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Abstract� 
As compared to a large spectrum of performance 
optimizations, relatively little effort has been dedicated to 
optimize other aspects of embedded applications such as 
memory space requirements, power, real-time 
predictability, and reliability. In particular, many modern 
embedded systems operate under tight memory space 
constraints. One way of satisfying these constraints is to 
compress executable code and data as much as possible. 
While research on code compression have studied 
efficient hardware and software based code strategies, 
many of these techniques do not take application behavior 
into account, that is, the same 
compression/decompression strategy is used irrespective 
of the application being optimized. This paper presents a 
code compression strategy based on control flow graph 
(CFG) representation of the embedded program. The idea 
is to start with a memory image wherein all basic blocks 
are compressed, and decompress only the blocks that are 
predicted to be needed in the near future. When the 
current access to a basic block is over, our approach also 
decides the point at which the block could be compressed. 
We propose several compression and decompression 
strategies that try to reduce memory requirements without 
excessively increasing the original instruction cycle 
counts.  
 
 

1. Introduction 
 
Most embedded systems have tight bounds on memory 

space. As a consequence, the application designer needs 
to be careful in limiting the memory space demand of 
code and data. However, this is not a trivial task, 
especially for large-scale embedded applications with 
complex control structures and data access patterns. One 
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potential solution to the memory space problem is to use 
data and code compression.  

Prior research in code compression studied both static 
and dynamic compressions techniques, focusing in 
particular on efficient compression/decompression 
strategies [1, 3, 4, 5, 7, 17, 18, 19]. One potential problem 
with most of these techniques is that the compression and 
decompression decisions are taken in an application-
insensitive manner; that is, the same 
compression/decompression strategy is employed for all 
applications independent of their specific instruction 
access patterns.  

In this paper, we propose a control flow graph (CFG) 
centric approach to reducing the memory space 
consumption of executable binaries. The main idea behind 
this approach is to keep basic blocks of the application in 
the compressed form as much as possible, without 
increasing the original execution cycle counts 
excessively. An important advantage of doing so is that 
the executable code occupies less memory space at a 
given time, and the saved space can be used by some 
other (concurrently executing) applications. 1  The 
proposed approach achieves this by tracking the basic 
block accesses (also called the instruction access pattern) 
at runtime, and by invoking 
compressions/decompressions based on the order in 
which the basic blocks are visited. On the one hand, we 
try to save as much memory space as possible. On the 
other hand, we do not want to degrade the performance of 
the application significantly by performing frequent 
compressions and decompressions, which could 
potentially occur in the critical path during execution. 
This paper makes the following major contributions: 

                                                 
11 Alternately, in embedded systems that execute a single application, 
the memory space saved can enable the use of a smaller memory, 
thereby impacting both form factor and overall cost.  As a third option, 
saved memory space can be used to increase energy savings in banked 
memory architectures. 
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• It proposes a basic block compression strategy called 
the k-edge algorithm that can be used for compressing 
basic blocks whose current executions are over. 

• It proposes a set of basic block pre-decompression 
strategies, wherein a basic block is decompressed 
before it is actually needed, in an attempt to reduce the 
potential performance penalty that could be imposed by 
the on-line decompression. 
The rest of this paper is organized as follows. Section 

2 summarizes basic concepts regarding the control flow 
graph based code representation, and the assumptions we 
made about our execution environment. Sections 3 and 4 
discuss the basic block compression and decompression 
strategies, respectively, proposed in this paper. Section 5 
gives the details of our implementation. Section 6 
discusses related work on code compression. Section 7 
concludes the paper by summarizing our contributions. 

 
2. Program Representation and 

Architecture 
 
A control flow graph (CFG) is an abstract data 

structure used in compilers to represent a 
procedure/subprogram [20]. Each node in the CFG 
represents a basic block, i.e., a straight-line piece of code 
without any jumps or jump targets; jump targets start a 
block, and jumps end a block. In this graph, jumps in the 
control flow are represented by directed edges. There are 
two specially designated blocks: the entry block, through 
which control enters into the flow graph, and the exit 
block, through which all control flow leaves. The CFG is 
essential to several compiler optimizations based on 
global dataflow analysis such as def-use chaining and  
use-def chaining [20]. It should be emphasized that a CFG 
is a static (and conservative) representation of the 
program, and represents all the alternatives of control 
flow (i.e., all potential execution paths). As an example, 
both arms of an if-statement are represented in the CFG, 
while in a specific execution (with a particular input), 
only one of them could actually be taken. A cycle in the 
CFG may imply that there is a loop in the application 
code.  Figure 1 depicts an example CFG fragment that 
contains two loops. 

