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Abstract—Quantum computing is currently moving from
an academic idea to a practical reality. Quantum computing
in the cloud is already available and allows users from all over
the world to develop and execute real quantum algorithms.
However, companies which are heavily investing in this new
technology such as Google, IBM, Rigetti, Intel, IonQ, and
Xanadu follow diverse technological approaches. This led to
a situation where we have substantially di�erent quantum
computing devices available thus far. They mostly di�er in
the number and kind of qubits and the connectivity between
them. Because of that, various methods for realizing the
intended quantum functionality on a given quantum comput-
ing device are available. This paper provides an introduction
and overview into this domain and describes corresponding
methods, also referred to as compilers, mappers, synthesizers,
transpilers, or routers.

I. Introduction

Quantum computing has been a very active and promising
area of research and, especially in the last years, of tech-
nology development. Since the physicist Richard Feynman
proposed the idea of building a quantum computer to simu-
late quantum systems in the early 80’s [1], several quantum
algorithms and quantum error correction techniques have
been developed [2], [3]. By exploiting quantum phenomena
such as superposition and entanglement, quantum computers
promise to solve hard problems that are intractable for even
the most powerful conventional supercomputers. In addition,
remarkable progress has been made in quantum hardware
based on di*erent technologies such as superconducting
circuits, trapped ions, silicon quantum dots, and topological
qubits [4]–[7]. A recent breakthrough in quantum comput-
ing has been the experimental demonstration of quantum
supremacy1 using a superconducting quantum processor con-
sisting of 53 qubits [8].

Current quantum computing devices are often referred to
as Noisy Intermediate-Scale Quantum (NISQ) devices [9], to
highlight their limited size and imperfect behaviour due to
noise. However, while quantum technologies need to improve
coherence times and gate 6delities to achieve overall lower
error rates, quantum computing in the cloud is already a
reality o*ering small quantum computing devices that are ca-
pable of handling basic quantum algorithms. Companies such
as Google, IBM, Rigetti, and Intel, have already announced

1A quantum computer is capable of solving a computational task that
would require an unreasonable amount of time on any classical supercom-
puter.

72-qubit, 50-qubit, 128-qubit, and 49-qubit superconducting
devices, respectively.

In these quantum processors, qubits are arranged in a
2D topology with limited connectivity between them and in
which only nearest-neighbor (NN) interactions are allowed.
This is one of the main constraints of today’s quantum
devices and frequently requires the quantum information
stored in the qubits to be moved to other adjacent qubits
– typically by means of SWAP operations. Quantum algo-
rithms, which are described in terms of quantum circuits,
neglect the speci6c qubit connectivity and, therefore, cannot
be directly executed on the quantum computing device but
need to be realized with respect to this and others constraints.
The procedure of adapting a circuit to satisfy the quantum
processor restrictions is known as the compiling, mapping,
synthesis, transpiling, or routing problem.

The mapping process often causes an increase of the
number of quantum operations as well as the depth (number
of time-steps) of the quantum circuit. The success rate of the
algorithm is consequently reduced since the operations are
error prone and the qubits easily degrade their state over
the time due to the interaction with the environment. To
minimize the negative impact of the mapping, it is required
to develop e:cient methods that minimize the resulting
overhead – especially for NISQ devices in which the lack of
active protection against errors will make long computations
unreliable.

This paper will provide an introduction and overview on
the mapping problem and, by this, on how to realize quantum
algorithms that are represented in terms of quantum circuits
to real quantum devices. To this end, we will 6rst review the
basics of quantum computing and, afterwards, will present
two mapping approaches for realizing quantum algorithms
on two di*erent superconducting transmon devices. The 6rst
targets an IBM processor, the IBM QX4 [10], that consists of
6ve qubits. The second is meant to execute quantum circuits
on the Surface-17 chip [11], [12] composed of seventeen
quits.2 A more detailed discussion on the di*erent kind of
quantum devices and the internal representations required by
the mappers will also be provided. Finally, we will pose some
open questions that the quantum compilation community
should consider.

