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Abstract—In recent years, deep learning methods have outper-
formed other methods in image recognition. This has fostered
imagination of potential application of deep learning technology
including safety relevant applications like the interpretation
of medical images or autonomous driving. The passage from
assistance of a human decision maker to ever more automated
systems however increases the need to properly handle the failure
modes of deep learning modules. In this contribution, we review
a set of techniques for the self-monitoring of machine-learning
algorithms based on uncertainty quantification. In particular,
we apply this to the task of semantic segmentation, where the
machine learning algorithm decomposes an image according to
semantic categories. We discuss false positive and false negative
error modes at instance-level and review techniques for the
detection of such errors that have been recently proposed by the
authors. We also give an outlook on future research directions.

Index Terms—deep learning, semantic segmentation, false
positive and false negative detection

I. INTRODUCTION

The stunning success of deep learning technology, convolu-

tional neural networks (CNN) in particular [1]–[3], has led to

a rush towards technology development for new applications

that ten years ago would have been considered unrealistic.

In particular, fully automated driving systems are intensively

developed in the automotive industry including also new

competitors [4], [5]. While the industry strives to advance

such systems from driving assistance for a human driver (level

1 and 2 of automated driving) to higher levels where the

human as the ultimate redundancy for the technology can

be temporally (level 3 and 4) or entirely replaced (level 5),

the question of how to design automated driving systems

based on deep learning technology still poses a number of

unresolved questions, in particular with respect to reliability

and safety [5], [6]. A similar set of problems exists when AI-

driven systems assist the interpretation of medical images [7],

although there is no intention to fully automate this process.

In the following, we focus on the semantic interpretation

of street scenes based on camera data which is an important

prerequisite for any automated driving strategy. For the sake of
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concreteness, we focus on semantic segmentation in contrast

to object detection [8]. In semantic segmentation, an image is

decomposed into a number of masks, each of which unifies the

pixels that adhere to a specific category in a predefined seman-

tic space [9]. Despite there also exist instance segmentation

networks [10], we here consider each connected component of

a mask as one instance. Based on such instances, the following

failure modes have to be taken into account:

• False Positive (FP): An instance of a given category that

is present in the predicted mask has zero intersection with

the same category in the ground truth mask.

• False Negative (FN): An instance of a given category

that is present in the ground truth mask is completely

overlooked, i.e., has zero intersection with the same

category in the predicted mask.

• Out of Distribution (OOD): An object that is outside the

semantic space on which the perception algorithm has

been trained nevertheless occurs in the input data and

therefore is misclassified [11], [12].

• Adversarial Attack (AA): The perception module is in-

tentionally forced to commit an FP or FN error by

manipulation of the input of the sensor [3], [13].

In the following, we focus on the first two ’FP’ and ’FN’

failure modes. In particular, we discuss methods for self-

monitoring of segmentation networks. Improved reliability due

to redundancies in the architecture of autonomous cars is not

considered here.

While the detection of false positives in semantic segmen-

tation is mostly considered on a pixel level and is measured

with global indices like the global accuracy over frames or

the averaged intersection over union (IoU) on class mask

level [14], [15], here we pass on to connected components

in the predicted masks of segmentation networks, which is

often more relevant in practice. Meta classification then is the

machine learning task to infer from the aggregated uncertainty

metrics whether the predicted segment has intersection with

the ground truth, or is a false positive in the sense given above.

While this results in a 0 – 1 decision, the IoU score on a

single connected component gives a gradual quality measure.
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Meta regression then is the task to predict this score from the

same uncertainty metrics in the absence of ground truth. In

this article we give an overview over recent progress in meta

classification [16]–[18] for the semantic segmentation of street

scenes [19].

We also deal with class imbalance as one of the reasons for

false negative predictions for which the corresponding ground

truth is underrepresented in the training data. In semantic

segmentation this is often unavoidable, as e.g. pedestrians

are underrepresented in terms of their pixel count even on

images with several individuals. Here we propose methods to

correct the bias from the maximum a posteriori (or Bayes)

decision principle that is mostly applied in machine learning.

As alternatives we propose a decision principle – the maximum

likelihood (ML) decision rule [20] – that looks out for the

best fit of the data to a given semantic class. We review the

false negative detection [21] using the ML decision rule for

semantic segmentation and also discuss cost based decision

rules in general along with the problems of setting the cost

structure up [22].

The paper is organised as follows: In section II we discuss

the detection of false positive instances by a meta classification

procedure that involves uncertainty heatmaps aggregated over

predicted segments. The following section III extends this

procedure to video stream data using time series of uncertainty

metrics for meta-classification. In section IV we discuss the

reduction of false negatives especially for rare classes of high

importance. Here we use cost based decision rules and discuss

some of the ethical issues connected with setting up the cost

structure. Finally, section V gives a summary and outlook to

future research.

