The last sample is the worst-case value resulting from
the reversely ordered input data. We can also see the 11 dif-
ferent execution times that result from executing basic block
B6 (which performs the element exchange and takes 73 clock
cycles) between 0 and 10 times.

This example has demonstrated that JOP is a simple target
for the WCET analysis. Most bytecodes have a single execu-
tion time (WCET = BCET), and the WCET of a task depends
only on the control flow. No pipeline or data dependencies
complicate the low-level part of the WCET analysis.

5 Conclusion

In this paper, we presented a brief overview of the con-
cepts for a real-time Java processor, called JOP, and the eval-
uation of this architecture. We performed the WCET analysis

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

0 20 40 60 80 100 120

Experiment number

E
xe

cu
ti

o
n

 t
im

e 
[c

lo
ck

 c
yc

le
s]

Figure 5. Execution time in clock cycles of the
Bubble Sort program for all 120 permutations

of the implemented JVM at the microcode level. This anal-
ysis provides the WCET and BCET values for the individual
bytecodes. We have also shown that there are no dependen-
cies between individual bytecodes. This feature, in combina-
tion with the method cache [6], makes JOP an easy target for
low-level WCET analysis of Java applications.

References

[1] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and
M. Turnbull. The Real-Time Specification for Java. Java Se-
ries. Addison-Wesley, June 2000.

[2] J. Engblom. Processor Pipelines and Static Worst-Case Exe-
cution Time Analysis. PhD thesis, Uppsala University, 2002.

[3] T. Lindholm and F. Yellin. The Java Virtual Machine Specifi-
cation. Addison-Wesley, Reading, MA, USA, second edition,
1999.

[4] P. Puschner and C. Koza. Calculating the maximum execution
time of real-time programs. Real-Time Syst., 1(2):159–176,
1989.

[5] M. Schoeberl. Restrictions of Java for embedded real-time
systems. In Proceedings of the 7th IEEE International Sym-
posium on Object-Oriented Real-Time Distributed Comput-
ing (ISORC 2004), pages 93–100, Vienna, Austria, May
2004.

[6] M. Schoeberl. A time predictable instruction cache for a java
processor. In On the Move to Meaningful Internet Systems
2004: Workshop on Java Technologies for Real-Time and
Embedded Systems (JTRES 2004), volume 3292 of LNCS,
pages 371–382, Agia Napa, Cyprus, October 2004. Springer.

[7] M. Schoeberl. Design and implementation of an efficient
stack machine. In Proceedings of the 12th IEEE Reconfig-
urable Architecture Workshop (RAW2005), Denver, Colorado,
USA, April 2005. IEEE.

[8] M. Schoeberl. Evaluation of a Java processor. In Tagungs-
band Austrochip 2005, pages 127–134, Vienna, Austria, Oc-
tober 2005.

[9] M. Schoeberl. JOP: A Java Optimized Processor for Em-
bedded Real-Time Systems. PhD thesis, Vienna University of
Technology, 2005.

[10] Sun. picoJava-II Microarchitecture Guide. Sun Microsys-
tems, March 1999.


	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



