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Abstract 
Programming network processors remains an art due to 

the variety of different network processor architectures 
and due to little support to reason and explore implemen-
tations on such architectures. We present a case study of 
mapping an IPv4 forwarding switch application on the 
Intel IXP1200 network processor and we compare this im-
plementation with an analytical model of both the applica-
tion and architecture used to evaluate different design 
alternatives. Our results not only show that we are able to 
model the IXP1200 and our application within 15% of the 
accuracy compared to that of IXP1200 simulation, but also 
find closely matching trends for different workloads. This 
shows the clear potential of such analytical techniques for 
design space exploration. 

     

1. Introduction 

Contemporary network processors (NPs) exhibit a wide 
range of architectures for performing similar tasks: from 
simple RISC cores with dedicated peripherals, in pipelined 
and/or parallel organization, to heterogeneous multiproces-
sors, based on complex multi-threaded cores with custom-
ized instruction sets. Evaluating such disparate architec-
tures via extensive benchmarking is time consuming and 
tedious, due to absence of a proper programming model.  

Programming such concurrent systems remains an art. 
The programmer not only is required to partition and bal-
ance the load of the application manually, it is also neces-
sary to implement each task, often in assembly, in order to 
get reliable performance estimation. Hence, a robust appli-
cation mapping strategy for such architectures requires a 
balance between thread partitioning, scheduling, memory 
accesses and I/O. With the current state-of-the-art tools this 
task becomes time consuming and error prone, due to trial-
and-error method employed by system implementers based 
on simulation runs. Therefore, methods to address the 
above issues need to be investigated.  

For the next generation of network processor based sys-
tem implementations, we strongly believe that a consider-
able emphasis will be put on performance per cost (for ex-
ample, power consumption) aspects and on support of ap-
propriate programming models. Therefore, it is essential to 
investigate methods that help in identifying limitations and 
bottlenecks in system implementation without going all the 
way down to complete implementations, as is the current 
practice. Consequently, high-level design space exploration 
tools are required that support a wide range of heterogene-
ous architectures and enables precise reasoning about dif-
ferent implementation styles and their performances. Data 
generated by such tools while evaluating single design 
points should ideally be indicative of final achievable qual-
ity of results. 

Related works focus on three different approaches 
namely simulation, trace analysis and analytical models. 
Simulation and trace analysis are somewhat similar, since 
for generating a trace one needs an (cycle) accurate simula-
tor. Simulation based approaches, such as [1], require ap-
plication specification in a high-level language or assem-
bly, compiled to the particular architecture. In addition, 
different workloads need to be specified or generated for 
both the simulation and trace based analysis. Trace based 
analysis (like [2]) is limited by the fact that they capture 
details of a single execution for the particular workload. 
Thus for event driven systems with varying workloads, a 
large amount of traces need to be generated for any useful 
analysis and hence the gap between simulation and trace is 
no longer that large.  

In contrast to simulation and trace analysis, analytical 
models promise a fast evaluation that allows for a larger 
design space to be explored. In the packet processing do-
main, [3] presents an approach to explore different cache 
configurations based on general purpose computing ele-
ments. Lakshamanamurthy et al. [4] present an ad-hoc 
approach limited to the IXP2400 network processor.   

Thiele et al. [5] present a generic approach for modeling 
applications and architectures in this domain. This model 



although specialized to some extent for our domain, pro-
vides a natural way to specify different architectural 
parameters, workloads and application task graphs. To 
date, no comparison of such techniques to real-life network 
processor designs exists. Although the comparison by 
Chakraborty et al. [11] focuses on the packet transport 
from network interfaces to a general-purpose CPU core, 
ours is the only work that is able to capture the characteris-
tics of the network processing domain by emphasizing a 
fine-grained description of a multiprocessor system and the 
packet processing itself. Our chosen, representative net-
work processor scenario thus considers a frequent inter-
leaving of computation and memory accesses using multi-
threading on a heterogeneous architecture. We have ex-
tended the architecture modeling of [5] to enable modeling 
a network processor such as IXP1200. Indeed, a primary 
goal of this work is to compare, the implementation of IPv4 
forwarding switch application on Intel IXP1200 network 
processor, with an analytical model of the application 
mapped to the IXP1200 model. In this process, we hope to 
understand the main limitations of current state-of-the-art 
tools and evaluate the suitability of analytical approaches 
for high-level design decisions.  