2Note that larger quantum architectures are available from both vendors,
but to keep the following descriptions and examples simple, we use these
ones.
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II. Basics on&antum Computing

In contrast to classical circuits and systems, computations
in the quantum realm rely on so-called quantum bits or
qubits. Qubits can assume the well-known basis states |0〉
and |1〉 (here written using Dirac notation), but can also be
put into superposition of both. More precisely, the state of
a qubit (in other words, a quantum state) can be described
by |ψ〉 = α0 |0〉 + α1 |1〉, where α0 and α1 are complex
numbers called amplitudes and |α0|2 + |α1|2 has to be equal
to 1. Measuring a single qubit will result in a binary value,
0 or 1, collapsing the qubit to either of the two basis states
|0〉 and |1〉 with probability |α0|2 and |α1|2, respectively. The
state of n such qubits is described by the tensor product of
the individual states – eventually leading to a state described
by 2n amplitudes α0...0, α0...1, . . . , α1...1, which is usually
provided in terms of a state vector.
A quantum state can be changed by applying quantum

gates on it. Each quantum gate can be described by unitary
matrices and may act on one or more qubits, although
usually only one-qubit and two-qubit gates are naturally
supported by most quantum computing devices. Common
gates performed on single qubits are the Hadamard gate H
to set a qubit into superposition, the Pauli gates X , Y , and Z
which rotate the qubit state on the respective axis (assuming
a Bloch-sphere description of the qubit state [13]), as well as
the phase shift gate T . They are described by

H =
1√
2
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1 −1
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1 0
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Two-qubit operations exist, e.g., in terms of controlled
versions of single-qubit gates, where one qubit acts as control
qubit and the other one acts as target qubit – eventually,
employing, e.g.,

CX =







1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0






and CZ =







1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1







for the controlled X gate, also known as controlled NOT gate
abbreviated with CNOT, since X realizes a NOT operation,
and the controlled Z gate, respectively. Besides that, the SWAP
gate de7ned by

SWAP =







1 0 0 0

0 0 1 0

0 1 0 1

0 0 0 1







exchanges the values of the two involved qubits, which is
essential for the mapping methods described in this paper.
To evaluate the e8ect of a quantum gate on a quantum

state, the respective vector (describing the quantum state)
simply has to be multiplied with the respective matrix (de-
scribing the gate). The gates reviewed above form a universal
gate set, i.e., all quantum functions can be realized by them.

q1 • T •

q2 H •

q3 H • •

q4
g1 g2 g3 g4 g5 g6 g7 g8

(a) W/ all gates

q1 • •

q2 •

q3 • •

q4
g1 g2 g3 g4 g5

(b) W/o single-qubit gates

Figure 1: An example of a quantum circuit.

Sequences of quantum operations are 7nally de7ned by
quantum algorithms which are usually described using
high-level quantum languages (e.g. Sca8old [14] or Quip-
per [15]), quantum assembly languages (e.g. OpenQASM 2.0
developed by IBM [16] or cQASM [17]), or circuit diagrams.
For the purpose of this overview, we are using circuit dia-

grams such as those in Fig. 1(a) as representation of quantum
algorithms in the following. Here, qubits are visualized as cir-
cuit lines that are passed through quantum operations, which
are denoted by boxes including their respective denominator
in case of single-qubit operations and a black dot and a ⊕-
symbol for control qubit and target qubit, respectively, in case
of a CNOT operation. Note that the qubit lines do not refer
to an actual hardware connection as in classical logic, but
rather de7ne in which order (from left to right) the respective
operations are applied.
Physical implementations of quantum computers may rely

on di8erent technologies. In this work, we will focus on
quantum computers based on superconducting transmon
qubits [18] on silicon chips. Here, operations are conducted
through microwave pulses transferred into and out of dilution
refrigerators, in which the quantum chips are set at an
operating temperature of around 15 mK. Communication
into, out of, and among the qubits is done through on-chip
resonators.

III. Mapping&antum Circuits
to&antum Computing Devices

In this section, we review the mapping problem and pro-
vide a brief overview of selected previous work on the topic.
Based on that, the following sections provide descriptions
of mapping methods that have explicitly been developed for
existing quantum devices as well as a more unifying look to
this mapping problem.

A. The Mapping Problem

As in classical computers, quantum algorithms described
as programs using a high-level language have to be compiled
into a series of low-level instructions like assembly code
and, ultimately, machine code. As sketched in Figure 2, in a
quantum computer these instructions need to be ultimately
translated into the pulses that operate on the qubits and
perform the desired operation [19].
In this context quantum algorithms can be described as a

list of sequential gates, each acting on a few qubits only, and
visualized in terms of quantum circuits. Quantum circuits
cannot be directly realized on real quantum processors,
but need to be adapted to the speci7city of each quantum
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Figure 2: Sketch of the mapping process for quantum algorithms. The compiler depicted in the center receives two kinds
of inputs: from the left it receives the quantum algorithm in terms of a sequential list of quantum gates to be executed
(expressed in cQASM [17]) and from the right a description of the machine, possibly including the control electronics in
addition to the quantum hardware. Its output is a series of scheduled operations that can be executed by the machine and
is depicted at the bottom in terms of the control signals that implement it. The initial placement of the program qubits
{q1, q2, q3} may di!er from the "nal placement. For simplicity we have assumed that the CNOT and H gates are available
in the machine’s gate set instead of the native gates of Surface-7.

