
Comparing Analytical Modeling with Simulation
for Network Processors: A Case Study

Matthias Gries1, Chidamber Kulkarni1, Christian Sauer2, Kurt Keutzer1
1 University of California, Berkeley

2 Infineon Technologies, Corporate Research, Munich
{gries, kulkarni, sauer, keutzer}@eecs.berkeley.edu

Abstract
Programming network processors remains an art due to

the variety of different network processor architectures
and due to little support to reason and explore implemen-
tations on such architectures. We present a case study of
mapping an IPv4 forwarding switch application on the
Intel IXP1200 network processor and we compare this im-
plementation with an analytical model of both the applica-
tion and architecture used to evaluate different design
alternatives. Our results not only show that we are able to
model the IXP1200 and our application within 15% of the
accuracy compared to that of IXP1200 simulation, but also
find closely matching trends for different workloads. This
shows the clear potential of such analytical techniques for
design space exploration.

1. Introduction

Contemporary network processors (NPs) exhibit a wide
range of architectures for performing similar tasks: from
simple RISC cores with dedicated peripherals, in pipelined
and/or parallel organization, to heterogeneous multiproces-
sors, based on complex multi-threaded cores with custom-
ized instruction sets. Evaluating such disparate architec-
tures via extensive benchmarking is time consuming and
tedious, due to absence of a proper programming model.

Programming such concurrent systems remains an art.
The programmer not only is required to partition and bal-
ance the load of the application manually, it is also neces-
sary to implement each task, often in assembly, in order to
get reliable performance estimation. Hence, a robust appli-
cation mapping strategy for such architectures requires a
balance between thread partitioning, scheduling, memory
accesses and I/O. With the current state-of-the-art tools this
task becomes time consuming and error prone, due to trial-
and-error method employed by system implementers based
on simulation runs. Therefore, methods to address the
above issues need to be investigated.

For the next generation of network processor based sys-
tem implementations, we strongly believe that a consider-
able emphasis will be put on performance per cost (for ex-
ample, power consumption) aspects and on support of ap-
propriate programming models. Therefore, it is essential to
investigate methods that help in identifying limitations and
bottlenecks in system implementation without going all the
way down to complete implementations, as is the current
practice. Consequently, high-level design space exploration
tools are required that support a wide range of heterogene-
ous architectures and enables precise reasoning about dif-
ferent implementation styles and their performances. Data
generated by such tools while evaluating single design
points should ideally be indicative of final achievable qual-
ity of results.

Related works focus on three different approaches
namely simulation, trace analysis and analytical models.
Simulation and trace analysis are somewhat similar, since
for generating a trace one needs an (cycle) accurate simula-
tor. Simulation based approaches, such as [1], require ap-
plication specification in a high-level language or assem-
bly, compiled to the particular architecture. In addition,
different workloads need to be specified or generated for
both the simulation and trace based analysis. Trace based
analysis (like [2]) is limited by the fact that they capture
details of a single execution for the particular workload.
Thus for event driven systems with varying workloads, a
large amount of traces need to be generated for any useful
analysis and hence the gap between simulation and trace is
no longer that large.

In contrast to simulation and trace analysis, analytical
models promise a fast evaluation that allows for a larger
design space to be explored. In the packet processing do-
main, [3] presents an approach to explore different cache
configurations based on general purpose computing ele-
ments. Lakshamanamurthy et al. [4] present an ad-hoc
approach limited to the IXP2400 network processor.

Thiele et al. [5] present a generic approach for modeling
applications and architectures in this domain. This model

although specialized to some extent for our domain, pro-
vides a natural way to specify different architectural
parameters, workloads and application task graphs. To
date, no comparison of such techniques to real-life network
processor designs exists. Although the comparison by
Chakraborty et al. [11] focuses on the packet transport
from network interfaces to a general-purpose CPU core,
ours is the only work that is able to capture the characteris-
tics of the network processing domain by emphasizing a
fine-grained description of a multiprocessor system and the
packet processing itself. Our chosen, representative net-
work processor scenario thus considers a frequent inter-
leaving of computation and memory accesses using multi-
threading on a heterogeneous architecture. We have ex-
tended the architecture modeling of [5] to enable modeling
a network processor such as IXP1200. Indeed, a primary
goal of this work is to compare, the implementation of IPv4
forwarding switch application on Intel IXP1200 network
processor, with an analytical model of the application
mapped to the IXP1200 model. In this process, we hope to
understand the main limitations of current state-of-the-art
tools and evaluate the suitability of analytical approaches
for high-level design decisions.