The paper is organized as follows: First, we introduce 
the analytical framework. Second, we describe how the 
IPv4 application and the IXP1200 architecture are modeled 
within this framework. We then provide and compare re-
sults of our case study. We conclude with observations and 
scope for future work. 

2. Analytical Framework 

In the following we will briefly introduce task and ar-
chitecture models, service and arrival curves as well as the 
network calculus in order to model and determine the 
workload, the application, the NP architecture, and the 
performance of a given mapping of the application onto NP 
architecture. We restrict the description of the calculus to 
the basics and refer the reader to [5][6] for a more refined 
description, providing tighter bounds by using upper and 
lower arrival and service curves. 

2.1. Workload description 

A workload on the network processor is defined by arri-
val curves of the incoming network traffic and the task 
model associated with network traffic flows. Arrival curves 
describe a kind of worst-case envelope by which traffic 
patterns are restricted in terms of, for instance, burstiness 
and average rate. Arrival curves are used in the context of 
Integrated Services [7] in the Internet and thus provide a 
natural abstraction of network traffic in the application 
domain of network processing. 

Arrival function x: The arrival function x(t) of a net-
work flow is equal to the number of packets seen on the 
flow within the time interval [0,t] at a defined place in the 
network processor micro-architecture. 

Arrival curve α: Given a non-decreasing function 
( )tα defined for 0≥t , a flow with arrival function x is 

constrained by the arrival curve α  if and only if for all 
ts ≤ : ( ) ( ) ( )stsxtx −≤− α . 

That means, during any time window of width τ the 
amount of traffic for the flow is limited by ( )τα . A com-
mon traffic specification is defined by the IETF (TSPEC 
[8]) that restricts peak p and average rates r as well as the 
burstiness b of a traffic flow as shown in Fig. 1. 
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Fig. 1 Arrival and service curves. 

 
Task model: Let F be a set of flows and T be a set of 

tasks. To each flow Ff ∈  there is one directed acyclic 
graph G(f) = (V(f), E(f)) with task nodes ( ) TfV ⊆ and 
communication edges E(f).  The tasks ( )fVv ∈  must be 
executed for each packet of flow f while respecting the 
precedence relations in E(f).  Associated with each task v 
there is a weight w(v) describing the computation demand 
of v on a given computing resource, e.g. specified in clock 
cycles. With each communication edge ( )fEe ∈  there is a 
weight w(e) defining the communication demand between 
the two connected tasks, e.g. given in units of bytes. 

2.2. Micro-architecture model 

Architecture components: The micro-architecture of a 
network processor consists of computation (CPU cores, 
special units, etc.) and communication components (buses) 
as well as separate RAMs. Associated with each architec-
ture component there is one service curve describing the 
service capabilities of the component. 

Service curve β: Given a component S and a flow 
through S with arrival function x(t) at the input of S and 
arrival function y(t) after processing at the output of S, S 
offers a service curve β to the traffic flow if and only if for 
all 0≥t  there is some tt ≤0

 such that 

( ) ( ) ( )00 tttxty −≥− β . That means in particular, a flow 

backlogged during any time interval τ receives at least a 



flow-through of β(τ), e.g. specified in clock cycles/sec or 
bytes/sec. A curve representing Round-Robin scheduling 
with average rate R is sketched in Fig. 1. 

2.3. Determining system properties 

Worst-case bounds for a flow's backlog at component S 
and the delay experienced by a packet arriving at the com-
ponent can be determined. We only show a formula for the 
delay (see [5][6] for details). 

Bounded delay d: A flow constrained by α passes a 
component offering service β to the flow. The delay d(t) 
experienced by a packet in the component satisfies for all t:  

( ) ( ) ( ){ }( )tssandtd
s

+≤≥≤
≥

βαττ 0:infsup
0

. 

Since arrival curves are specified in units of packets/sec, 
either the arrival or the service curve must be normalized 
to the unit of the other curve by using the computation or 
communication demand w respectively. For all curves used 
in this paper determining delay bounds reduces to the cal-
culation of the maximum horizontal distance between cor-
responding α(t) and β(t) curves (see Fig. 1). 