device. In addition to preserving all dependencies between
the quantum operations, compilers of quantum circuits must
perform three important tasks: 1) express the operations in
terms of the gates native to the quantum processor, a task
called gate decomposition, 2) initialize and maintain the map
specifying which physical qubit (qubit in the quantum device)
is associated to each program qubit (qubit in the circuit
description, sometimes called logical qubit in the literature),
a task called placement of the qubits, and 3) schedule the
two-qubit gates compatibly with the physical connectivity,
often by introducing additional routing operations.

In this work we do not elaborate on the gate decom-
position, apart from observing that most current quantum
devices provide a native gate set that is equivalent and often
larger than the universal gate set described in the previous
section.3 The two remaining tasks are performed by the
circuit mapper within the compiler. Notice that the task
of initializing the qubit placement is expected to play an
important role in near term devices, but will probably have a
relatively limited impact when algorithms grow in length. For
this reason, the main focus of the following sections will be
on the problem of minimizing the routing overhead, arguably
the most impactful mapping task especially when excluding
quantum error correction.

The problem is simply stated: one needs to schedule a
two-qubit gate but the corresponding program qubits are cur-
rently placed on non-connected physical qubits. The place-
ment must therefore be modi"ed with the goal of moving
the involved qubits to adjacent connected ones. Quantum
information cannot be copied and there is essentially one

3Approaches for decomposition have, e.g., been introduced in [20]–[23].

way of transferring it4, namely by applying SWAP gates that
e!ectively exchange the state of two connected qubits.

The functionality of the circuit mapper, which is usually
embedded in the compiler, is sketched in Fig. 2. It requires
two separate inputs, one related to the abstract algorithm
to implement and the other associated with the quantum
processor chosen for its execution. The former is usually
provided in terms of high-level code [14], [15] or Quantum
Assembly Language (QASM) instructions [16], [17], an ex-
plicit list of low-level operations corresponding to single-
and two-qubit gates, and can be visualized in the form of
quantum circuits. The latter corresponds to a description of
the hardware, from the qubit topology and connectivity to the
electronics that generate and distribute the control signals.
The compiler is in charge of decomposing the operations
in terms of the gates native to the processor and then of
the mapping process. The mapping process is comprised of
the initial placement of qubits, qubit routing, and operation
scheduling.

B. Prior Work

Several solutions have already been proposed for solving
the mapping problem; that is, to make quantum circuits
executable on the targeted quantum device by transforming
and adapting them to the constraints of the quantum proces-
sor [24]–[54]. Most of the works focus on NISQ devices such

4Another approach is based on teleportation, corresponding to
long-distance transfer of the qubit state. It requires the creation of multi-
qubit entangled states that are preliminarily distributed across the qubit
register and that can be consumed to transfer a qubit state. Since the
distribution of the entangled state requires SWAP gates, the teleportation
approach can be seen as a SWAP-based routing with relaxed time constraints.
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as the IBM [10] or Rigetti [55] chips as they are accessible
trough the cloud. The proposed mapping solutions di er
and therefore can be classi!ed according to the following
characteristics:

• Quantum hardware constraints: one of the main
restrictions of current quantum devices is the limited
connectivity between the qubits. Di erent quantum pro-
cessors, even within the same family, can have di erent
topologies such as a linear array (1D), a 2D array with
only nearest-neighbour interactions [29], [30], [32], [38],
[41], or more arbitrary shapes [36], [42], [43], [48], [52].
Although most of the works on mapping focus on the
qubit connectivity constraint, there are other restrictions
that originate from the classical control part and that
reduce the parallelizability of quantum gates [35], [39].
This kind of constraints become more and more relevant
when scaling-up quantum systems as resources need to
be shared among the qubits.