The paper is organized as follows: First, we introduce
the analytical framework. Second, we describe how the
IPv4 application and the IXP1200 architecture are modeled
within this framework. We then provide and compare re-
sults of our case study. We conclude with observations and
scope for future work.

2. Analytical Framework

In the following we will briefly introduce task and ar-
chitecture models, service and arrival curves as well as the
network calculus in order to model and determine the
workload, the application, the NP architecture, and the
performance of a given mapping of the application onto NP
architecture. We restrict the description of the calculus to
the basics and refer the reader to [5][6] for a more refined
description, providing tighter bounds by using upper and
lower arrival and service curves.

2.1. Workload description

A workload on the network processor is defined by arri-
val curves of the incoming network traffic and the task
model associated with network traffic flows. Arrival curves
describe a kind of worst-case envelope by which traffic
patterns are restricted in terms of, for instance, burstiness
and average rate. Arrival curves are used in the context of
Integrated Services [7] in the Internet and thus provide a
natural abstraction of network traffic in the application
domain of network processing.

Arrival function x: The arrival function x(t) of a net-
work flow is equal to the number of packets seen on the
flow within the time interval [0,t] at a defined place in the
network processor micro-architecture.

Arrival curve α: Given a non-decreasing function
()tα defined for 0≥t , a flow with arrival function x is

constrained by the arrival curve α if and only if for all
ts ≤ : () () ()stsxtx −≤− α .

That means, during any time window of width τ the
amount of traffic for the flow is limited by ()τα . A com-
mon traffic specification is defined by the IETF (TSPEC
[8]) that restricts peak p and average rates r as well as the
burstiness b of a traffic flow as shown in Fig. 1.

α, β

∆t

p

r

b

R

service curve β

arrival curve α

1
delay

T
Fig. 1 Arrival and service curves.

Task model: Let F be a set of flows and T be a set of

tasks. To each flow Ff ∈ there is one directed acyclic
graph G(f) = (V(f), E(f)) with task nodes () TfV ⊆ and
communication edges E(f). The tasks ()fVv ∈ must be
executed for each packet of flow f while respecting the
precedence relations in E(f). Associated with each task v
there is a weight w(v) describing the computation demand
of v on a given computing resource, e.g. specified in clock
cycles. With each communication edge ()fEe ∈ there is a
weight w(e) defining the communication demand between
the two connected tasks, e.g. given in units of bytes.

2.2. Micro-architecture model

Architecture components: The micro-architecture of a
network processor consists of computation (CPU cores,
special units, etc.) and communication components (buses)
as well as separate RAMs. Associated with each architec-
ture component there is one service curve describing the
service capabilities of the component.

Service curve β: Given a component S and a flow
through S with arrival function x(t) at the input of S and
arrival function y(t) after processing at the output of S, S
offers a service curve β to the traffic flow if and only if for
all 0≥t there is some tt ≤0

 such that

() () ()00 tttxty −≥− β . That means in particular, a flow

backlogged during any time interval τ receives at least a

flow-through of β(τ), e.g. specified in clock cycles/sec or
bytes/sec. A curve representing Round-Robin scheduling
with average rate R is sketched in Fig. 1.

2.3. Determining system properties

Worst-case bounds for a flow's backlog at component S
and the delay experienced by a packet arriving at the com-
ponent can be determined. We only show a formula for the
delay (see [5][6] for details).

Bounded delay d: A flow constrained by α passes a
component offering service β to the flow. The delay d(t)
experienced by a packet in the component satisfies for all t:

() () (){ }()tssandtd
s

+≤≥≤
≥

βαττ 0:infsup
0

.

Since arrival curves are specified in units of packets/sec,
either the arrival or the service curve must be normalized
to the unit of the other curve by using the computation or
communication demand w respectively. For all curves used
in this paper determining delay bounds reduces to the cal-
culation of the maximum horizontal distance between cor-
responding α(t) and β(t) curves (see Fig. 1).

In order to determine delay properties as well as the
utilization of the whole network processor, the accumu-
lated service curve offered by the NP to a flow as well as
the arrival curves of processed flows can be calculated by
iterating through all service curves offered to the flows on
different components [5][6]. As an example we give the
formula for the calculation of the remaining service β’(t).

