
Automated Conversion from a LUT-based FPGA to a LUT-based MPGA with
fast Turnaround Time

Francisco-Javier Veredas† ‡, Michael Scheppler†, Hans-Joerg Pfleiderer‡
†Infineon Technologies AG, D-81699,Munich, Germany

‡Microelectronics Department, University of Ulm, D-89081, Ulm, Germany

Abstract

Mask Programmable Gate Arrays (MPGAs) see a grow-
ing importance because of the increase of design cost
and turnaround times in ultra-deep submicron technologies
which mostly impact ASICs. Several design methodologies
have been proposed in recent years for converting an eval-
uated Field-Programmable Gate-Array (FPGA) prototype-
design into an MPGA. An automatic conversion flow is
essential to success. In this paper, we present a conver-
sion flow for a Look-up Table-based (LUT-based) MPGA
without applying re-synthesis but preserving the gate-level
netlist and reusing the placement. The resulting flow has a
special routing tool and buffer insertion algorithm for tim-
ing integrity. The experimental investigations use a com-
mercial FPGA and industrial benchmarks.

1. Introduction

FPGAs have the advantage of allowing short develop-
ment cycles. This is mostly due to the device configuration
at customer site rather than device production in a factory.
With this benefit they threat ASIC business which tradition-
ally meant the implementation of an individual customer
chip by widely reusing IP.

On the other hand, FPGAs are cost prohibitive in mid-
volume applications (100k to 3 million units in a 90nm pro-
cess technology) and impracticable for large-volume pro-
duction (greater than 3 millions) [13]. For reasons of cost
reduction and low power dissipation MPGAs have high po-
tential for mid-volumes. In large-volumes (ASSP market),
embedded MPGAs may become important because they of-
fer increased flexibility at moderate cost of non-recurring
engineering (e.g. mask cost) and fast turnaround time.
In ultra-deep sub-micron, the parasitic technologies aspects
(e.g. leakage current) strongly affect physical design and
substantially increase the effort for verification and yield
optimisation. On the other hand system level design is ab-

sorbed with the task of increasing system complexity. A
method of bridging this growing gap is to hide the tech-
nological aspects of a device with predefined structures,
so the silicon design complexity is low. While FPGAs
require total predefinition comprising both logic and in-
terconnect, it is possible to differentiate the MPGAs into
three classes. Depending on the complexity of the basic
component-cell you can distinguish: CMOS-based MPGAs
with elementary gate structures [7, 11], Cell-based MPGAs
(also called structured ASICs) [15, 12, 2] and LUT-based
MPGAs [3, 10]. There are CMOS-based MPGAs products
since the 80’s. Cell-based MPGAs are on their way into
products today, while LUT-based MPGAs still are under in-
vestigation.
Our proposed methodology to design MPGAs consist in
prototyping the design with a FPGA framework and then
convert the design to a MPGA. Existing conversions use a
target architecture with elementary cell structures because
this offers high density. The downside of this approach is
the need of re-synthesis and complete place and route. Due
to the physical difficulties a significant risk of corrupted
timing integrity is taken. In this paper a target architec-
ture is taken which preserves the gate-level structure of the
FPGA and in addition has predefined routing resources. It
will be shown that the conversion flow is rather simple and
high design security can be obtained.
The paper is organised as follows: Section 2 gives an
overview of the LUT-based MPGA architecture. Section 3
explains the conversion design flow. Section 4 describes the
experimental methodology and shows the results. Section 5
concludes the paper.

2. LUT-based Programmable Architectures

There are two major players in the FPGA market: Xil-
inx Inc. and Altera Inc. Both use architectures which are
array based and have logic clusters at the lower hierarchy
level. Both companies have two families one for high per-
formance and high complexity another for low cost and

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



higher volume. Both companies follow the trend of embed-
ding more and more optimised macros into the array (e.g.
DSP, transceivers, ...).
We used the Xilinx Virtex-II Pro [1] device for our stud-
ies. The conversion design flow presented in this paper can
be easily adapted to other Xilinx family devices as e.g. the
Xilinx Spartan-III. The use of Altera FPGA devices would
require extra modifications in the conversion flow (e.g. ded-
icated placement).
We named the LUT-based MPGA presented in this paper
Zelix. The Zelix MPGA has the same gate-level logic el-
ements as the Xilinx Virtex-II Pro. For the sake of sim-
plification the embedded hardware blocks (as 18 Kb RAM
memory modules) are not yet implemented in the Zelix, i.e.
the studies focus on the logic.