• Solution approach and methodology: exact ap-
proaches [30], [43], [49] are feasible when considering
relatively small number of qubits and gates, giving
minimal or close-to-minimal solutions. However, they
are not scalable. Approximate solutions using heuristics
can be used for large quantum circuits [25], [34], [52].
Some used methods are (Mixed) Integer Linear Pro-
gramming ((M)ILP) solvers [24], [39], [53], Satis!ability
Modulo Theory (SMT) solvers [43], [45], [46], heuristic
(search) algorithms [24], [28], [31], [33], [40], [44], [54],
decision diagrams [27], or even temporal planners and
reinforcement learning [37], [51].

• Cost function: there are di erent metrics that can be
optimised in the mapping process. The most common
cost functions are the number of gates (i.e. minimize
the number of added SWAPs) and the circuit depth
or latency (i.e. minimize the number of time-steps of
the circuit). Recent works started optimising directly
for circuit reliability (i.e. minimize the error rate by
choosing the most reliable paths) [45]–[47], [50].

• Solution features: In addition to the just mentioned
characteristics, there are other important features that
can lead to better solutions. Some examples are the
look-back that refers to taking into account the previous
already scheduled operations when selecting the routing
path [39] or the look-ahead feature [54] [40], [52] that
considers not only the current two-qubit gates that
need to be routed and scheduled but also some of
the future ones with some weights. Besides that, also
pre-processing steps dedicated to particular quantum
functionality have shown to be extremely bene!cial [26].

In the following sections, we will describe some of these
mapping methods, which have explicitly been developed for
current quantum processors.

IV. Mapping/antum Circuits on IBM Q Devices

In 2017, IBM launched the IBM Quantum Experience [10]) –
a web portal which allows users to write quantum programs
and run them on actual quantum computers. To this end,
physical realizations of quantum computers have been made

publicly available through cloud access. Diagrams of the
various IBM Q quantum chips are available in [56].
Those implementations support the elementary single

qubit gates U(θ, φ, λ) = Rz(φ)Ry(θ)Rz(λ) (i.e. an Euler
decomposition) that is composed by two rotations around
the z-axis and one rotation around the y-axis, as well as the
CNOT operation. By adjusting the parameters θ, φ, and λ,
single-qubit gates of other gate libraries like the H or the T
gate can be realized (among others like rotations). All other
gates and particularly all gates acting over more than two
qubits such as the To oli operation or the Fredkin operation,
have to be decomposed into one of those native gates. To this
end several methods have been proposed in the literature
(see, e.g., [20]–[23]).
Besides that, however, also so-called coupling or connectiv-

ity restrictions have to be satis!ed. This a ects the two-qubit
CNOT gates which cannot arbitrarily be placed because, in
IBM’s implementations, they are

• allowed to interact between dedicated pairs of qubits
only and,

• within these interactions, have to follow a !rmly de!ned
scheme of which qubit may work as target and which
qubit may work as control.

More precisely, for each IBM QX quantum architecture,
a so-called coupling graph is provided which de!nes the
allowed interactions. Nodes of the graph indicate physical
qubits (denoted by Qi), while directed edges de!ne the pos-
sible CNOT applications, i.e. an edge pointing from physical
qubit Qi to qubit Qj de!nes that a CNOT with control qubit
Qi and target qubit Qj can be applied. All other interactions
are prohibited.
Fig. 3(a) shows the coupling graph and, by this, the allowed

qubit interactions for IBM’s IBM QX4 device. Because of that,
the circuit considered before in Section II and shown in Fig. 1
cannot be directly executed on this device if the program
qubits q1, q2, q3, q4 are placed (mapped) to the physical qubits
Q1, Q2, Q3, Q4 of the architecture. This is because, for in-
stance, the !rst CNOT gate works with qubit q3 as control
and qubit q4 as target which is not allowed according to the
coupling graph.
A straight-forward approach to solve this problem is to re-

position the qubits by SWAP gates, which afterwards have
to be decomposed into native gates. By this, qubits can be
“moved” to positions in which their interactions are allowed.
For example, the circuit shown in Fig. 3(b) uses additional
SWAP gates so that it now realizes the original circuit from
Fig. 1 but, at the same time, is compliant to all constraints
imposed by the coupling graph. Note that, SWAP gates are
drawn by two ×-symbols. Furthermore, note that, for sake of
clarity, we removed all single-qubit gates, since they naively
satisfy the coupling constraints. Hence, to see the di erence
before/after mapping, compare Fig. 1(b) and Fig. 3(b).
However, SWAP gates obviously increase the gate count

and the circuit depth and, by this, the costs of the circuit.
These further gates increase the noise as well as the chance
of errors during a quantum computation. Hence, the main
objective of every designer is to keep this overhead as small
as possible – an NP-hard problem [57]. In fact, in order
to map a quantum circuit composed of n program qubits
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Q1 Q2

