
Special Session Paper

Multiplier Architectures: Challenges and

Opportunities with Plasmonic-based Logic
(Special Session Paper)

Eleonora Testa∗, Samantha Lubaba Noor†, Odysseas Zografos‡,

Mathias Soeken∗, Francky Catthoor‡§, Azad Naeemi†, and Giovanni De Micheli∗

∗EPFL, Lausanne, Switzerland
† Georgia Institute of Technology, Atlanta, USA

‡IMEC, Leuven, Belgium
§KU Leuven, Leuven, Belgium

Abstract—Emerging technologies such as plasmonics and pho-

tonics are promising alternatives to CMOS for high throughput

applications, thanks to their waveguide’s low power consumption

and high speed of computation. Besides these qualities, these novel

technologies also implement logic functionalities uncommon to

traditional technologies that can be beneficial to existing CMOS

architectures. In this work, we study how plasmonic-based devices

can complement CMOS technology to achieve a more efficient

implementation of multiplier architectures, which are the core

of state-of-the-art data- and signal-processing circuits. A critical

part of modern multipliers is the partial-product reduction step,

used to reduce the partial product tree into a 2-input addition.

In CMOS technology, this step is achieved by using compact

and fast counters. On the other hand, the proposed plasmonic

cells naturally implement counters of 3-, 9- and 27-inputs within

a few logic levels at ultra-high speed. Thus, we present novel

multiplier architectures, which take advantage of large plasmonic-

based counters to reduce the number of cells and logic levels

in the partial product reduction step of the multiplication. Our

experimental results show that 3 levels and 30 counters are needed

when 27-input cells are used. On the other side, 6 levels and 72

counters are employed with 9-input cells. Finally, we present

various 16 × 16 multiplier implementations mixing 9- and 27-

input cells, focusing on the trade-off in the number of counters,

levels, and area of each architecture.

I. INTRODUCTION

To overcome the intrinsic scaling limitations of CMOS,

emerging technologies are going to play a key role in the near

future [1]. Novel emerging technologies such as plasmonics

and photonics devices are promising alternatives to CMOS,

because of the low propagation losses and their high speed of

computation [2], [3]. In particular, plasmonic devices based on

surface plasmon polaritons (SPP, [4]) overcome the limits of

nanoscale photonics devices and efficiently implement Boolean

functions uncommon to traditional CMOS technologies such

as majority [3], [5] and threshold-based logic functions [6].

Furthermore, the integrated electric field at the output of a

single plasmonic device is proportional to the number of input

bits that are equal to 1 [3]. Thus, each plasmonic device

intrinsically implements a circuit able to count the number

of 1s of an input stream within one logic cell. Such circuit is

known as digital counter, and, to our knowledge, this capability

of plasmonics logic has never been exploited before in state-

of-the-art literature.

Digital counters are generally important in the implementa-

tion of modern arithmetic architectures, and they play a key role

in the implementation of multipliers. Multiplier architectures

are fundamental in the design of microprocessors, digital signal

processors, and integrated data-processing [7]. Furthermore,

many computations and algorithms also involve multipliers;

as an example, efficient architecture implementations can be

beneficial for highly computational intensive algorithms, such as

convolutional neural network (CNN, [8]). While there are many

and diverse approaches for the design of multipliers trading-off

area and delay, we are interested in parallel multipliers [9], [10];

in particular, in n-bit 2-input n×n Wallace-tree multipliers [9].

The key component of a Wallace-tree multiplier is the partial

products reduction step used to reduce the sum of the partial

products into a 2-input addition. Many and diverse solutions

to speed up the partial-product reduction array have been

proposed [7], [11], [12], [13]. In CMOS technology, this is

usually achieved by using compact and fast counters over 3

inputs (also called carry-save adders). Here, we propose a

plasmonic-based device that naturally implements counters up

to 27 inputs within few logic levels, retaining a quasi-constant

cell delay for different number of inputs.