2.1. Xilinx Virtex-II Pro FPGA Architecture

The Xilinx Virtex-II Pro is a 130nm CMOS nine-layer
(copper) FPGA device. Virtex-II Pro has an island style ar-
chitecture. It consists of a two-dimensional array of Con-
figurable Logic Blocks (CLBs) and programmable inter-
connect resources. Each CLB is a cluster of four identical
sub-blocks called Slice. The Slice consist of two four-input
LUTs, two FFs, gates (two AND2, one OR2, two XOR2),
multiplexors, inverters and buffers. The LUTs are used to
map four-input boolean logic. The gates are used to imple-
ment special functions as carry chains. Four multiplexors
are used as mapped multiplexors (after synthesis) and the
other multiplexors are used as configurable routing switches
(i.e. to do programmable routing inside the Slice). The
inverters and the buffers are needed to implement the dif-
ferent clock types allowed in the FPGA. The four slices of
one CLB share a common programmable crossbar for do-
ing the input/ output signal communication with other CLBs
in the array. This communication is realised with a switch
matrix. The switch matrix routes a signal to north, south,
east or west direction. The topology of the switch matrix
in the Virtex-II Pro is a special disjoint type. A CLB to-
gether with its associated switch matrix is called a Tile. The
input/output programmable crossbar is also used for doing
local signal communication between slices.
The programmable interconnect is responsible for connect-
ing the inputs of the logic cells and the outputs together.
The Virtex-II Pro has two hierarchical levels: local inter-
connect and global interconnect. The local interconnect is
the programmable crossbar described before. The global
interconnect consist of vertical and horizontal routing chan-
nels. These are classes of segment lengths in the global in-
terconnect. A wire in a channel can expand two Tiles (dou-
ble lines), six Tiles (hex lines) or all the row/column (long
lines). The Virtex-II Pro has 40 double lines, 120 hex lines
and 24 long lines in a channel. All these lines are routed

within the switch matrix. There is a special type of wire that
can connect points of two CLB without passing through the
switch matrix, so called direct neighbour lines. The direct
neighbour lines connect adjacent CLBs. The lines go di-
rectly from an output crossbar to an input crossbar.
The programmable resources are controlled by latches.
The routing resources in a FPGA consume about 88% of the
total area [9]. To reduce the area penalty of the programma-
bility, FPGA vendors use a high number of metal layers and
the latest process technology in their device design.

2.2. Zelix MPGA architecture

The use of MPGAs is addressed to reduce the high
penalty area of FPGAs, but losing user-programmability
for fab-programmability. In our MPGA, all the mask lay-
ers that define the circuit devices are pre-defined, except
those that specify the final metal layers. These metal lay-
ers are customised to connect the logic gates, thereby im-
plementing the desired circuit. The programmable inter-
connect resources (i.e. SRAM cells) of an FPGA are
changed with metal layers and vias. Also, the config-
uration of logic (e.g. LUTs) is done with metal layers
(connecting the logic to VDD or VSS). The Zelix MPGA
consists of a two-dimensional array of Mask-Configurable
Logic Blocks (Mask-CLBs) and mask-programmable inter-
connect resources (see Fig. 1). The logic of a Mask-CLB
is the same as in the Virtex CLB. The Mask-CLB has also
four slices. As the programmable resources of the Virtex
CLB has been removed, the floorplan of the logic inside the
Mask-CLB is different.

Figure 1. Zelix MPGA array

Current LUT-based MPGAs use a random interconnect
structure (e.g. Altera HardCopy-II [3]). This is because
final interconnect is customised by metal masks and there-
fore it is possible to route with a semi-custom tool. The