Q3

Q5 Q4

(a) Coupling graph

q1 � Q1 × q2 × q3 × q1 × q2

q2 � Q2 × q1 • × q3 •

q3 � Q3 × q4 ×× q2 • × q1 •

q4 � Q4 × q3 • × q4

Q5

g1 g2 g3 g4 g5

(b) Naive solution

q4 � Q1

q3 � Q2 • × q1 × q3

q1 � Q3 • × q3 H • H • × q1 •

Q4

q2 � Q5 H H
g1 g2 g3 g4 g5

(c) Heuristic solution

q2 � Q1 H H

q1 � Q2 • •

q3 � Q3 • H • H •

Q4

q4 � Q5

g1 g2 g3 g4 g5

(d) Exact solution

Figure 3: Mapping quantum circuits on the IBM QX4 device.

as well |G| CNOT gates to an IBM device with m physical
qubits, a total of 2

n·m·|G| possible combinations have to be
checked [58].

Accordingly, IBM itself but also researchers started to
investigate more e"cient solutions to tackle this problem.
This resulted in exact approaches such as introduced in [58],
[59] as well as heuristic solutions such as introduced in [26],
[40], [49], [54], [59], [60]. While the former can guarantee
minimal or, at least, close-to-minimal solutions, they are often
not that scalable even though the use of reasoning engines
such as SAT solvers yield impressive improvements [58].
Nevertheless, these solutions are still important, e.g., to de-
termine minimal building blocks and to evaluate the quality
of heuristic approaches. For actual use cases, however, the
heuristic approaches are still the best solution – even if they
cannot guarantee a minimal overhead and, in fact, are often
far away from the optimum.

As examples, consider again the circuit shown in Fig. 1(b)
which shall be realized on an IBM device with a coupling
graph as shown in Fig. 3(a). While the naive approach
discussed before by means of Fig. 3(b) yields a signi$cant
overhead, a heuristic solution shown in Fig. 3(c) (determined
using [54]) is signi$cant cheaper. Here, also H gates are
employed to %ip the direction of the control and target
qubits. Still, even this solution can be further improved as the
result of an exact approach shown in Fig. 3(c) (determined
using [58]) con$rms.

V. Mapping 7antum Circuits on the Surface-17 Device

Most of the solutions proposed for the mapping problem
focus on quantum processors that are available in the cloud,
that is, IBM and Rigetti quantum devices. A more scalable
quantum processor with a surface code architecture was
presented in [11], [12], called Surface-17. This quantum chip
has been built with the goal of demonstrating fault-tolerant
(FT) computation in a large-scale quantum system based on
surface code [61], one of the most promising quantum error
correction (QEC) codes. However, it can also be considered
a NISQ device and therefore be used for running quantum
algorithms that require up to 17 qubits.

The Surface-17 chip is based on superconducting transmon
qubits that are operated at very low temperatures (∼ 20

mK). In this implementation, in principle it is possible to
perform any kind of single-qubit gate. However, usually
gates are limited to a $nite set due to the limitation on the
amount of gates that can be prede$ned. In this case, available
single-qubit gates are X and Y rotations as they are easier
to implement. In addition, the native two-qubit gate is the

conditional-phase gate, also called CZ gate (see section II).
Therefore, any operation in the quantum algorithm needs to
be decomposed to the mentioned native gates before being
executed on the Surface-17 processor [39].

As in the IBM chip, the Surface-17 also has some coupling
or connectivity restrictions. Its topology is shown in Fig. 4
and corresponds to a 2D array of qubits. Circles represent the
physical qubits and the edges the connections (resonators in
the real chip) and therefore possible interactions between
them. For instance, qubits 1 and 5 can interact, that is,
perform a CZ gate, but realising a two-qubit gate between
qubits 1 and 7 is not possible. In other words, two-qubit
gates can only be performed between nearest neighbouring
qubits. Note that in this case, there is no restriction on which
qubit can act as a control or as a target. As mentioned in the
previous section, qubits can be moved to adjacent positions
by using SWAP operations that in Surface-17 chip need to
be further decomposed into CZ and Y rotations (see Fig. 6).