In this work, we study how plasmonic-based logic can

complement CMOS technology to achieve a more efficient

implementation of a multiplier architecture. We present a novel

16× 16 multiplier architecture, which takes advantage of large

plasmonic-based counters to reduce the number of cells and

logic levels in the partial product reduction step of the Wallace-

tree multiplication architecture. As different plasmonic cells are

available (3-, 9-, and 27-input cells) we propose various 16×16

multiplier architectures trading-off the number of counters and

logic levels. The experimental results show that, when using 27-

input plasmonic counters, 3 levels and 30 counters are sufficient

to reduce the height of the partial product tree; when 9-input

counters are involved, instead, 72 counters and 6 levels are

necessary. Hybrid solutions (i.e., using both 27- and 9-input

counters) have a number of levels between 3 and 6, with a

number of counters up to 53. We also present an area estimation

of each plasmonic logic counter assuming a structure similar to

978-3-9819263-4-7/DATE20/ c©2020 EDAA 133

Special Session Paper

Fig. 1: Structure of the 27-input primitive from [3]. The gate

structure is simulated using 3-D simulation in the finite differ-

ence time domain (FDTD) solver of Lumerical Solution [14].

the one presented in [3]. Each plasmonic cell is simulated using

3-D simulation in the finite difference time domain (FDTD)

solver of Lumerical Solution [14]. We describe results over

two different layouts, focusing on the trade-off between area

and latency for the different 16× 16 multiplier architectures.

The remainder of the paper is organized as follows. Sec-

tion II introduces the preliminaries on plasmonic technology

and the functionality of the cells, while Section III explains

how to use large plasmonic-based counters for the partial-

product reduction step of Wallace-tree multipliers. Section IV

illustrates the results over a 16×16 multiplier together with an

area evaluation of the plasmonic cells, and Section V concludes

the paper.

II. PLASMONIC GATES

In this section, we detail the plasmonic devices. First, we

present the structure of a single plasmonic gate and give an

example of a 27-input cell. Then, we illustrate the functionality

of 3-, 9- and 27-input plasmonic devices.

A plasmonic-based device as implemented in [3], [6]

is based on the propagation of surface plasmon polari-

tons (SPP, [4]), which are electromagnetic waves propagating at

the interface between a dielectric and a metal. It thus consists

of a waveguide used to transmit the information, built with

metal-insulator-metal (MIM) configuration (e.g., Ag-SiO2-Ag).

The 3-, 9- and 27-input plasmonic devices have already been

discussed in [3], [5]. We consider the 27-input structure, shown

in Fig. 1, as an example. It consists of three stages: each stage

having the 3-input primitives, a combiner, and an output region.

This is the largest building block that can be implemented today

using the mentioned plasmonic technology. This is due to the

fact that the propagation losses of SPP put a limitation on the

maximum number of cascaded stages (i.e., the number of levels

of the circuits). Currently, it is not efficient to have more than

three stages, which means that, after the third stage, either an

amplifier or a converter to voltage domain is necessary [3].

The important feature of plasmonic logic and wave com-

puting is the ability to efficiently implement functionalities

that are complex to realize in CMOS, e.g., large majority and

threshold gates [3], [5]. For the logic operation, the phase of

the plasmonic wave is considered as the computational state

Fig. 2: Peak of the normalized integrated electric field at the

output of the 3-input primitive. The output value is proportional

to the number of 1s in the input combination.

variable, i.e., phase 180◦ for logic 0 and 0
◦ for logic 1. The

27-input gate can be used to implement not only a majority-of-

twenty-seven-input, but also threshold functions [6]. The same

holds for the 3- and 9-input primitives.

In this work, we exploit each plasmonic device as a counter.

The peak of the normalized integrated electric field at the output

of each 3-input primitive is depicted in Fig. 2. The output is

proportional to the number of input signals equal to 1. In other

words, the plasmonic cell implements a circuit that counts the

number of 1s of the input bit-stream, i.e., a digital counter.

As the 9- and 27-input gates present the same functionality, it

means that plasmonic cells implement counters up to 27 inputs

within 3 plasmonic levels. Note that plasmonic circuits operate

at a frequency of around 1THz and ultra-low energy levels

that cannot be achieved by their CMOS counterparts at this

frequency [6]. In the next section, we will explain how to use

these properties to speed up the partial product reduction step

in modern multipliers.