The approach proposed in this paper saves memory 
space by compressing basic blocks as much as possible 
without unduly degrading performance. We assume a 
software-controlled code memory either in the form of an 
external DRAM or in the form of an on-chip SRAM (e.g., 
a scratch-pad memory [21]).  It must be emphasized that 
our main objective in this study is to reduce the memory 
space requirements of embedded applications. However, 
if there is another level of memory in front of the memory 
where our approach targets (i.e., a memory between the 
target memory and the CPU), the proposed approach also 

brings reductions in memory access latency (as we need 
to read less amount of data from the target memory) as 
well as in the energy consumed in bus/memory accesses. 
However, a detailed study of these issues is beyond the 
scope of this paper.  

Another important issue is that, while in most of the 
cases discussed in this paper we do not put a restriction on 
the total memory space that could be used by the 
application being optimized, our approach needs only a 
slight modification to address this issue. Specifically, all 
that needs to be done is to check before each basic block 
decompression whether this decompression could result in 
exceeding the maximum allowable memory space 
consumption, and if so, compress one of the 
decompressed basic blocks that are in the uncompressed 
form. One could use LRU or a similar strategy to select 
the victim basic block when necessary.  
 
3. Basic Block Compression 

 
In this section, we discuss the k-edge algorithm in 

detail. This algorithm compresses a basic block that has 
been visited by the execution thread when the kth edge 
following its visit is traversed. It is to be noted that the k 
parameter can be used to tune the aggressiveness of 
compression. Consequently, the k-edge algorithm actually 
specifies a family of algorithms (e.g., 1-edge, 2-edge, 10-
edge, etc). For example, let us consider the CFG 
illustrated in Figure 1. Assuming that we have visited 
basic block B1 and, following this, the execution has 
traversed the edges marked as a and b, the 2-edge 
algorithm (i.e., the k-edge algorithm with k=2) starts 
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Figure 1. An example CFG fragment. Assuming 
that the execution takes the left branch following 
B0, the 2-edge algorithm (i.e., the k-edge 
algorithm with k=2) starts compressing B1 just 
before the execution enters basic block B4  



compressing B1 just before the execution enters basic 
block B4.  

Selecting a suitable value for the k parameter is 
important as it determines the tradeoff between memory 
space saving and performance overhead. Specifically, if 
we use a very small k value, we aggressively compress 
basic blocks but this may incur a large performance 
penalty for the blocks with high temporal reuse (though it 
is beneficial from a memory space viewpoint). In other 
words, if a basic block is revisited within a short period of 
time, a small k value could entail frequent compressions 
and decompressions (note that a basic block can be 
executed only when it is not in the compressed form). On 
the other hand, a very large k value delays the 
compression, which may be preferable from the 
performance angle (as it increases the chances of finding 
a basic block in the uncompressed form during execution 
when it is reached). But, it also increases the memory 
space consumption.  

Another important issue is how one can perform 
compressions. Note that, in a single-threaded execution, 
the compression comes in the critical path of execution, 
and can slow down the overall execution dramatically. 
Therefore, we propose a multi-threaded approach, 
wherein there exists a compression thread (in addition to 
the main execution thread), whose sole job is to compress 
basic blocks at the background, thereby incurring minimal 
impact on performance. Specifically, the compression 
thread utilizes the idle cycles of the execution thread to 
perform compressions.  

 
4. Basic Block Decompression 

 
We have at least two options for performing basic 

block decompressions. In the first option, called the on-
demand decompression (also called the lazy 
decompression), a basic block is decompressed only when 
the execution thread reaches it. That is, basic block 
decompressions are performed on a need basis. The most 
important advantage of this strategy is that it is easy to 
implement since we do not need an extra thread to 
implement it. All we need is a bit per basic block to keep 
track of whether the block accessed is currently in the 
compressed form or not. Its main drawback is that the 
decompressions can occur in the critical path, and thus 
degrade performance significantly. In the second option, 
referred to as the pre-decompression, a basic block is 
decompressed before it is actually accessed. The rationale 
behind this approach is to eliminate (or, at least reduce) 
the potential delay that would be incurred as a result of 
decompression. In other words, by pre-decompressing a 
basic block, we are increasing the chances that the 
execution thread finds the block in the uncompressed 
form, thereby not losing any extra execution cycles for 

decompressing it. This pre-decompression based scheme 
has, however, two main problems. First, we need a 
decompression thread to implement it. Second, pre-
decompressing a basic block ahead of time can increase 
the memory space consumption. 