In order to determine delay properties as well as the 
utilization of the whole network processor, the accumu-
lated service curve offered by the NP to a flow as well as 
the arrival curves of processed flows can be calculated by 
iterating through all service curves offered to the flows on 
different components [5][6]. As an example we give the 
formula for the calculation of the remaining service β’(t). 

Remaining service β’: The remaining service β’(t) of a 
component offering a service β to a flow f (which is con-
strained by α(t)) after processing one task v with demand 
w(v) for all packets of flow f is given by 

( ) ( ) ( ) ( )( )uvwut
tu

αββ ⋅−=′
≤≤0

sup . 

2.4. Capabilities and limitations 

Since the analytical approach is derived from the traffic 
and service model used in the Quality of Service frame-
work for the Internet, this method is in particular suited to 
describe workloads and performance properties in the 
packet processing domain. Some inherent features include: 
• Multithreading can be captured: If several tasks are 

mapped to the same computation component they share 
a single service curve. If more tasks were mapped to a 
component than it can support using separate thread 
contexts, any additional tasks could be punished by an 
increase in its computation demand to account for the 
required thread context swap. 

• Heterogeneous micro-architectures can be considered: 
Besides different types of computation components such 
as general purpose computation cores or dedicated hard-

hardware units, several concurrent communication buses 
and single-port memory interfaces can be modeled as 
well.  

• Pipelining of processing elements is possible: Tasks of 
the execution path of a flow may be mapped to different 
computation components that are interconnected by 
point-to-point connections. 

• Incorporation of shared resource arbitration: The order 
by which service curves are processed as well as the 
shape of the curves determine the thread scheduling and 
access arbitration scheme used by computation and 
communication components respectively. In [5], exam-
ples for fixed priority scheduling and generalized proc-
essor sharing (GPS) are shown. 
The following extensions have been added to the 

framework in [5]: Round-Robin and GPS scheduling, a 
general, non-template based approach to model communi-
cation in order to enable automated design space explora-
tion of the computation and the communication structure 
and tighter memory bounds by performing a lifetime-like 
analysis on task execution chains. Further improvements 
could include the modeling of multi-port RAMs. 

Due to their accumulative nature service curves cannot 
express any locality of accesses. This is not a drawback for 
most applications in the packet-processing domain. The 
incorporation of caches would require the interplay with 
other analytical models. 

The service curve approach is in particular suited to de-
termine worst-case corner cases of a design since its foun-
dations are in the real-time domain. Simulation is better 
suited to capture sporadic and arbitrary dynamic effects 
during the run-time of the system. The analytical approach 
only needs per-packet processing and communication de-
mands which could be determined by analysis of pseudo 
code or some other estimation technique. A simulation 
framework however always requires an executable model 
of the design.  

3. Modeling IPv4 Forwarding application 

 A 16 fast Ethernet port IPv4 forwarding switch applica-
tion is used in this work. Our functional specification of 
the application is based on RFC 1812 [9]. The main com-
ponents of this functionality are: Packets with invalid IP 
version numbers, broadcast packets, packets with time-to-
live (TTL) field less than one and packets with invalid ad-
dresses are dropped; packet header checksum is calculated 
and the packet is dropped if the checksum is invalid; the 
TTL field of packet headers with valid output ports based 
on routing table entries are decremented and are routed to 
appropriate output port. The output port is determined by 
performing a longest prefix match on the IP destination 
address field. Figure 2 illustrates the main components in 



the functionality of our benchmark annotated with cycle 
counts for 64byte packet size. 

The components above represent the core functionality 
of the benchmark. In addition, a number of steps are re-
quired to receive the packets from the external MAC unit 
into the IXP1200 and extract the packet header, on which 
the above stated operations are performed. Lastly, the 
modified packet header and the packet payload need to be 
written back into the MAC unit via the IX bus unit. These 
additional operations, in fact, result in most of the pro-
gramming effort for our application. For example, 14 de-
tailed tasks are required to perform the core functionality 
of our benchmark whereas we need 42 detailed tasks to 
perform the ingress and egress operations on each packet. 
Thus modeling such complex application tasks is a chal-
lenge for analytical methods and needs to be investigated.  