Remaining service β’: The remaining service β’(t) of a
component offering a service β to a flow f (which is con-
strained by α(t)) after processing one task v with demand
w(v) for all packets of flow f is given by

() () () ()()uvwut
tu

αββ ⋅−=′
≤≤0

sup .

2.4. Capabilities and limitations

Since the analytical approach is derived from the traffic
and service model used in the Quality of Service frame-
work for the Internet, this method is in particular suited to
describe workloads and performance properties in the
packet processing domain. Some inherent features include:
• Multithreading can be captured: If several tasks are

mapped to the same computation component they share
a single service curve. If more tasks were mapped to a
component than it can support using separate thread
contexts, any additional tasks could be punished by an
increase in its computation demand to account for the
required thread context swap.

• Heterogeneous micro-architectures can be considered:
Besides different types of computation components such
as general purpose computation cores or dedicated hard-

hardware units, several concurrent communication buses
and single-port memory interfaces can be modeled as
well.

• Pipelining of processing elements is possible: Tasks of
the execution path of a flow may be mapped to different
computation components that are interconnected by
point-to-point connections.

• Incorporation of shared resource arbitration: The order
by which service curves are processed as well as the
shape of the curves determine the thread scheduling and
access arbitration scheme used by computation and
communication components respectively. In [5], exam-
ples for fixed priority scheduling and generalized proc-
essor sharing (GPS) are shown.
The following extensions have been added to the

framework in [5]: Round-Robin and GPS scheduling, a
general, non-template based approach to model communi-
cation in order to enable automated design space explora-
tion of the computation and the communication structure
and tighter memory bounds by performing a lifetime-like
analysis on task execution chains. Further improvements
could include the modeling of multi-port RAMs.

Due to their accumulative nature service curves cannot
express any locality of accesses. This is not a drawback for
most applications in the packet-processing domain. The
incorporation of caches would require the interplay with
other analytical models.

The service curve approach is in particular suited to de-
termine worst-case corner cases of a design since its foun-
dations are in the real-time domain. Simulation is better
suited to capture sporadic and arbitrary dynamic effects
during the run-time of the system. The analytical approach
only needs per-packet processing and communication de-
mands which could be determined by analysis of pseudo
code or some other estimation technique. A simulation
framework however always requires an executable model
of the design.

3. Modeling IPv4 Forwarding application

 A 16 fast Ethernet port IPv4 forwarding switch applica-
tion is used in this work. Our functional specification of
the application is based on RFC 1812 [9]. The main com-
ponents of this functionality are: Packets with invalid IP
version numbers, broadcast packets, packets with time-to-
live (TTL) field less than one and packets with invalid ad-
dresses are dropped; packet header checksum is calculated
and the packet is dropped if the checksum is invalid; the
TTL field of packet headers with valid output ports based
on routing table entries are decremented and are routed to
appropriate output port. The output port is determined by
performing a longest prefix match on the IP destination
address field. Figure 2 illustrates the main components in

the functionality of our benchmark annotated with cycle
counts for 64byte packet size.

The components above represent the core functionality
of the benchmark. In addition, a number of steps are re-
quired to receive the packets from the external MAC unit
into the IXP1200 and extract the packet header, on which
the above stated operations are performed. Lastly, the
modified packet header and the packet payload need to be
written back into the MAC unit via the IX bus unit. These
additional operations, in fact, result in most of the pro-
gramming effort for our application. For example, 14 de-
tailed tasks are required to perform the core functionality
of our benchmark whereas we need 42 detailed tasks to
perform the ingress and egress operations on each packet.
Thus modeling such complex application tasks is a chal-
lenge for analytical methods and needs to be investigated.

4. Modeling IXP1200 architecture

The Intel IXP1200 processor [10] is targeted for appli-
cations performing packet forwarding and classification at
layers three and below of the OSI model. In this paper, we
introduce only the main components of the IXP1200 util-
ized by our application as needed for modeling. The
IXP1200 comprises six micro-engines, with four threads
on every micro-engine, for computation. There are four
unidirectional on-chip buses connecting both the off-chip
memories (SRAM and SDRAM) to the micro-engines.
External media access control units (MAC) are connected
to the IXP1200 via the IX Bus. The IX bus interface unit
has the required logic and memories to receive and trans-
mit packets to the external MAC unit. The IX bus unit has
a scratchpad memory (SRAM) and two FIFO memories,
with each having 16 entries of size 64 bytes. In addition,

the SDRAM unit is connected to the
IX bus unit via a separate on-chip
bus, used to transfer packet payloads
directly based on micro-engine
commands. An on-chip command
bus carries events and signals be-
tween micro-engines and the IX bus
unit.