It is worth mentioning that we envision each plasmonic

device to work as proposed in [6]. It means that at the output

of each logic primitive, a plasmonic waveguide carrying a

reference signal merges with the output signal [3], [6] to

convert the phase information into amplitude information, and

thus to avoid THz phase detection. A plasmonic waveguide

photodetector [15] can be tightly integrated with the output

plasmonic waveguide, converting the amplitude information to

the electrical domain.

III. PLASMONIC DEVICES FOR PARTIAL PRODUCT

REDUCTION

Plasmonic devices efficiently implement digital counters up

to 27-input. In this section, we take advantage of such property

to build a more compact and faster multiplier architecture, by

reducing the number of counters and logic levels in the partial

product reduction step of Wallace-tree multipliers.

Given two n bitstreams a and b, a Wallace-tree architecture

for the multiplication between a and b comprises three steps:

(i) the array of n2 AND gates to compute the partial products

between each bit of a and b; (ii) the step made of counters to

reduce the sum of the partial products into a 2-input addition;

134 Design, Automation And Test in Europe (DATE 2020)

Special Session Paper

(1,2:3) counter

(3,4,3:5) counter

Fig. 3: 4×4 multiplier product array, reduced to 2-input addition

by 2 counters: (3,4,3:5) and (1,2:3).

(iii) the final 2-input addition [9]. Note that, in the following, we

envision step (i) and step (iii) to be implemented using standard

CMOS technology; we thus focus on the implementation of

the second step with only plasmonic counters. In general, in a

Wallace-tree implementation, step (ii) is obtained using carry-

save adders. The number of levels l required in a Wallace-tree

to reduce the height h of the tree to 2 is given by [16]:

l = ⌈log1.5(
h

2
)⌉ (1)

As an example, for a 4-input multiplier, h = 4, and 2 levels of

carry-save adders are needed.

In the following discussion, we refer to (x : y) counters [10]
as circuits that count the number of 1 bits over x input bits of

equal weights, and output of y bits of increasing weight. For

instance, a carry-save adder is a (3:2) counter. The output is a

y-bit word whose value is the sum of the inputs bit, and it is

given by:

v =

x−1∑

i=0

bi (2)

where bi is the binary value of the ith input bit. This

class of counters is used in multiplier architectures [9], [10]

to reduce the partial product tree by dividing it into columns

of three partial products each. Many and diverse optimizations

using CMOS implementation of (7:3), and (5:3) fast counters

have been proposed [13], [16]; a (4:2) counter has also been

investigated [17].

In this paper, we extend the definition of counters [13] to

consider successively weighted input columns. The sum of the

columns is produced by taking the weights into account. We

refer to these counters [13] as (xk−1, xk−2, . . . , x0 : y), where

k is the number of inputs columns, xi is the number of bits

in the column of weight 2i. The output is a y-bit word whose

value is the sum of the inputs bit, and it is given by:

v =
k−1∑

i=0

ci−1∑

j=0

bij2
i (3)

where bij is the value of bit j in column i. As an example,

a (5,5:4) counter has been presented in [13].

Fig. 4: Reduction of the partial product tree of a 16 × 16
multiplier using 27-input plasmonic devices. Counters over

more than one column are represented in blue; while counters

over one column are not represented to ease the notation.

It follows that (i) a 9-input plasmonic device implements

the following counters: (9:4), (3,3:4); (ii) while a 27-input

plasmonic gate can be used as: (27:5), (4,4,3:5), (9,9:5). Note

that, while complete utilization of the inputs is desirable, this is

not a necessary condition. It thus follows that all “underutilized”

arrangements of the counters are possible.

The proposed plasmonic counters are employed here to

reduce the partial product tree of multipliers. Consider as an

example the 4 × 4 multiplier product array of Fig. 3; note

that the partial product terms are represented as • to ease

the notation. The partial product tree consists of 16 terms

distributed over 7 columns of various sizes. Only one level and

two counters are needed in order to reduce the height of the

tree. The blue counter is a (3,4,3:5) counter, while the red one

has 2 + 1 × 2 = 4 inputs distributed over 2 columns. In the

next section, we present results in terms of number of counters,

levels, and area over a 16× 16 multiplier.

