

 Introduction to Hardware Abstraction Layers for SoC

 Sungjoo Yoo Ahmed A. Jerraya

 System-Level Synthesis Group
 TIMA Laboratory
 Grenoble, France

Abstract
In this paper, hardware abstraction layer is explained in
the context of SoC design. First, HAL definition is given
and the difference between HAL and other similar
concepts are given. Existing HALs are examined. The role
of HAL is explained for SoC design. Finally, a proposal of
standard HAL is presented.

1. INTRODUCTION
Standard on-chip buses have been developed to enable
hardware (HW) component reuse and integration [1][2].
Recently, VSIA is investigating the same analogy in
software (SW) component reuse and integration with its
hardware dependent software (HdS) API. It is one that is
conventionally considered as hardware abstraction layer
(HAL) or board support package (BSP).

In this paper, we investigate the following questions
related to HAL, especially for system-on-chip (SoC).
(1) What is HAL?
(2) What are existing HALs?
(3) What is the role of HAL for SoC?
(4) What does the HAL for SoC need to look like?

2. WHAT IS HAL?
In this section, we explain HAL definition, the
conventional role of HAL, and the difference of HAL,
nano-kernel, and device driver.

We define HAL as all the software that is directly
dependent on the underlying HW. The examples of
HAL include boot code, context switch code, codes for
configuration and access to HW resources, e.g. MMU, on-
chip bus, bus bridge, timer, etc. In real HAL usage, a
practical definition of HAL can be done by the designer
(for his/her HW architecture), by OS vendors, or by a
standardization organization like VSIA.

HAL APIs give, to the operating system and
application SW, an abstraction of underlying architecture,
especially for data types (e.g. The integer type has
different bit sizes depending on processors), task context
(e.g. context switch), interrupt management (e.g. interrupt
vector), I/O, memory management, etc. Figure 1 shows an
example of HAL API for context switch,
__cxt_switch(cxt_type oldcxt, cxt_type newcxt) and the
real code of the HAL API for ARM7 processor.

When the OS or application SW is designed using
HAL APIs, the code is portable as far as the HAL APIs
can be implemented on the underlying HW architecture.
Thus, conventionally, the HAL has been used to ease OS
porting on a new HW architecture.
// HAL API for context switch
typedef int cxt_type[15];
void __cxt_switch(cxt_type oldcxt, cxt_type newcxt);

// ARM7-specific implementation of __cxt_switch
__cxt_switch ;r0, old stack pointer, r1, new stack pointer
STMIA r0!,{r0-r14} ; save the registers of current task
LDMIA r1!,{r0-r14} ; restore the registers of new task
SUB pc,lr,#0 ; return
END

Figure 1 An example of HAL API.
There are similar concepts to HAL: nano-kernel and

device driver. Nano-kernel is usually defined to be an
ensemble of interrupt service routines and task stacks [7].
It serves as a foundation where a micro-kernel can be built.
In this definition, nano-kernel can be considered to be a
part of HAL. However, nano-kernel is often used exactly
to represent HAL. In the case of µChoice OS, nano-kernel
is equivalent to HAL [8].

A device driver gives an abstraction of I/O device.
Compared to HAL, it is limited to I/O, not covers context
switch, interrupt management, etc. To be exact, the entire
device driver does not belong to HAL. In the case of
device driver, to identify the portion that depends on the
underlying HW architecture, we need to separate the
device driver into two parts: HW independent and HW
dependent parts. Then, the HW dependent part can belong
to HAL.

3. EXISTING HALS
Though HAL is an abstraction of HW architecture, since it
has been mostly used by OS vendors and each OS vendor
defines its own HAL, most of HALs are OS dependent. In
the case of OS dependent HAL, it is often called board
support package (BSP).

Window CE provides for BSPs for many standard
development boards (SDBs) [3]. The BSP consists of boot
loader, OEM abstraction layer (OAL), device drivers, and
configuration files. To meet the designer’s HW
architecture, OAL can be configured. In eCos, a set of

1530-1591/03 $17.00 2003 IEEE

well-defined HAL APIs is presented [4]. However, there
is no clear difference between HAL and device driver. In
Real-time Linux, a HAL called real-time HAL (RTHAL)
is defined to give an abstraction of interrupt mechanism to
Linux [5]. It consists of three APIs for disabling and
enabling interrupts and return from the interrupt.