It is easy to see that a pre-decompression based 
scheme can be implemented in different ways. In this 
paper, we study this issue by focusing on two different 
dimensions. First, we have a choice in selecting the basic 
block(s) to pre-decompress. Second, we have a choice in 
selecting the time to pre-decompress them.2 These two 
choices obviously bring associated performance/memory 
space tradeoffs. For example, pre-decompressing more 
basic blocks increases the chances that the next block to 
be visited will be in the uncompressed form (which is 
preferable from the performance viewpoint provided that 
we are able to hide the decompression cost); but, it also 
increases the memory space consumption. Similarly, pre-
decompressing basic blocks early (as compared to pre-
decompressing them at the last moment) involves a 
similar tradeoff between performance and memory space 
consumption.  

In this paper, we explore this two-dimensional pre-
decompression search space using two techniques. First, 
to determine the point at which we initiate 
decompression, we use an algorithm similar to k-edge. In 
this algorithm (also called k-edge), a basic block is 
decompressed (if it is not already in the uncompressed 
form) when there are at most k edges that need to be 
traversed before it could be reached. As before, k is a 
parameter whose value can be tuned for the desired 
memory space – performance overhead tradeoff. An 
example is depicted in Figure 2. Assuming k=3, in this 
figure, basic block B7 is decompressed at the end of basic 

                                                 
2 At this point, the analogyy between pre-decompression and software-
initiated data/code pre-fetching should be noted. The two choices 
mentioned in the text correspond to selecting the blocks to prefetch and 
timing of prefetch in the context of prefetching.  
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Figure 2. An example CFG fragment that can be 
optimized using pre-decompression 



block B1 (i.e., when the execution thread exits basic block 
B1, the decompression thread starts decompressing B7). 
This is because, from the end of B1 to the beginning of B7, 
there are at most 3 edges that need to be traversed. 
Second, to determine the basic block(s) to decompress, 
we use a prediction-based strategy. The idea is to 
determine the basic block that could be accessed next and 
to pre-decompress it ahead of the time. In this paper, we 
discuss two different prediction-based strategies. In the 
first strategy, called pre-decompress-all, we pre-
decompress all basic blocks that are at most k edges away 
from the exit of the currently processed block. In the 
second strategy, called pre-decompress-single, we select 
only one basic block among all blocks that are at most k 
edges ahead of the currently processed basic block.  It is 
to be noted that while pre-decompress-all favors 
performance over memory space consumption, pre-
decompress-single favors memory space consumption 
over performance. To demonstrate the difference between 
these two pre-decompression based strategies, we 
consider the CFG fragment in Figure 2 again, assuming 
this time, for illustration purposes, that blocks B4, B5, B8, 
and B9 are currently in the compressed form, all other 
blocks are in the uncompressed form, and the execution 
thread has just left basic block B0. Assuming further that 
k=2, in the pre-decompress-all strategy, the 
decompression thread decompresses B4, B5, B8, and B9. In 
contrast, in the pre-decompress-single strategy, we predict 
the block (among these four) that is to be the most likely 
one to be reached than the others, and decompress only 
that block. Figure 3 shows the decompression design 
space explored in this paper.  

Figure 4 summarizes our approach to code 
compression for reducing memory space consumption. It 
is assumed that the highlighted path is the one that is 
currently taken by the execution thread. In the ideal case, 
the decompression thread traverses the path before the 

execution thread and decompresses the basic blocks on it 
so that the execution thread finds them directly in the 
executable state. The compression thread, on the other 
hand, follows the execution thread and compresses back 
the basic blocks whose executions are over. The k 
parameters control the distance between the threads.  

 
5. Implementation Details 

 
In implementing the compression/decompression-

based strategy described, there is an important challenge 
that needs to be addressed.  Specifically, when a basic 
block is compressed or decompressed, the branch 
instructions that target that block must be updated. In 
addition, the saved memory space (as a result of 
compressions) should be made available to the use of 
other applications with minimum overhead. In particular, 
one may not want to create too much memory 
fragmentation. This is because an excessively fragmented 
free space either cannot be used for allocating large 
objects or requires memory compaction to do so. 
Therefore, our current implementation slightly deviates 
from the discussion so far, in particular when 
compressions are concerned. Specifically, we start with a 
memory image, wherein all basic blocks are stored in 
their compressed form. Note that this is the minimum 
memory that is required to store the application code. As 
the execution progresses, we decompress basic blocks 
(depending on the instruction access pattern and the 
decompression strategy adopted, as discussed earlier), and 
store the decompressed (versions of the) blocks in a 
separate location (and keep the compressed versions as 
they are). Later, when we want to compress the block, all 
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Figure 3. The decomposition design space 
explored in this work. For compression, we 
always use the k-edge algorithm 
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we need to do is to delete the decompressed version. In 
this way, the compression process does not take too much 
time. In addition, the memory space is not fragmented too 
much as the locations of the compressed blocks do not 
change during execution. We illustrate the idea using the 
example in Figure 5 with on-demand decompression. The 
figure shows an example CFG fragment, and traces the 
sequence of events for a particular execution scenario. 
Initially, all the basic blocks are in the compressed form 
and stored in the compressed code area. The program 
counter (PC) points to the entry of the first basic block, 
which is B0 in this case (1). Fetching an instruction from 
the compressed code area triggers a memory protection 
exception.  