4. Modeling IXP1200 architecture 

The Intel IXP1200 processor [10] is targeted for appli-
cations performing packet forwarding and classification at 
layers three and below of the OSI model. In this paper, we 
introduce only the main components of the IXP1200 util-
ized by our application as needed for modeling. The 
IXP1200 comprises six micro-engines, with four threads 
on every micro-engine, for computation. There are four 
unidirectional on-chip buses connecting both the off-chip 
memories (SRAM and SDRAM) to the micro-engines. 
External media access control units (MAC) are connected 
to the IXP1200 via the IX Bus. The IX bus interface unit 
has the required logic and memories to receive and trans-
mit packets to the external MAC unit. The IX bus unit has 
a scratchpad memory (SRAM) and two FIFO memories, 
with each having 16 entries of size 64 bytes. In addition, 

the SDRAM unit is connected to the 
IX bus unit via a separate on-chip 
bus, used to transfer packet payloads 
directly based on micro-engine 
commands. An on-chip command 
bus carries events and signals be-
tween micro-engines and the IX bus 
unit.  

In this work, we focus only on the 
data plane of the IXP1200 network 
processor. Hence, aspects related to 
the StrongARM processor are not 
modeled. Also, we have not modeled 
the PCI bus interface and the hash 
engine since we do not utilize these 
peripherals.  

A typical packet flow through the 
IXP1200 follows the following steps: 
the external media access control 

(MAC) signals the receipt of a packet to the IX bus unit, 
which in turn receives the packet directed by the micro-
engine. The packet header is extracted and read into the 
micro-engine directly from the IX bus unit; the payload is 
written directly from the receive FIFO into the SDRAM. 
The micro-engine performs all the packet header checks, as 
described earlier and launches a route table lookup, stored 
in SRAM. The micro-engine thread writes the packet 
header to the SDRAM and the packet descriptor with out-
put port information to the SRAM.  

On the transmit side, a micro-engine thread keeps poll-
ing the SRAM for packet descriptors. As soon as the 
scheduler notices a packet ready for transmission, it signals 
one of the available threads to perform the transmit opera-
tion. A micro-engine thread then initiates the transfer of 
the complete packet from the external SDRAM to the IX 
bus unit transmit FIFO. A transmit state machine manages 
the transfer of data from TFIFO to the external MAC.   

5. Case study  

A primary goal of this work is to implement a IPv4 for-
warding switch using state-of-the-art tools on a network 
processor based system and compare this implementation 
with an analytical framework based model to enhance the 
quality of implementation (or results). In this process, we 
have first implemented the application on IXP1200 and 
then derived a task model as an input to the analytical 
framework, as described in earlier sections.  

5.1. Experimental setup 

The IXP1200 implementation environment comprises a 
micro-engine C language compiler and a simulation envi-

Fig. 2 Instance of IPv4 task graph derived from the application for 
analysis. A detailed graph of IP lookup is shown on the right. 
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ronment that displays detailed timing as well as other exe-
cution statistics like micro-engine and memory utilizations. 
In our case study, we first developed the application in mi-
cro-engine C following the above specification based on 
the Intel reference code. The application was partitioned so 
that sixteen threads on four micro-engines were assigned 
one port each on receive (and forwarding) part. The trans-
mit part of the application was assigned eight threads on 
two micro-engines. This partitioning holds since the end-
to-end delay for a packet on the receive part is more than 
twice that on the transmit part.  

Performance on the IXP1200 was measured using ver-
sion 2.01 of the Developer Workbench assuming a clock 
frequency of 200 MHz; the IX bus is 64-bit wide and has a 
clock frequency of 80 MHz. Also, an off-chip and an off-
chip SRAM are used. Two IXF440 external media access 
control unit (with eight fast Ethernet ports each) are con-
nected to the IX bus and Ethernet IP packets are streamed 
from this unit to the IXP1200 and back. The packets for 
the application contain destination addresses evenly dis-
tributed across the IPv4 32-bit address space. We employ 
different packet sizes namely from 40 bytes to 256 bytes. 
There is a single packet source for each input port that gen-
erates an evenly distributed load across all the output ports.  

The following parameters are extracted for different 
packet sizes to model the benchmark in the analytical ap-
proach: a detailed profiling of operations on one individual 
packet, namely the individual time spent in different tasks, 
the size of memory read or write and time required for dif-
ferent events and signals with respect to the micro-engine.  