Figure 2. Zelix MPGA tile

Zelix mask-programmable interconnect is planned in the
same fashion as the FPGA, i.e. we have a predefined regu-
lar interconnect structure. The benefits of this regular inter-
connect structure are the possibility to use an FPGA rout-
ing tool, on one hand, and easy-predictability of physical
phenomena (e.g. crosstalk), on the other hand [8]. The
Zelix MPGA has two hierarchical levels for the intercon-
nect: top-level interconnect and local interconnect. The lo-
cal interconnect is a mask-configurable input/output cross-
bar (Fig. 2). As the configuration is done with vias, we have
a full-populated crossbar (in constrast to an FPGA which
uses a sparse-crossbar).
The top-level interconnect is used for signal communica-
tion between CLBs. This communication is done through a
switch matrix. The topology of the switch matrix is a full-
populated crossbar. The Zelix MPGA has only one type
of top-level wire: 1-segment line, i.e. one wire can only
expand one Tile. This segmentation simplifies the routing
tool and the MPGA device design. Although the segmenta-
tion is 1-segment line, there is not difference between a two
1-segment lines and a 2-segment line (with the same direc-
tion) in the final mask layout. A 1-segment line topology is
also useful for buffer insertion planning. For instance, in a
wire of length two, a 2-segment line has only two points for
inserting a buffer (input, output), but two 1-segment lines
have three points (input, mid point, output).
Although it is possible to use the top-level interconnect for
routing the clock or the control signals in the Zelix MPGA
a global clock and global control network are assumed.

3. Conversion Design Flow

The goal of the conversion flow is to have the same
(or better) timing performance for an MPGA compared to
an FPGA. The previous section has shown that the Zelix
MPGA logic is the same as the Xilinx Virtex-II FPGA, so

the logic delays are assumed equal. The delay difference is
in the interconnect. To verify that we reach this goal, we
use Static Timing Analysis (STA). In STA, the timing anal-
ysis is carried out in an input-independent manner and looks
for the worst-case delay of the circuit over all possible in-
put combinations [14]. Commonly STA is used as a part
of the sign-off methodology in a digital silicon device. The
conversion flow checks the delay of all nets with STA. The
same check with circuit-level simulations is rather complex
and time expensive. Therefore prohibitive.
The Xilinx Virtex-II Pro design enviroment is called ISE.
After our designed circuit is placed and routed, the Xilinx
ISE creates two files for STA. One is a verilog gate-level
netlist (in terms of LUTs, AND-gates, ...) and the other is a
Standard Delay Format (SDF) file. The SDF file has anno-
tated the static delays of the cells and the interconnect. The
STA analysis is done with Synopsys PrimeTime tool. This
tool displays a report with the delays of all nets. To manage
this amount of reported data a Perl-script has been created.

3.1. Zelix MPGA Front-end Design Flow

The design flow without buffer insertion of the MPGA
architecture is shown in Fig. 3. The Zelix MPGA flow starts
from the Xilinx STA gate-level netlist. This netlist models
gates for configurable signal routing by means of buffers.
The buffers are used to annotate programmable intercon-
nect delays. A Perl-script removes all buffers (including the
hardwired buffers). In a later step of the flow the necessary
buffers for the interconnect are added.

Figure 3. Zelix MPGA Design Flow

For our studies we import the same placement from the Xil-
inx ISE flow. It would be possible to do the MPGA place-
ment from another placement tool as Cadence Encounter.



The reason for using the Xilinx placement is that we want to
compare our MPGA routing with the Virtex-II Pro routing.
Further studies can look for a better MPGA placement. The
Xilinx placement information is extracted from the Xilinx
Description Language (XDL) file. For matching the names
of the Xilinx gate-level netlist and the XDL file a deep anal-
ysis of the Virtex-II Pro architecture has been done. The
obtained placement information is Tile level and not Slice
level. We use Tile level placement because in the MPGA we
expect no major differences for STA within the placement
inside a Tile.
The router tool has been programmed in C using software
fragments from the VPR FPGA tool [5]. For routing the
FPGA PathFinder algorithm has been programmed [6].
Our variant of the Pathinfinder maze router algorithm im-
plements a routability-driven router instead of a timing-
driven routing. In order to use a timing-driven routing a
delay calculator is needed, as the buffer insertion is done at
a later stage in our flow, a delay model for the interconnect
is not accurate. Moreover, because the regular interconnect
architecture has a penalty in terms of area, we want to op-
timise the number of wires over the critical path. Notice
that the conversion flow must guarantee the same timing
as in a FPGA, not a better performance. It is possible to
set the number of tracks per channel in the MPGA router.
The number of tracks per vertical or horizontal channels
can be different (in the VPR FPGA tool vertical and hor-
izontal channels are the same). This feature is important
because the MPGA layout of a Tile usually is rectangular,
so in one direction there are more tracks per channels than
in the other. The target MPGA architecture is described in a
Perl-based language. Then the parser and abstraction steps
transform the architecture into an internal graph representa-
tion.
A Perl-script creates an interconnect RC tree with the rout-
ing information (a DSPF file). Fig. 4 shows an example of a
net with our interconnect model. The interconnect parasitic
model has five different elements: wire, input crossbar, out-
put crossbar, cell input/output pins, input/output pads. All
the cases are modelled as worst case scenario. The length of
the wire is the distance from one Tile to the closest Tile. For
the input crossbar the worst case is assumed when one wire
comes to the switch matrix and goes to the input cell: the
same parameters for the wire are assumed. Also we assume
that the output crossbar has no effect on the STA, because it
is modelled with the worst-case scenario of the input cross-
bar. The capacity effect of the cell input/output pins is de-
preciable in comparison with the wire or crossbar capacity.
Values for the input/output pad capacity has been set. In-
fineon 130nm CMOS six-layer (copper) is used for setting
the values of the interconnect elements. Infineon 130nm
process technology is comparable with the IBM 130nm pro-
cess technology used by Xilinx in the Virtex-II Pro.