An example of HAL that does not depend on an OS is
a386. [6]. It is a HAL that depends on the i386 processor
architecture. Later, it is ported on the ARM processor.

4. HAL AS A STANDARD FOR HW/SW
INTEGRATION
In the context of SoC design, HAL keeps still the original
role of enabling the portability of upper layer SW.
However, in SoC design, the portability impacts on the
design productivity in two ways: design reuse and
concurrent HW and SW design.

Portability enables to port the SW on different HW
architectures. In terms of design reuse, the portability
enables to reuse the SW from one SoC design to another.
It can reduce the design efforts otherwise necessary to
adapt the SW on the new HW architecture. The portability
eases also the exchange of SW code and architecture
exploration, e.g. trying different target processors to find
an optimal target processor.

In many SoC designs, complete SW reuse is infeasible
(e.g. due to a new functionality or performance
optimisation). Thus, in such cases, both SW and HW need
to be designed. The conventional design flow is that the
HW architecture is designed first, then the SW design is
performed based on the fixed HW architecture. In terms of
design cycle, this practice takes a long design cycle since
the SW and HW design steps are sequential. HAL serves
to enable the SW design early before finishing the HW
architecture design. The SW is designed using HAL APIs
without considering the details of HAL API
implementation. Since the SW design can start as soon as
the HAL APIs are defined, SW and HW design can be
performed concurrently thereby reducing the design cycle.

To enable the above two benefits, standard HAL APIs
are favoured. To establish a standard HAL, first we need
to ask a question: Can there exist one standard HAL? We
think that the answer will be NO. We consider that one of
distinguished aspects of SoC design compared to
conventional board design is application-specific HW
architecture design. Thus, the SoC design can invent any
HW architectures that are suited to the given SoC
specification. In such a case, .a fixed set of HAL APIs will
not be able to support new HW architectures and HW
components. Instead, the standard HAL needs to be a
generic set of APIs that consist of common HAL APIs and
a design guideline for extensible HAL APIs. It will be also
possible to prepare a set of common HAL APIs suited to

several application domains (e.g. HAL APIs for
multimedia application).

As common HAL APIs, we consider the following
five categories of common APIs.
(1) Kernel HAL APIs: They perform context
management (e.g. context creation/deletion/switch) and
atomic operations (e.g. read-modify-write).
(2) Interrupt management HAL APIs: They are
conventionally called nano-kernel. They consist of fast
interrupt service routine (user ISR will be in OS interrupt
service) and interrupt/interrupt vector management APIs
(e.g. interrupt enable/disable, etc.)
(3) I/O HAL APIs: They perform I/O device
configuration/access. Especially, bus abstraction APIs (e.g.
to allow accesses to the secondary bus as well as the
primary one) and memory management APIs (e.g. to
access a shared memory) are important since SoC bus
architectures and memory hierarchy are becoming more
complex.
(4) Resource management HAL APIs: They are
architecture (re)configuration APIs, e.g. tracking system
resource usage (check_battery()), power management
(set_cpu_speed()), real-time APIs (timer_set/reset(),
wait_cpu_cycle(), etc.).
(5) Design time HAL APIs: They are used only to
facilitate the design process, especially, to facilitate
simulation. One of examples is consume_cpu_cycle() to
simulate the advance of SW execution time.

As a guideline to develop extensible HAL APIs, our
proposal is a component-based construction of HAL as in
[8]. HAL consists of components. Components
communicate via clear interface. Their internal
implementations depend on HW architectures.

REFERENCES
[1] Virtual Socket Interface Alliance, http://www.vsi.org/
[2] Open Core Protocol, http://
http://www.ocpip.org/home
[3] Windows CE,
http://www.microsoft.com/windows/embedded/
[4] eCos, http://sources.redhat.com/ecos/
[5] RTLinux, http://fsmlabs.com/community/
[6] a386, http://a386.nocrew.org/
[7] D. Probert, et.al., “SPACE: A New Approach to
Operating System Abstraction”, Proc. International
Workshop on Object Orientation in Operating Systems, pp.
133—137, Oct. 1991.
[8] S. M. Tan, D. K. Raila and R. H. Campbell, An
Object-Oriented Nano-Kernel for Operating System
Hardware Support. In Fourth International Workshop on
Object-Orientation in Operating Systems, Lund, Sweden,
August 1995.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