IV. RESULTS

In this section, we present the experimental results. We use

as running example a 16× 16 multiplier as this is commonly

used in CNN hardware accelerators [18]. First, we illustrate

different architectures: (i) one that use only 27-input devices,

(ii) one with 9-input plasmonic, and (iii) a blend of those

(called “hybrid” mapping in the following discussion). Then,

we conclude with an area estimation of the plasmonic cells

obtained by simulation and present various architectures trading-

off area, number of cells, and logic levels.

A. Architectures for the 16× 16 Multiplier

As discussed in Section III, the large number of inputs

of plasmonic counters allows us to reduce the number of

counters and levels in the reduction of the partial product

Design, Automation And Test in Europe (DATE 2020) 135

Special Session Paper

tree. Furthermore, we consider more than one column at the

same time, by taking into account different weights. We study

here a 16 × 16 multiplier architecture, whose tree is shown

in the top part of Fig. 4. It consists of a partial product tree

of 16 × 16 = 256 terms, over 31 columns of different sizes.

We consider plasmonic cells having 3, 9, and 27 inputs, thus

counters: (27:5), (4,4,3:5), (9,9:5), (9:4), (3,3:4) and (3:2).

First, we present (together with an example from Fig. 4)

an architecture that uses 27-input cells. It means that, when

possible, the first choice is using 27-input cells.

The steps for the partial product reduction tree using 27-

input cells are presented in Fig. 4. The first level of plasmonic

counters consists of 20 parallel counters, with number of inputs

ranging from 9 to 25. Note that counters over one column are

not reported. The small number of counters is achieved due

to (i) the large size of the counters, and (ii) by considering

different weighted columns. The second level of counters is

depicted in the second step of Fig. 4, and consists of 9 counters,

from 25 to 7 inputs. The last level only needs one more counter

(3,3:4). It means that, when using mostly 27-input counters,

the architecture can be implemented using 30 counters, over 3
levels. This result is reported in the first columns of Table II for

the ‘27-input cells’ architecture. Note that the number of levels

refers to the number of counters on the topological critical path.

It is also worth mentioning that this example represents one of

the many and diverse architectures that can be implemented

with the plasmonic counters.

The same process can be achieved when only counters up to

9-input are allowed, i.e., 27-input cells are not involved in the

reduction step. In this case, the architecture needs 6 levels, and

72 counters (see ‘9-input cells’ architecture from Table II). It

is worth mentioning that while this could seem worse than the

previously described architecture, since the area of a 9-input

cell is up to 10× smaller than the 27-input one, this results

in a smaller overall area. As a consequence, complex global

trade-offs exist in the overall search space. Some solutions

with a blend of 27- and 9- input plasmonic counters (called

hybrid solutions) can also be built. These architectures range

between 6 and 3 levels, with a number of counters from 39 to

53. Results for ‘# counters’ (number of counters) and ‘# levels’

(number of counters on the topological critical path) for 10

hybrid architectures are summarized in the first two columns

of Table II.

B. Area Estimation and Results

In this section, we propose a layout and area evaluation

of plasmonic cells when used as counters based on simulative

models developed at GeorgiaTech. We also present the trade-off

in the number of levels, counters, and area of various 16× 16
multiplier architectures, when built using plasmonic-based logic

cells.

To use the plasmonic waveguides as counters, different

building blocks need to be considered. Each logic counter

cell should include (i) a plasmonic logic waveguide (described

in Section II), (ii) a plasmonic power splitter, (iii) reference

waveguides, and (iv) integrated detectors (see Fig. 5).