Figure 4. Example of the interconnect model

Once we have the interconnect information of the Zelix
MPGA, we can proceed to do the STA analysis. The STA
tool used is Synopsis PrimeTime. The flow guarantees that
all the net delays are reported with a PrimeTime TCL-script.
The STA analysis of the Xilinx Virtex-II Pro and the Zelix
MPGA are compared. The delays in the Zelix MPGA are
calculated from the output of one gate to another gate. In
Virtex-II the same path as in the Zelix MPGA is used, i.e.
if there are buffers in the path, we include them. When a
MPGA-net has more delay than the corresponding FPGA-
net, there are two possible solutions: first look if the mapped
circuit still satisfy the specifications (slack, critical path, ...)
and second we can try to reduce the delay. In our conver-
sion flow we assume that we are in the second case (to be in
a worst-case scenario). Due to a reduced area of the MPGA
array we also expect in general shorter interconnect delays.

3.2. Buffer Insertion

The delay of a wire is proportional to its intrinsic ca-
pacitance and resistance. Moreover the wire delay depends
quadratically on the wire length. If we reduce the capac-
itance or the resistance of a net, we reduce the delay. A
big delay on a net can come because a wire is too long or
because the net has a larger fanout. The solution for both
cases is the same: buffer insertion. A buffer (also called
repeater) breaks the net into two smallest nets, and because
the length quadratically dependence, the delay is reduced.
The buffer introduces a small delay to the total path, but iso-
lates two nets. We apply the van Ginneken’s algorithm [16]
for buffer insertion. The van Ginneken’s algorithm uses the
Elmore model for delay analysis. The algorithm finds the
buffers positions in a RC-tree such that the Elmore delay is
minimal. The topology of the RC-tree is a Steiner tree. Our
programmed algorithm is a general extension of the pub-
lished van Ginneken’s algorithm. For instance, in the van
Ginneken’s paper the nodes of the Steiner tree can have only
up-to two leafs, in our case there are no leaf limitations.



Circuit #gates #gates without buffers #slices #nets average fanout maximum fanout

IFX PP 764 275 65 381 1.92 29
IFX ACE 1526 654 215 717 2.68 40
IFX FIR 3057 1391 333 1401 2.36 38
IFX IIR 4347 1995 506 2090 1.92 68

Table 1. Circuit characteristics after synthesis

Van Ginneken’s algorithm assumes that a set of buffer in-
sertion candidate locations are predetermined for the given
topology. The later is a van Ginneken’s algorithm quality
problem for ASIC semi-custom methodologies, where the
buffer positions are unknown a priori [4]. In a MPGA the
buffer positions are predefined, but must be planned [17].
The Zelix MPGA architecture has buffers at the end point
of the interconnect one-segment wire.
After the buffer insertion a verilog and parasitic file is cre-
ated. After STA analysis, we look if the delays reaches the
requested time imposed by the FPGA. If the delay is still
larger in the MPGA than in the FPGA, the solution is care-
ful analysis of the net and manual buffering and routing.