II. FALSE POSITIVE DETECTION VIA META

CLASSIFICATION

In semantic segmentation, a network with a softmax output

layer provides for each pixel z of the image a probability

distribution fz(y|x,w) on the q class labels y ∈ C =
{y1, . . . , yq}, given the weights w and input image x ∈ X .
Using the maximum a posteriory probability (MAP) principle,

also called Bayes decision rule, predicted class in z is then

given by

ŷz(x,w) = argmax
y∈C

fz(y|x,w). (1)

We denote by K̂x the set of connected components (segments)
in the predicted segmentation Ŝx = {ŷz(x,w)|z ∈ x}. Analo-
gously we denote by Kx the set of connected components in

the ground truth Sx.
Let Kx|k be the set of all k′ ∈ Kx that have non-trivial

intersection with k and whose class label equals the predicted

class for k, then the intersection over union (IoU ) is defined

as

IoU (k) =
|k ∩K ′|

|k ∪K ′|
, K ′ =

⋃

k′∈Kx|k

k′. (2)

In the given context, false positive detection (cf. [23] for

classification tasks with neural networks) corresponds to the

binary classification task IoU (k) = 0 or IoU (k) > 0 for a

given segment k ∈ K̂x, i.e., k intersect with ground truth

or not. We term this task meta classification, see [16]. In

analogy we term the regression task of estimating IoU (k)
directly as meta regression, this can also be viewed as a

quality measure. Quality estimates for neural networks were

first proposed for one object per image in [24], [25]. While

these works rely on neural networks as post processors, we

introduced a light-weight and transparent approach in [16] that

deals with multiple segments per image for both meta tasks.

In our approach presented in [16] we proceed as follows:

for each k ∈ K̂x we construct metrics based on dispersion

measures of fz(y|x,w) (entropy, probability margin) as well

as fractality measures of k. The dispersion measures are

aggregated over the predicted segment by computing their

averages, fractality is measured by the quotient of volume

and boundary length of k. We observe that these metrics are

strongly correlated with the IoU (k), yielding Pearson corre-

lation coefficients R of up to 0.85 (in absolute values) for two

different state-of-the-art DeepLabv3+ [26] networks (Xcep-

tion65 [14] and MobilenetV2 [15]). Hence, the constructed

metrics are suitable for both meta tasks. The construction of

metrics can be seen as a map µ : K̂x → R
m that maps k to a

vector of metrics. Thus,

M = {µ(k) : x ∈ X , k ∈ K̂x}, Mi = {µi(k)} (3)

is a structured dataset, for further details on the construction of

M we refer to [16]. We perform meta tasks by training linear

models, i.e., a linear regression model for meta regression and

a logistic one for meta classification, both of them based onM .

We split the set of all predicted segments and their correspond-

ing metrics obtained from the Cityscapes [27] validation set

into meta training and meta test sets (80%/20%) and compare

our approach with the following baselines: for the entropy

baseline we employ for both meta tasks a single metric, i.e.,

the mean entropy over a predicted segment k as the entropy

is a commonly used uncertainty measure. Furthermore, for

the classification task a naive random guessing baseline can

be formulated by randomly assigning a probability to each

segment k and then thresholding on it. A comparison of our

meta classification approach is given in table I. Noteworthily,

we obtain AUROC values of up to 87.72% (roughly 10 percent

points (pp.) above the entropy baseline) for meta classification

and R2 values of up 81.48% (more than 30 pp. above the

entropy baseline) for meta regression. A visualization demon-

strating the performance of our approach is given in fig. 1. In

[16], we also present results for the BraTS2017 brain tumor

segmentation dataset [28].

From now on, we assign the term MetaSeg to the introduced

method. In [18] we extended this approach by taking resolution

dependent uncertainty into account. As neural networks with

their fixed filter sizes are not scale invariant, it makes a

difference whether we infer the original input image or a

resized one with the same network. Consequently, we in-

troduced a pyramid-type of approach where a sequence of

nested image crops with common center point are resized to
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Fig. 1. Prediction of the IoU with linear regression. The figure consists of ground truth (bottom left), predicted segments (bottom right), true IoU for the
predicted segments (top left) and predicted IoU for the predicted segments (top right). In the top row, green color corresponds to high IoU values and red
color to low ones, for the white regions there is no ground truth available. These regions are excluded from the statistical evaluation.

TABLE I
SUMMARIZED RESULTS FOR CLASSIFICATION AND REGRESSION FOR

CITYSCAPES, AVERAGED OVER 10 RUNS. THE NUMBERS IN BRACKETS

DENOTE STANDARD DEVIATIONS OF THE COMPUTED MEAN VALUES.