The structure of the logic gate has already been explained

in Section II. In order to obtain a counter-like behavior, it is

possible to count the number of logic 1s in the input data from

the integrated peak output of the logic gate using different

threshold levels as shown in Fig. 2. For example, in the 3-input

primitive of Fig. 2, ‘Threshold-2’ decides the most significant

bit (MSB) of the counter output. If the peak of the output

is greater than ‘Threshold-2’, MSB has value equal to 1;

otherwise, MSB will be 0. According to the value of the

MSB, ‘Threshold-1’ and ‘Threshold-3’ are employed to obtain

the value of the next significant bit. In other words, if the

MSB is 1, ‘Threshold-1’ decides the next significant bit, while

‘Threshold-3’ is used if the MSB is 0. As an example, for

the (3:2) counter, the output of the plasmonic gate needs to

be split into two signals to decide the MSB and the least

significant bit (LSB). The mentioned threshold functionalities

can be implemented in plasmonic by reference waveguides, as

described in [6]. In order to split the output of the logic gate,

instead, we introduce plasmonic power splitters.

A 1 × n power splitter consists of Y cascaded branches

dividing the output optical power of the main plasmonic gate

among n plasmonic waveguides. The number of split outputs n
depends on the number of output bits of the (x : y) counter. As

n increases, the SPP waves have to travel longer paths and the

transmission efficiency of the splitter decreases due to losses

in metal. The transmission efficiency is defined as follows:

T =
n∑

k=1

P k

out
/Pin (4)

where Pin denotes the optical power into the splitter and

P k
out

denotes the power flowing out of the kth split output

waveguide. The splitter has been simulated in the FDTD

solver of Lumerical Solution [14]: T decreases from 80%
to 40.4% as n increases from 2 to 5. A reference waveguide

and an integrated photodetector are associated with each output

waveguide of the power splitter. For the photodetector, a high-

speed metal-semiconductor-metal plasmonic photodetector with

a narrow Ge slot as an active region can be used [15].

We used the proposed blocks to estimate the area of each

plasmonic-based counter. First, the area of the plasmonic gate

depends on the number of stages or number of inputs, with

3-, 9-, and 27-input gates having areas of 0.84µm2, 9.13µm2,
and 83.4µm2, respectively. Cross-sectional dimensions of the

input side waveguides, splitter waveguides, and photodetectors

are 60nm× 100nm, 120nm× 100nm, and 90nm× 100nm,

respectively. To maintain a low crosstalk noise, we assumed

that the separation of the SiO2 slots is p = 300nm for the

entire plasmonic waveguide configuration. The bending angle

of the bent waveguides in both logic gate and Y branches

is chosen to be θ = 35.7o as in [3]. For the power splitter,

the width (Ws) can be calculated from the number of splitted

outputs n, the slot width w, and the slots separation p:

Ws = 2nw + (2n− 1)p (5)

The length of the splitter (Ls) depends on n which determines

the number of required Y branches (n − 1) as well as the

length associated with the longest bent waveguide (0.5n(p+
w)/ tan(θ)). For instance, Ls = 0.6µm, 1.6µm, and 1.9µm
for the 1 × 2, 1 × 3, and 1 × 4 splitters, respectively. The

136 Design, Automation And Test in Europe (DATE 2020)

Special Session Paper

TABLE I: Combined area of the splitter, reference waveguide,

and photodetector

Output # Stages Combined Combined Combined

in splitter in splitter length [µm] width [µm] area [µm2]

2 1 2.1 1.4 2.9

3 2 3.1 2.2 6.8

4 2 3.4 3.1 7.2

5 3 4.5 3.9 17.5

6 3 5.2 4.7 24.7

7 3 5.6 5.6 31.5

8 3 5.8 6.4 37.2

9 4 7 7.3 50.7

10 4 7.9 8.1 64.2

11 4 8.73 8.94 78

12 4 9.39 9.78 91.8

13 4 9.9 10.62 105.1

14 4 10.26 11.46 117.6

15 4 10.48 12.3 129

(a)

(b)

Fig. 5: Different layout for the plasmonic counter. (a) layout

1: minimum area, larger latency; (b) layout 2: larger area,

minimum latency.

reference waveguide adds an additional length of 500nm while

the length of the photodetector is Lp = 1µm. The combined

areas of the splitter, reference waveguide, and photodetector

are summarized in Table I for number of outputs (‘# Outputs’)

from 2 to 15. This covers all possible counters configurations,

from 3 to 27 inputs.