The exception handler decompresses block B0 into B0' 
and sets PC to the entry of B0' (2). Assuming that block 
B1 is the one that follows B0, after the execution of block 
B0, the PC points to the entry of block B1 (3). Since B1 is 
in the compressed code area, the exception handler is 
invoked to decompress B1 into B1' and update the target 
address of the branch instruction in B0 and set the PC to 
the entry of B1' (4). Let us now assume that the execution 
thread next visits B0 again. Consequently, after the 
execution of B1', we branch to the entry of B0 (5). At this 
time, we do not need to decompress B0 once again. The 
exception handler updates the target address of the last 
branch instruction of block B1' to the entry of B0', and 
subsequently sets PC to the entry of B0' (6). Following 
B0', the execution thread can branch to B1' directly 
without generating any exception (7). Let us assume now 
that the execution next visits B3. Consequently, the PC 
points to the entry of this basic block (8). Assuming that 
our compression strategy uses k=2, at this point, we delete 
the decompressed version of B0 (which is B0'), and 
decompress B3 into B3' as illustrated in (9). It is to be 
noted that, when we discard a decompressed block, we 
also need to update the target addresses of the branch 
instructions (if any) that jump to the discarded block. For 
this purpose, for each decompressed block, we also 

maintain a “remember set” that records the addresses of 
the branch instructions that jump to this block. 

Another issue is how to keep track of the fact that k 
edges have been traversed so that we can delete the 
decompressed version of the blocks. Our current 
implementation works as follows.  For each basic block, 
we maintain a counter, which is reset to zero when the 
basic block is executed. At each branch, the counter of 
each (uncompressed) basic block is increased by 1 and 
(the decompressed versions of) the basic blocks whose 
counter reaches k are deleted. 

 
6. Discussion of Related Work  

 
Many embedded systems rely on special hardware to 

execute compressed code, such as Thumb for ARM 
processors [2], CodePack [14] for PowerPC processors, 
and MIPS16 [13] for MIPS processors. However, the 
requirement for special hardware limits their general 
applicability. Lefurgy et al [16] propose a hybrid 
approach that decompresses the compressed code at the 
granularity individual cache lines. Kirovski et al [15] 
present a procedure-based compression strategy that 
requires little or no hardware support. There has been a 
significant amount of work that explores the 
compressibility of program representations [12]. The 
resulting compressed form either must be decompressed 
(or compiled) before execution [7, 11, 8], or it can be 
executed without decompression [5, 9]. A hybrid 
approach is to use an interpreter to execute the 
compressed code [10, 22]. Compared to the direct 
execution approach, the interpreter-based approach 
usually allows more complex coding schemes, and thus, 
achieves smaller memory consumption for the 
compressed code. However, the interpreter itself occupies 
memory space. 

Debray and Evans [6] present a code compression 
strategy that operates at a function granularity, i.e., 
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Figure 5. An example CFG fragment and the contents of the instruction 
memory when the basic block access pattern is B0, B1, B0, B1, and B3 



functions constitute compressible units.  Their work 
exploits the property that for most programs, a large 
fraction of the code is rarely touched. Our work is 
different from theirs in at least two aspects. First, we 
operate on a finer granularity (basic block level). 
Therefore, we can potentially save more memory space 
(when, for example, a particular basic block chain within 
a large function is repeatedly executed, in which case our 
approach can keep the unused memory blocksin the 
functionin the compressed form). Second, we also 
employ pre-decompression that helps us reduce the 
negative impact of compression on performance.  

 
7. Summary 

 
This paper proposed a novel code compression 

strategy that is guided by the control flow graph (CFG) 
representation of an embedded program. In this strategy, 
the unit of compression/decompression is a single basic 
block of code. Conceptually, our approach employs three 
threads: one for compressing basic blocks, one for 
decompressing them, and one for executing the 
application code. We presented several pre-
decompression techniques wherein a basic block is 
decompressed before it is actually needed, in an attempt 
to reduce the potential performance penalty caused by 
decompression 
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