In this work, we focus only on the
data plane of the IXP1200 network
processor. Hence, aspects related to
the StrongARM processor are not
modeled. Also, we have not modeled
the PCI bus interface and the hash
engine since we do not utilize these
peripherals.

A typical packet flow through the
IXP1200 follows the following steps:
the external media access control

(MAC) signals the receipt of a packet to the IX bus unit,
which in turn receives the packet directed by the micro-
engine. The packet header is extracted and read into the
micro-engine directly from the IX bus unit; the payload is
written directly from the receive FIFO into the SDRAM.
The micro-engine performs all the packet header checks, as
described earlier and launches a route table lookup, stored
in SRAM. The micro-engine thread writes the packet
header to the SDRAM and the packet descriptor with out-
put port information to the SRAM.

On the transmit side, a micro-engine thread keeps poll-
ing the SRAM for packet descriptors. As soon as the
scheduler notices a packet ready for transmission, it signals
one of the available threads to perform the transmit opera-
tion. A micro-engine thread then initiates the transfer of
the complete packet from the external SDRAM to the IX
bus unit transmit FIFO. A transmit state machine manages
the transfer of data from TFIFO to the external MAC.

5. Case study

A primary goal of this work is to implement a IPv4 for-
warding switch using state-of-the-art tools on a network
processor based system and compare this implementation
with an analytical framework based model to enhance the
quality of implementation (or results). In this process, we
have first implemented the application on IXP1200 and
then derived a task model as an input to the analytical
framework, as described in earlier sections.

5.1. Experimental setup

The IXP1200 implementation environment comprises a
micro-engine C language compiler and a simulation envi-

Fig. 2 Instance of IPv4 task graph derived from the application for
analysis. A detailed graph of IP lookup is shown on the right.

Outgoing
Ethernet/IP packets

Move Packet
from MAC to FIFO

Move Packet
from MAC to FIFO

Extract IP Header and
move to uEngine

Extract IP Header and
move to uEngine

Move Payload
from Fifo to SDRAM

Move Payload
from Fifo to SDRAM

IXP specific, 800 Cycles

Move Header
from uEngine to SDRAM

Move Header
from uEngine to SDRAM

Move Packet
from SDRAM to MAC

Move Packet
from SDRAM to MAC

IXP specific, 700 Cycles

Extract Destination IPExtract Destination IP
GetIPAddress
LookupIPRoute
DecIPTTL
350 Cycles

CheckIPHeader
150 Cycles

16-bit checksum on header,
~10 additions

16-bit checksum on header,
~10 additions

Check IP version fieldCheck IP version field

Check header lengthCheck header length

Drop packet if illegal source
address

Drop packet if illegal source
address

Drop packet if illegal
destination address

Drop packet if illegal
destination address

Check for TTL > 1Check for TTL > 1

Lookup IP RouteLookup IP Route

Decrement TTLDecrement TTL

Trie walk 1Trie walk 1

Trie walk 3…Trie walk 3…

Trie walk 2Trie walk 2

Extract IP dest addr,
Launch Table lookup

Extract IP dest addr,
Launch Table lookup

Verify if match
and extract dest port

Verify if match
and extract dest port

Verify if the right path
else perform a diff walk
Verify if the right path

else perform a diff walk

Verify if the right path
else perform a diff walk
Verify if the right path

else perform a diff walk

Get dest port Get dest port

Detail LookupIPRoute, 117 Cycles
Memory Accesses: 4 byte in, 1 byte out

Incoming
Ethernet/IP packets 24

12

12

10

12

15

20

12

ronment that displays detailed timing as well as other exe-
cution statistics like micro-engine and memory utilizations.
In our case study, we first developed the application in mi-
cro-engine C following the above specification based on
the Intel reference code. The application was partitioned so
that sixteen threads on four micro-engines were assigned
one port each on receive (and forwarding) part. The trans-
mit part of the application was assigned eight threads on
two micro-engines. This partitioning holds since the end-
to-end delay for a packet on the receive part is more than
twice that on the transmit part.