4. Experimental results

In this section we present the experimental results of four
benchmarks circuits using the conversion flow described in
Section 3. The benchmark circuits used in these experi-
ments are four Infineon Technologies proprietary circuits:
an 8-bit FIR Filter (IFX FIR), a 16-bit Biquad IIR Filter
(IFX IIR), a state machine of a Protocol Processor (IFX PP)
and a matching unit of an Associative Search Processor
(IFX ACE). The first two benchmarks are data processing
oriented and the other two benchmarks are control flow
oriented. The purpose of these benchmarks is a proof-of-
concept of the conversion flow. Although it is possible with
our conversion flow, an architectural design exploration is
out of the scope of this paper.
Each circuit has been synthesised with the commercial Syn-
plicity tool: Synplify Pro. The Virtex-II Pro device used is
a 2vpfg256-7. Table 1 shows the circuit characteristics af-
ter synthesis. The second column is the number of gates in
the Virtex-II netlist. The third column shows the number of
cells that we have after removing the buffers from the Xil-
inx netlist. The fanout report does not includes clock or FF
control nets. The average fanout is around two. The biggest
fanout (20-70) is concentrated in a small number of nets.
In the conversion of the data to the MPGA router, a criti-
cal point is the Virtex-II placement information. The cur-
rent Perl-script version cannot match (0.5% of total) all the
names of the verilog netlist and the Xilinx XDL file. There-
fore this information must be introduced by hand in the
data structure for the MPGA router. We assume a dedicated

clock network. Therefore, the net of the clock is not routed.
Although it is planned to use a predefined network for the
flip-flops control signals, in our experiments we treated the
control signals as a normal signal. We observed no differ-
ences in the track per channel utilisation when the clock is
routed with the other signals. This is because in the worst
case the number of tracks per channel can be augmented by
one (as we have one clock). The use of a dedicated balanced
clock is because of the delay and the skew of the clock.
We can see in Table 2 the number of tiles that we have
after logic packing. In this experiments the placement is
not stressed, so the logic-cells are sparsely placed in the 22
columns x 17 rows array. The benefit of a sparse placement
is a relaxed routing, i.e. a low utilisation of tracks per chan-
nel. The number of tracks per channels is shown in Table
2. In the Zelix MPGA we have the different utilisation by
channel (vertical or horizontal). The number of tracks is 4
to 7 times greater for the Virtex-II than for the Zelix MPGA.
This is because the hierarchical interconnect segmentation
(double lines, hex lines, ...) of the Virtex-II needs more rout-
ing resources compared to a one-wire model (our case). We
have to say that a segmentation in a FPGA is necessary to
be efficient in terms of area and delay [5]. Further studies
with more benchmarks must be realised to see and under-
stand the real difference between the routing efficiency in
the MPGA vs FPGA.

Zelix Virtex-II averg.
MPGA FPGA tracks

Circuit #tiles X Y X Y ratio

IFX PP 39 8 7 39 33 x4.8
IFX ACE 82 6 9 69 36 x7
IFX FIR 98 15 15 78 69 x4.9
IFX IIR 169 14 14 93 50 x5.1

Table 2. Tile packing and routing result (tracks
per channel). X: horizontal, Y: vertical

The STA analysis has been realised after the routing. The
second column of the Table 3 shows the number of MPGA
nets with more delay than the correspondent Virtex-II net.
These ’larger-delay’ nets are about 1%-2% of the total nets.
The third columns shows the number of buffers inserted us-
ing the van Ginneken’s algorithm. The average number of



buffer per Tile is around one. The circuits in [17] have an
average number between 2 - 14 buffer per Tile. We note that
the number of buffer insertion is better in our case because
the technology used in their experiments is 90nm (ours is
130nm) and the experiments are with a Tile with 8 LUTs
(ours is 16 LUTs). More LUTs in a Tile means more local
interconnect and less global routing. Although an automatic

nets with #inserted avrg.buffer
Circuit larger-delay buffer per tile

IFX PP 6 32 0.8
IFX ACE 19 112 1.4
IFX FIR 20 93 0.9
IFX IIR 22 126 0.7

Table 3. Results after STA

Perl-script for generating a DSPF file is under development,
some nets have been mapped by hand to show the delays af-
ter buffer insertion. Table 4 shows the delays of two nets
with the three cases: Virtex-II, Zelix MPGA without buffer
insertion and Zelix MPGA with buffer insertion. The first
net has a fanout of 21 and 21 buffers were inserted. The
second net has a fanout 23 and 20 buffers were inserted.
The results shows the benefits in the delay reduction with
buffer insertion. The four designs have been mapped into

Virtex-II Zelix w/o buff. Zelix w/ buff.
net (ns) (ns) (ns)
1 0.389 0.419 0.088
2 0.740 0.827 0.089

Table 4. Delay in two nets of the IFX FIR circuit

the conversion flow within a week. It is possible to follow
all the steps of the conversion flow in about two hours for
a 2000-gates design. The same design using a Cell-based
MPGA requires 1-2 weeks (because of the timing integrity
problems caused by re-synthesis).