Another important limitation in current quantum devices
that has not been considered so far in previous mapping
works, is the so-called classical control constraint. Supercon-
ducting qubits are operated by applying speci$c microwave
pulses [62]. These signals are generated by classical electron-
ics such as Arbitrary Waveform Generators (AWGs) located
at room temperature. Qubits could be operated independently
by having a dedicated control device for each of them.
This would allow, for instance, to perform in parallel any
possible combination of single-qubit gates as long as the
dependency between the operations was respected. However,
this dedicated control approach is not an scalable, feasible
and a^ordable (in terms of cost), specially for building large-
scale quantum systems. Therefore, control instruments need
to be shared among di^erent qubits. This restriction may
severely a^ect the scheduling of quantum operations as it

0

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16

Figure 4: Schematic of the realization of the SC-17 processor.
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will limit the possible parallelism leading to larger circuit
depths. As previously mentioned, the larger the circuit depth,
the lower the algorithm’s reliability as the computation time
is limited by the coherence time of the qubits.

In Surface-17 chip, single-qubit gates correspond to mi-
crowave pulses that are applied at a frequency resonant to
the energy of the qubits. The chip’s qubits have one of three
frequencies, denoted by f1, f2, and f3 (with f1 > f2 > f3)
and indicated in Fig. 4 by colors red, blue and pink respec-
tively. Assuming a single microwave generator to operate to
the same frequency qubits has the following consequence.
The same single-qubit gate (e.g. X gate) can be performed
in all or some of the same frequency qubits being red or
blue or pink. However, di!erent single-qubit gates cannot
be applied to the same frequency qubits at the same time
because that will require to generate di!erent pulses. That
is, an X gate can be applied on all red qubits simultaneously
but one cannot perform an X gate on qubit 1 and a Y gate
on qubit 2 at the same time. In addition, in this quantum
chip several qubits are measured through the same feedline
to which they are coupled to. This is illustrated by a dashed
grey rectangle in Fig. 4. For instance, qubits 0, 3, 2, 6, 9, and
12 are coupled to the same feedline. Note that measurement
takes several cycles. This means that a measurement in all
or some of the six qubits can start at the same time but it is
not possible to start measuring qubit 2 while still measuring
qubit 0. Finally, performing CZ gates also limits the possible
parallelism of operations. A CZ gate in Surface-17 is realized
by bringing the involved qubits close in frequency - usually
the frequency of the higher frequency qubit is lowered to
be close to the qubit with the lower one. In this process,
the qubits performing the CZ gate might interact with other
neighbouring qubits that share a connection with any of
them and are also close in frequency. In order to avoid such
unwanted interactions, qubits have to be detuned to a so-
called parking frequency. These qubits cannot be involved in
any single or two- qubit gate during the time they are in the
parking frequency. A more detailed explanation can be found
in [39].

In [39] a mapper called Qmap for the Surface-17 processor
is presented. It is embedded in the OpenQL [63] compiler
and it adapts the quantum circuit to the quantum hard-
ware constraints that are described in a con&guration &le.
Note that Qmap can easily target other quantum devices
by just changing the parameters in this &le. It consists of
three blocks: initial placement, qubit routing and operations
scheduler. An Integer Linear Programming (ILP) algorithm is
used to &nd an optimal initial placement in which qubits are
placed in the chip according to their interactions, whereas
an heuristic algorithm is used for the routing task. In this
case the cost function (metric to minimize in the routing
step) is the circuit latency that refers to the execution time
of the algorithm when considering the real gate duration.
This means that the routing path that results in the lowest
latency overhead and therefore maximises the instruction-
level parallelism is selected (looking-back feature).

Considering the circuit shown in Fig. 1(a) and using Qmap
to map it into the Surface-17 processor, results in the circuit
shown in Fig. 5. After the initial placement of qubits, gates

q1→ Q6

q2→ Q2

q3→ Q5

q4→ Q1

Q8

H

g2 g1

H

T

g3 g4 g5

Figure 5: Solution when only considering the connectivity
constraint and operations dependency. Gates vertically adja-
cent can be executed in parallel.

H ≡ Y-90 Z ≡ Z Y+90 ≡ X Y-90

T ≡ H X+45 H ≡ Y+90 X+45 Y-90

• ≡ •

Y−90 • Y+90

× ≡ • • ≡ • Y−90 • Y+90 •

× • Y−90 • Y+90 • Y−90 • Y+90

Figure 6: Gate decomposition into native gates supported in
the superconducting Surface-17 processor.

are scheduled and only one SWAP is added to comply to
the coupling restrictions. Note that both single and two-
qubit gates are considered and scheduled as Qmap optimizes
for circuit latency. This circuit is not yet executable on the
Surface-17 as it needs to be decomposed to the native gates as
shown in Fig. 6 and re-scheduled taking the electronic control
constraints into consideration. In this case, the circuit latency
will be 26 cycles (20 ns per cycle) that is an ∼2x increase
compared to the circuit latency before mapping, in which the
circuit is decomposed into the native gates and operations are
scheduled only considering the dependencies between them.