Using the building blocks presented so far, we propose

two layouts for a specific (x : y) counter, as shown in Fig. 5.

We consider a (9:4) counter as running example. Layout 1

(Fig. 5 (a)) has 4 outputs: each output evaluates one bit of

the counter output (y0y1y2y3). First, MSB (y0) is computed

from OP1; from the value of the MSB, CMOS circuits set

Fig. 6: Trade-off: number of counters, number of levels and

Area1. Hybrid solutions are in blue.

the reference level for OP2 which calculates the next bit. The

process continues until LSB (y3) is decided from OP4. Layout

2 differs from Layout 1 in the evaluation of y2 and y3. As a

consequence, Layout 1 is more compact (one splitter 1× 4 vs

1× 5) but has higher latency as compared to Layout 2. While

in Layout 1 all the 4 outputs are sequentially computed one

by one, only 3 sequential stages are needed in Layout 2.

We used the two presented layouts and the data from Table I

to evaluate the area of each plasmonic counter. The total area

of each plasmonic counter-cell is given by the area of the

plasmonic cell (described before) plus the combined area of

splitter, photodetector, and references (ASRP) as proposed in

Table I:

Acounter = Aplasmonic cell +ASRP (6)

For each cell, two total area estimations are evaluated, cor-

responding to using Layout 1 or Layout 2. As an exam-

ple, the (9:4) counter has Area1 (using Layout 1) equal to

9.13 + 7.2 = 16.33 µm2, while Area2 (using Layout 2) is

9.13+17.5 = 26.63 µm2. It is worth mentioning that counters

over multiple columns (e.g., (3,3:4)) have the same area as

their one-column counterparts (e.g., (9:4)). Furthermore, in case

some inputs of the counters are not used, the area is decreased

as smaller splitters can be employed. For example, the area

of an (8:4) counter is different from the area of a (9:4), even

though they are implemented using the same plasmonic cell.

The results for the area evaluation are presented in the

second part of Table II. The table lists different implementations

of the reduction step of a 16×16 multiplier when mapped using

various plasmonic cells. The first row shows results for the 27-

input architecture presented in Section IV-A, with 3 levels and

30 counters. The first area estimation (column ‘Area1’) is the

one using Layout1, while the second area estimation (column

‘Area2’) is the one obtained from Layout2. The results for

‘Area3’ and ‘Area4’ compare to a hypothetical future downscale

of Layout1 by 10× and 20×, respectively. The same results are

Design, Automation And Test in Europe (DATE 2020) 137

Special Session Paper

TABLE II: Experimental results for 16× 16 multiplier

Mapping # Counters # Levels Area1 [µm2] Area2 [µm2] Area3 [µm2] Area4 [µm2]

27-input cells 30 3 2577 3869 258 138

9-input cells 72 6 1040 1240 124 121

hybrid1 46 3 2196 3155 229 122

hybrid2 52 4 1936 2790 201 136

hybrid3 43 5 2106 3301 218 115

hybrid4 46 4 2087 3078 211 150

hybrid5 53 6 1861 2791 191 149

hybrid6 48 4 2055 3068 208 148

hybrid7 42 4 2357 3536 236 158

hybrid8 43 4 2141 3416 223 115

hybrid9 39 5 2212 3486 226 119

hybrid10 39 4 2487 3723 253 135

presented for the 9-input architecture, having 6 levels and 72

counters. The “hybrid” rows describe the number of counters,

levels, and area estimate for other 10 architectures having

27-input cells interleaved with 9-input counters.

Our results show that while the 9-input architecture has

twice as many counters and levels compared to 27-input one, it

results in areas which are more than 2× smaller. Furthermore,

the difference between ‘Area1’ and ‘Area2’ for the 9-input cells

(1040 vs 1240) is much smaller than the one of 27-input ones

(2577 vs 3869). The solution with 9-cells presents the smaller

areas overall. Fig 6 shows the trade-off results in the number of

counters, number of counters on the critical path (levels), and

area (evaluated as Area1). The solution with 27- and 9- input

cells are highlighted in red. As previously described, even if

the 9-input solution has a larger number of counters and levels,

it results in a much smaller area. Hybrid solutions present the

number of levels, counters, and area in between the two corners

cases.