5. Conclusions

A conversion flow from a LUT-based FPGA to a LUT-
based MPGA has been presented which preserves the gate-
level netlist and the placement of the FPGA. The predefined
routing resources of the MPGA apply a uniform segment
length of one and 100% usability of the switch matrix. The
flow includes a routing step and buffer insertion. Prelimi-
nary experimental investigations indicate that the new rout-
ing resources require substantially less routing tracks than
in the FPGA. Timing integrity seems to be obtainable with
high security.

For production the metallisation stack of a ASIC technol-
ogy is sufficient. For customisation only few mask steps
are required. So we conclude, that although we sacrificed
area with the target architecture the benefits of design secu-
rity, total conversion cost and reachable yield optimisation
justifies the solution presented.

References

[1] Virtex-II ProTM Platform FPGA Handbook. Xilinx Inc.,
San Jose, CA, 2002.

[2] Rapidchip technology fast custom through platform-based
design. White Paper, 2004.

[3] HardCopy Series Handbook. Altera Inc., San Jose, CA,
2005.

[4] C. J. Alpert and A. Devgan. Wire segmenting for improved
buffer insertion. Proceedings of the IEEE/ACM Design Au-
tomation Conference, pages 649–654, June 1997.

[5] V. Betz, J. Rose, and A. Marquardt. Architecture and CAD
for Deep-Submicron FPGAs. Kluwer Academic Publishers,
Norwell, MA, 1999.

[6] C. Ebeling, L. McMurchie, S. A. Hauck, and S. Burns.
Placement and routing tools for the Triptych FPGA. IEEE
Tansactions on VLSI, pages 473–482, December 1995.

[7] J. M. Green and H. Klar. CMOS gate array architecture for
digital signal processing applications. IEEE Journal of Solid
State Circuits, 31(3):410–418, March 1996.

[8] S. P. Khatri, A. Mehrotra, R. K. Bryton, R. H. J. M. Otten,
and A. Sangiovanni-Vincentelli. A novel VLSI layout fabric
for deep sub-micron application. Proceedings of the 36th
ACM/IEEE Design Automation Conference, pages 491–496,
June 1999.

[9] G. Lemieux and D. Lewis. Design of Interconnection Net-
works for Programmable Logic. Kluwer Academic Publish-
ers, Norwell, MA, 2004.

[10] A. Levinthal and R. Herveille. FlexASIC structured array: A
solution to the DSM challenge. DesignCon 2005, February
2005.

[11] M. Okabe and et al. A 400k-transistor cmos sea-of-gate ar-
ray with continuos track allocation. IEEE Journal of Solid
State Circuits, pages 1280–1286, October 1989.

[12] T. Okamoto, T. Kimoto, and N. Maeda. Design methodology
tools for NEC elsectronics’ structured ASIC ISSP. Proceed-
ings of the ISPD’04, pages 90–96, April 2004.

[13] M. Santarini. Structured ASIC deserve serius attention at
90nm. EDN Magazine, pages 69–74, July 2005.

[14] S. Sapatnekar. Timing. Kluwer Academic Publishers, Nor-
well, MA, 2004.

[15] D. D. Sherlekar, O. Siguenza, and H. Yang. Maximize de-
sign flexibility with fast turnaround time while minimizing
design cost with metal programmable libraries. IP Based
Design 2003 Conference, November 2003.

[16] L. P. P. P. van Ginneken. Buffer placement in distributed
RC-tree networks for minimal Elmore delay. International
Symposium on Circuits and Systems, pages 865–868, May
1990.

[17] T. Zhang and S. Sapatnekar. Buffering global interconnects
in structured ASIC design. Proceedings of the Asia/South
Pacific Design Automation Conference, January 2005.


	Main
	Designer's Forum 06
	Front Matter
	Table of Contents
	Author Index

	DATE06