VI. Every Device is (almost) Eqal Before the Compiler

In the previous sections we have presented two di!erent
approaches to schedule quantum circuits, each developed to
satisfy the constraints of a speci&c quantum device, namely
IBM’s QX4 and QuTech’s Surface-17. In this section we want
to provide a more unifying look to the mapper problem and
to the description of quantum devices. We start from the
latter point.

A. Device Types

Certain machines allow for extensive pre-compilation of
the algorithms that solely excludes the routing operations
and parallelization information. In this case the mapper
receives QASM code that uses only the one- and two-qubit
gates available to the device. The output only adds routing
operations. These machines require:

• symmetric two-qubit gates
• homogeneous single-qubit gate set
• the possibility of measuring any qubit in the same basis
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Here, SWAP gates are needed only to overcome the con-
nectivity limitations. The mapper needs to know how to
decompose SWAP gates into the available gate set. Often
there are multiple ways to do so, for example each decom-
position originates a second one obtained by exchanging
the role of two qubits involved in the !rst one. While the
transmon architecture of Surface-17 chip exhibits the three
properties listed above, see Section V, they are not required
for functioning quantum devices. When the properties are
not satis!ed, the mapper cannot fully separate the gate
decomposition and routing tasks.
When the two-qubit gates are asymmetric, decisions con-

cerning the addition of extra gates must be made at the time
of routing and scheduling. For example, when CNOTs are
used as in the IBM architecture of Section IV, extra Hadamard
gates may be required to invert the role of the control and
target qubits. This can be known only at the time of routing,
i.e. when the qubit placement in the CNOT is known.
When the available native one-qubit gates di#er from

(physical) qubit to qubit, the scheduling involves two steps.
Consider that one needs to schedule gate U acting on the k-
th program qubit. In this case it is required to 1) compute the
sequence of available gates that implements, or approximates,
U for the di#erent physical qubits (or at least those at
short distance from the physical qubit currently associated to
program qubit k), and 2) add the cost of the routing. Selecting
the better option therefore requires performing multiple gate
decompositions and can be done only at scheduling time
when the placement is known. To date all architectures
provide the same set of one-qubit gates per physical qubit,
but this may change due to the pressure of reducing control
resources or when the gate !delity is used as the metric to
guide mapping decisions.
Finally, when not all qubits can be directly measured or

when the available measurements di#er from qubit to qubit,
additional gates are required. In the !rst case to move the
quantum state towards measurable qubits, and in the second
case to adapt the measurement basis.

B. Internal Representation Required by Mappers

Despite their di#erences, all mappers needs an internal
representation of key quantities and these can be combined
in the concept of the execution snapshot. As the name
suggests, the execution snapshot is a complete description
of the algorithm and its current, usually partial, schedule. It
contains:

• the dependency graph of the algorithm with the indica-
tion of which gates have already been scheduled

• the initial placement that associate each program qubit
to a physical qubit

• the current placement of the qubits
• the partial schedule with the timing information and
explicit parallelism

• the settings of the control electronics for the execution.

The data structure specifying the execution snapshot varies
from mapper to mapper. Here we provide an intuitive one:
the dependency graph is a directed, acyclic graph with
nodes representing the quantum gates and edges indicating
dependencies (the target node corresponds to the gate that

depends on the source node) [34], [44]. Nodes can have one
of two colors, di#erentiating the gates already scheduled
from those that need to be scheduled. An additional color
may mark the gates that can be scheduled next according to
the algorithmic dependencies. Qubit placement is represented
by an array of integers of size equal to the number of
physical qubits: the k-th entry corresponds to the index of
the program qubit associated to the k-th physical qubit, apart
from a special integer indicating that the qubit is “free” in
situations where the program requires less qubits than those
present in the quantum hardware. Finally the schedule with
timing information can be provided as a table by discretizing
the time into clock cycles, the greatest common divisor of
the gates’ duration. This table also includes any additional
gate from gate decomposition and routing.
To conclude, the mapper has to take into account the

constraints from the control electronics. To this end one
needs a way to track, for every clock cycle in which a certain
gate can be performed according to the logical dependencies,
if that gate can be executed compatibly with all the gates
already scheduled. Therefore the mapper needs to be aware
of how the set of compatible gates (i.e. those part of the phys-
ically available gate set and that do not con*ict with gates
already scheduled) changes at each clock cycle, and update it
dynamically. The conceptually simplest method is to keep an
explicit list of the compatible gates for each physical qubit,
but this may not be the most e+cient implementation. In
fact more compact representations are derivable for speci!c
architectures [35], [39].