Performance on the IXP1200 was measured using ver-
sion 2.01 of the Developer Workbench assuming a clock
frequency of 200 MHz; the IX bus is 64-bit wide and has a
clock frequency of 80 MHz. Also, an off-chip and an off-
chip SRAM are used. Two IXF440 external media access
control unit (with eight fast Ethernet ports each) are con-
nected to the IX bus and Ethernet IP packets are streamed
from this unit to the IXP1200 and back. The packets for
the application contain destination addresses evenly dis-
tributed across the IPv4 32-bit address space. We employ
different packet sizes namely from 40 bytes to 256 bytes.
There is a single packet source for each input port that gen-
erates an evenly distributed load across all the output ports.

The following parameters are extracted for different
packet sizes to model the benchmark in the analytical ap-
proach: a detailed profiling of operations on one individual
packet, namely the individual time spent in different tasks,
the size of memory read or write and time required for dif-
ferent events and signals with respect to the micro-engine.

5.2. Results and Analysis

 In order to have a reference set of design points we de-
termined the maximum possible throughput for IPv4 for-
warding without packet loss by simulation. We varied the
packet length to account for payload storage versus header
processing trade-offs. The results are shown in Fig. 3. As
one can see, we approach line speed only for larger packet
sizes where the micro-engines can keep up with the

0

10

20

30

40

50

60

70

80

90

40 64 65 128 129 192 193 256
packet length [byte]

th
ro

u
g

h
p

u
t

[%
 o

f
lin

es
p

ee
d

]

simulation

Fig. 3 Throughput for IPv4 forwarding on IXP.

processing demand of the reduced number of packet arri-
vals (compared with small packet lengths). We can also
recognize the influence of the 64byte receive and transmit
FIFOs in the IX bus unit. As soon as an additional 64byte
segment is needed, there is a drop in the throughput, due to
the basic unit of data transfer between SDRAM and FIFOs
being 64bytes. Thus for a given delay of two 64byte trans-
fers we are transferring only 65bytes (instead of 128bytes).

Given these throughput numbers we compare the results
from simulation with the performance values calculated
with the analytical model of IP forwarding on the IXP mi-
cro-architecture by matching the corresponding traffic
throughput values. Differences in the accuracy of the ap-
proaches thus become apparent by looking at delay values
experienced by packets and the load generated by packet
processing on the micro-architecture components.

0.0E+00

5.0E-06

1.0E-05

1.5E-05

2.0E-05

2.5E-05

3.0E-05

3.5E-05

4.0E-05

40 64 65 128 129 192 193 256
packet length [byte]

en
d

-t
o

-e
n

d
 p

ac
ke

t
d

el
ay

 [
s]

simulation
Round-Robin analysis, scale factor 1/6
NP-GPS analysis
NP-GPS analysis, scale factor 2/3

Fig. 4 Total delay experienced by packets.

Fig. 4 shows the end-to-end delay experienced by pack-

ets for different packet lengths. The first analysis series is
based on Round-Robin (RR). The worst-case assumption
for the arbitration penalty to equal the service time of a full
RR frame is too pessimistic. For this series, we reduced the
penalty (parameter T in Fig. 1) to 1/6 of the original value
for each resource. The second series uses non-preemptive
generalized processor sharing (NP-GPS). Thus, the arbitra-
tion penalty reduces to the service length of only a single
task/packet of maximum size. This assumption quite well
matches the results from simulation. Close examination by
simulation indeed confirms that the average waiting time
of a task is only in the order of one task length. The third
series gives us an optimistic bound on the packet delay by
reducing the arbitration penalty further by a factor of 2/3.

An example of the component load is given in Fig. 5
which compares the load of the receive micro-engines. The
analysis results are based on original NP-GPS scheduling.
The simulation results are subdivided into polling effects
and the load generated by the actual computation. Polling
artifacts are not considered in the analytical model.