V. CONCLUSION

In this work, we propose a novel plasmonic-based imple-

mentation of digital counters. Plasmonic logic can efficiently

implement counters up to 27-input, within few logic levels. We

thus take advantage of this property to successfully reduce the

height of the partial product tree of multipliers. Our results

show that for a 16×16 multiplier, 3 logic levels and 30 counters

are needed when 27-input cells are used. We also present an

area evaluation and different layouts of the plasmonic cells,

trading-off area and latency.

ACKNOWLEDGMENT

This research was supported by the EPFL Open Science

Fund, by the Swiss National Science Foundation (200021-

169084 MAJesty) and by the ERC project H2020-ERC-2014-

ADG 669354 CyberCare.

REFERENCES

[1] D. E. Nikonov and I. A. Young, “Overview of beyond-CMOS devices

and a uniform methodology for their benchmarking,” Proceedings of

the IEEE, vol. 101, no. 12, pp. 2498–2533, 2013.

[2] H. J. Caulfield and S. Dolev, “Why future supercomputing requires

optics,” Nature Photonics, vol. 4, no. 5, p. 261, 2010.

[3] S. Dutta, O. Zografos, S. Gurunarayanan, I. Radu, B. Soree et al.,

“Proposal for nanoscale cascaded plasmonic majority gates for non-

Boolean computation,” Scientific reports, vol. 7, no. 1, p. 17866, 2017.

[4] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon

subwavelength optics,” Nature, vol. 424, no. 6950, pp. 824–830, 2003.

[5] E. Testa, M. Soeken, L. Amarù, and G. De Micheli, “Logic synthesis

for established and emerging computing,” Proceedings of the IEEE, vol.

107, no. 1, pp. 165–184, 2018.

[6] O. Zografos, F. Catthoor, S. Dutta, and A. Naeemi, US Patent Application

US20190064438A1, 2019.

[7] N. Sureka, R. Porselvi, and K. Kumuthapriya, “An efficient high speed

Wallace tree multiplier,” in International Conference on Information

Communication and Embedded Systems, 2013, pp. 1023–1026.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Advances in neural

information processing systems, 2012, pp. 1097–1105.

[9] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions

on Electronic Computers, vol. EC-13, no. 1, pp. 14–17, 1964.

[10] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza,

vol. 34, pp. 349–356, 1965.

[11] J. Fadavi-Ardekani, “M*N Booth encoded multiplier generator using

optimized Wallace trees,” IEEE Trans. VLSI Syst., vol. 1, no. 2, pp.

120–125, June 1993.

[12] V. G. Oklobdzija, D. Villeger, and S. S. Liu, “A method for speed

optimized partial product reduction and generation of fast parallel

multipliers using an algorithmic approach,” IEEE Trans. on Computers,

vol. 45, no. 3, pp. 294–306, 1996.

[13] W. J. Stenzel, W. J. Kubitz, and G. H. Garcia, “A compact high-speed

parallel multiplication scheme,” IEEE Trans. on Computers, no. 10, pp.

948–957, 1977.

[14] “Lumerical, F. Solutions. Web source [https://www.lumerical.com/tcad-

products/fdtd/] ,” 2013.

[15] Y. Salamin, P. Ma, B. Baeuerle, A. Emboras, Y. Fedoryshyn et al.,

“100 GHz plasmonic photodetector,” ACS photonics, vol. 5, no. 8, pp.

3291–3297, 2018.

[16] S. Waser and M. J. Flynn, “Introduction to arithmetic for digital systems

designers,” 1982.

[17] D. Shen and A. Weinberger, “4-2 carry-save adder implementation using

send circuits,” IBM Technical Disclosure Bulletin, vol. 20, no. 9, pp.

3594–3597, 1978.

[18] A. Aimar, H. Mostafa, E. Calabrese, A. Rios-Navarro et al., “Nullhop:

A flexible convolutional neural network accelerator based on sparse

representations of feature maps,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 30, no. 3, pp. 644–656, 2018.

138 Design, Automation And Test in Europe (DATE 2020)