C. Unique Hardware Features

In Section IV and V we described two devices based
on superconducting circuits. This is by no mean the only
approach to scalable quantum devices. In the introduction we
mentioned that multiple physical implementation of quantum
processors are currently developed, including but not limited
to trapped ions, silicon quantum dots, photonics, neutral
atoms, and topological systems. The maturity of each tech-
nology is at a di#erent point and the challenges to scalability
are also di#erent [4]–[7]. Here we are interested to provide a
few examples in which particular physical implementations
provide unique features. We only present three of them for
illustration purposes.
Most architectures are limited to a planar connectivity

between qubits, but trapped ions provide all-to-all connec-
tivity, at least inside groups of tens of ions [64]. This is
originated by their long-distance Coulomb interaction and
mediated by their collective vibrational modes. However this
desirable property comes at the price of reduced two-qubit
gate parallelism. Finally observe that multi-qubit gates are
also available for trapped ions [65] and this may require an
enlarged instruction set.
Photonics architectures are uniquely positioned for tasks

that combine computation and communication, like at the
nodes of quantum repeaters’ networks [66], [67]. However
they are limited to demolition measurements in which the
qubit is “destroyed” when measured since the photon is
absorbed by the detector. One can generate a new photon
to re-initialize the qubit state.
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In silicon quantum dots the role of qubits is played by
the spin of electrons con!ned in electromagnetic potential
wells called dots. The simplest scheme is one electron per dot,
but alternative con!gurations are also considered. Two-qubit
gates are implemented via the exchange interaction between
two electrons in nearby dots [68]. However certain dots can
be momentarily empty and electrons can be moved to empty
dots in a way that maintain the qubit coherence, the so
called shuttling operation [69]. The electron movement can
be interpreted either as a change in the device connectivity
or as an alternative qubit routing not based on SWAP gates.
Specialized mappers are required to take full advantage of
these capabilities.

VII. Conclusions and Discussion
In this paper, we have provided an introduction and

overview on the realization of quantum algorithms on real
quantum computing devices, and more speci!cally to the
mapping problem. During the compilation process quantum
circuits need to be modi!ed to comply with the constraints
of the quantum device. This usually results in an increase
of the number of gates and the circuit depth, which a/ects
negatively the reliability of the computation. Therefore, min-
imizing this mapping overhead is crucial, especially for NISQ
devices in which no or hardly any error protection mecha-
nisms will be used. We have shown two examples of map-
pers developed for two speci!c superconducting transmon
processors, the IBM QX4 and the Surface-17, where di/erent
solution approaches are used. In addition, we have discussed
other device types, the internal data representations used by
the mappers and described the peculiarities of other possible
physical implementations of quantum processors.

There are still several open questions requiring the at-
tention of the community working on mappers of quantum
algorithms. First, what is the best metric to optimize? Most of
the works use as the optimization metric either the number of
gates or the circuit depth. Recent works started considering
the expected reliability of the overall quantum computation.
We believe that new metrics, or possibly a combination of
the exiting ones, need to be investigated. Secondly, should
we aim for machine-speci&c solutions or more general-purpose
and (exible ones capable of targeting di*erent quantum devices
and technologies and di*erent optimization problems? So far,
the proposed mappers can be considered ad-hoc solutions
that are mostly meant for a particular chip or similar
kind of processors in which qubits are moved by SWAPs.
While general-purpose mappers would avoid repeating the
development e/ort for each device, the risk is that general
optimization strategies will not take full advantage of the
hardware capabilities. In addition, the change of the quantum
technology may require very di/erent mapping strategies.
Third, what is the good balance between the obtained solution
and the time required to compile the circuit? It is necessary
to analyze the trade-o/ between mapping optimizations
and runtime, specially for large-scale quantum algorithms.
Finally, it is important to mention that these optimizations
should consider both the quantum device and the quantum
application characteristics. In this direction, reference [70]
proposes an approach which takes the planned quantum
functionality into account when determining an architecture.
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