Both figures show a deviation of less than 15% between
the cycle-accurate simulation and the analytical model.
Moreover, the values obtained by simulation and by analy-
sis show the same increasing or decreasing trends in the
same order of magnitude. For instance, the end-to-end de-
lay sharply increases as soon as the processing of an addi-
tional 64byte segment is required.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

packet length [byte]

m
ic

ro
-E

n
g

in
e

lo
ad

 [
%

]

analytical model
simulation: polling artifacts
simulation: computation part

40 64 65 128 129 192 193 256

Fig. 5 Load of the receive-µEngines.

5.3. Discussion

In our study we have shown that the evaluation of a
challenging real-world example showed only minor differ-
ences between simulation-based and analytical model-
based approaches. The evaluation also revealed the sensi-
tivity of the design on the chosen scheduling strategy
which underpins the usefulness of the approach to quickly
identify corner cases of possible implementations.

Since we had to perform a reverse engineering of the
IXP to do the comparison in such detail, some uncertain-
ties remain such as the rotating priority-based arbitration
scheme of the command bus which cannot be accurately
modeled in the current framework. More important than
matching exact numbers however is the matching of trends
when modifying parameters. This is why we believe that
the service curve approach is indeed a reasonable candidate
for design space exploration of network processors where
the main goal is to find a first ranking of suitable designs.

6. Summary and future work

We have implemented IPv4 packet forwarding on the
Intel IXP1200 network processor using an ad-hoc parti-
tioning between threads and micro-engines. We have com-
pared the performance obtained by simulation with a net-
work calculus-based analytical approach. Comparing both
results we conclude:
• For small packet sizes, the chosen partition cannot keep

up with the line speed of the incoming ports.

• Artifacts of the 64byte segment organization are clearly
visible and are in particular apparent for small packets.

• The network calculus-based analytical approach is able
to capture trends in resource utilization and packet delay
with a suitable level of detail for being used in high-
level design space exploration (DSE).
As a next step, we will use the analytical models to find

an optimal partitioning of processing steps to micro-engine
threads. We will continue to broaden our DSE scope by
investigating varying workloads analytically for which a
trace-based simulation approach is too inflexible.

References

[1] P. Crowley, M. Fiuczynski, J. Baer, B. Bershad, “Character-

izing Processor Architectures for Programmable Network In-
terfaces,” Proceedings of the 2000 International Conference
on Supercomputing, Santa Fe, N.M., May 2000.

[2] K. Lahiri, A. Raghunathan, S. Dey, “System-Level Perform-
ance Analysis for Designing On-Chip Communication Archi-
tectures,” IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, 20(6): 768-783, June 2001.

[3] M. Franklin, T. Wolf, “A Network Processor Performance
and Design Model with Benchmark Parameterization,“ First
Workshop on Network Processors at the 8th International
Symposium on High Performance Computer Architecture
(HPCA8), Cambridge MA, USA, February 2002.

[4] S. Lakshmanamurthy, K.-Y. Liu, Y. Pun, L. Huston, U. Naik,
“Network Processor Performance Analysis Methodology,” In-
tel Technology Journal, 6(3): 19-28, August 2002.

[5] L. Thiele, S. Chakraborty, M. Gries, S. Künzli, “Design
Space Exploration of Network Processor Architectures,” First
Workshop on Network Processors at the 8th International
Symposium on High Performance Computer Architecture
(HPCA8), Cambridge MA, USA, February, 2002.

[6] J.-Y. Le Boudec, P. Thiran, “Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet,” LNCS 2050,
Springer Verlag, 2001

[7] B. Braden, D. Clark, S. Shenker, “Integrated Services in the
Internet architecture: an overview,” RFC1633, Internet Engi-
neering Task Force (IETF), June 1994.

[8] S. Shenker, J. Wroclawski, “General characterization pa-
rameters for integrated service network elements,” RFC2215,
Internet Engineering Task Force (IETF), Sept. 1997.

[9] F. Baker, “Requirements for IP Version 4 Routers,”
RFC1812, Internet Engineering Task Force (IETF), June
1995.

[10] Intel Corporation, "Intel IXP1200 Network Processor Fam-
ily: Hardware Reference Manual," Revision 8, pp. 225-228,
August 2001.

[11] S. Chakraborty, S. Künzli, L. Thiele, A. Herkersdorf, P.
Sagmeister, “Performance Evaluation of Network Processor
Architectures: Combining Simulation with Analytical Estima-
tion,” to appear, Computer Networks, Elsevier Science, 2003

	Main Page
	DF'03
	Front Matter
	Table of Contents
	Author Index