5.2. Results and Analysis 

 In order to have a reference set of design points we de-
termined the maximum possible throughput for IPv4 for-
warding without packet loss by simulation. We varied the 
packet length to account for payload storage versus header 
processing trade-offs. The results are shown in Fig. 3. As 
one can see, we approach line speed only for larger packet 
sizes where the micro-engines can keep up with the 
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Fig. 3 Throughput for IPv4 forwarding on IXP. 

processing demand of the reduced number of packet arri-
vals (compared with small packet lengths). We can also 
recognize the influence of the 64byte receive and transmit 
FIFOs in the IX bus unit. As soon as an additional 64byte 
segment is needed, there is a drop in the throughput, due to 
the basic unit of data transfer between SDRAM and FIFOs 
being 64bytes. Thus for a given delay of two 64byte trans-
fers we are transferring only 65bytes (instead of 128bytes).  

Given these throughput numbers we compare the results 
from simulation with the performance values calculated 
with the analytical model of IP forwarding on the IXP mi-
cro-architecture by matching the corresponding traffic 
throughput values. Differences in the accuracy of the ap-
proaches thus become apparent by looking at delay values 
experienced by packets and the load generated by packet 
processing on the micro-architecture components.  
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Fig. 4 Total delay experienced by packets.  
 
Fig. 4 shows the end-to-end delay experienced by pack-

ets for different packet lengths. The first analysis series is 
based on Round-Robin (RR). The worst-case assumption 
for the arbitration penalty to equal the service time of a full 
RR frame is too pessimistic. For this series, we reduced the 
penalty (parameter T in Fig. 1) to 1/6 of the original value 
for each resource. The second series uses non-preemptive 
generalized processor sharing (NP-GPS). Thus, the arbitra-
tion penalty reduces to the service length of only a single 
task/packet of maximum size. This assumption quite well 
matches the results from simulation. Close examination by 
simulation indeed confirms that the average waiting time 
of a task is only in the order of one task length. The third 
series gives us an optimistic bound on the packet delay by 
reducing the arbitration penalty further by a factor of 2/3.  

An example of the component load is given in Fig. 5 
which compares the load of the receive micro-engines. The 
analysis results are based on original NP-GPS scheduling. 
The simulation results are subdivided into polling effects 
and the load generated by the actual computation. Polling 
artifacts are not considered in the analytical model.  



Both figures show a deviation of less than 15% between 
the cycle-accurate simulation and the analytical model. 
Moreover, the values obtained by simulation and by analy-
sis show the same increasing or decreasing trends in the 
same order of magnitude. For instance, the end-to-end de-
lay sharply increases as soon as the processing of an addi-
tional 64byte segment is required.  
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Fig. 5 Load of the receive-µEngines. 

5.3. Discussion   

In our study we have shown that the evaluation of a 
challenging real-world example showed only minor differ-
ences between simulation-based and analytical model-
based approaches. The evaluation also revealed the sensi-
tivity of the design on the chosen scheduling strategy 
which underpins the usefulness of the approach to quickly 
identify corner cases of possible implementations.  

Since we had to perform a reverse engineering of the 
IXP to do the comparison in such detail, some uncertain-
ties remain such as the rotating priority-based arbitration 
scheme of the command bus which cannot be accurately 
modeled in the current framework. More important than 
matching exact numbers however is the matching of trends 
when modifying parameters. This is why we believe that 
the service curve approach is indeed a reasonable candidate 
for design space exploration of network processors where 
the main goal is to find a first ranking of suitable designs.  

6. Summary and future work 

We have implemented IPv4 packet forwarding on the 
Intel IXP1200 network processor using an ad-hoc parti-
tioning between threads and micro-engines. We have com-
pared the performance obtained by simulation with a net-
work calculus-based analytical approach. Comparing both 
results we conclude: 
• For small packet sizes, the chosen partition cannot keep 

up with the line speed of the incoming ports. 

• Artifacts of the 64byte segment organization are clearly 
visible and are in particular apparent for small packets. 

• The network calculus-based analytical approach is able 
to capture trends in resource utilization and packet delay 
with a suitable level of detail for being used in high-
level design space exploration (DSE).    
As a next step, we will use the analytical models to find 

an optimal partitioning of processing steps to micro-engine 
threads. We will continue to broaden our DSE scope by 
investigating varying workloads analytically for which a 
trace-based simulation approach is too inflexible.  
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