Xception65 MobilenetV2

Cityscapes training validation training validation

Meta Classification IoU = 0, > 0
ACC, penalized 81.88%(±0.13%) 81.91%(±0.13%) 78.87%(±0.13%) 78.93%(±0.17%)
ACC, unpenalized 81.91%(±0.12%) 81.92%(±0.12%) 78.84%(±0.14%) 78.93%(±0.18%)
ACC, entropy only 76.36%(±0.17%) 76.32%(±0.17%) 68.33%(±0.27%) 68.57%(±0.25%)
ACC, naive baseline 74.93% 58.19%
AUROC, penalized 87.71%(±0.14%) 87.71%(±0.15%) 86.74%(±0.18%) 86.77%(±0.17%)
AUROC, unpenalized 87.72%(±0.14%) 87.72%(±0.15%) 86.74%(±0.18%) 86.76%(±0.18%)
AUROC, entropy only 77.81%(±0.16%) 77.94%(±0.15%) 76.63%(±0.24%) 76.74%(±0.24%)

Meta Regression IoU

σ, all metrics 0.181(±0.001) 0.182(±0.001) 0.130(±0.001) 0.130(±0.001)
σ, entropy only 0.258(±0.001) 0.259(±0.001) 0.215(±0.001) 0.215(±0.001)
R2, all metrics 75.06%(±0.22%) 74.97%(±0.22%) 81.50%(±0.23%) 81.48%(±0.23%)
R2, entropy only 49.37%(±0.32%) 49.02%(±0.32%) 49.32%(±0.31%) 49.12%(±0.32%)

a common size, than as a whole batch of input data inferred

by the neural network, resized to their original size and than

treated as an ensemble of predictions. Of this ensemble we

can investigate mean and variance of dispersion measures and

introduce further metrics, see [18]. Due to this modification

we gain roughly 3 pp. for both meta tasks. A part of the

effect is accounted to the introduction of resolution dependent

uncertainty measures, while roughly an equal share stems from

the deployment of neural networks for meta classification and

regression.

III. TIME-DYNAMIC META CLASSIFICATION

In online applications like automated driving, video streams

of images are usually available. When inferring videos with

single frame based convolutional neural networks, time dy-

namic uncertainties such as flickering segments can be ob-

served. Therefore, as an extension of the previously introduced

MetaSeg method, we present a time-dynamic approach for

investigating uncertainties and assessing the prediction quality

of neural networks over series of frames (meta regression) as

well as for performing false positive detection (meta classi-

fication). In order to extend the single frame metrics to time

series of metrics, we develop a light-weight tracking algorithm

based on semantic segmentation, since by assumption the

latter is already available. Segments in consecutive frames

are matched according to their overlap in multiple frames.

These measures are improved by shifting segments according

to their expected location in the subsequent frame. By means

of the identification of segments over time, we can extend each

metricMi (defined as a scalar quantity in the previous section)

to a time series. These time series are then presented to meta

classifiers and regressors to perform both meta tasks. The set

of metrics used in [16] is extended in [18], this extension is

deployed in the time-dynamic MetaSeg. A precise description

of these metrics and of our tracking algorithm can be found

in [17]. All numerical tests in this section are performed using

the updated set of metrics.

Let {x1, . . . , xT } denote an image sequence with a length

of T and xt corresponds to the tth image. In what follows,

we analyze the influence of the time series length on the

models that perform meta classification and regression. In

case when only using single frames (this corresponds to plain

MetaSeg introduced in the previous section), we only present

the segment-wise metrics M t, where M t denotes the metrics

of a single frame t, to the meta classifier/regressor. For the

time dynamic approach, we extend the metrics to time series

considering – frame by frame – up to 10 previous frames

and their metrics M j , j = t − 10, . . . , t − 1. In total, we

obtain 11 different sets of metrics that are inputs for the meta

classification and regression models. The presented results

are averaged over 10 runs obtained by random sampling of

the train/validation/test splitting. In fig. 2 and table II, the

corresponding standard deviations are given by shades and

in brackets, respectively. In addition to linear models used

in the previous section, we also perform tests with gradient

boosting and shallow neural networks with ℓ2-penalization for

both meta tasks.

We perform tests with the KITTI dataset [19] containing
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Fig. 2. A selection of results for meta classification AUROC as functions
of the number of frames and for different compositions of training data.
(a): meta classification via a neural network with ℓ2-penalization, (b): meta
classification via gradient boosting.

street scene images from Karlsruhe, Germany. This dataset

contains plenty of video sequences of which 29 contain

ground truth. The tests we perform are based on these 29

sequences (yielding ∼12K images) containing 142 labeled

(semanticly segmented) single frames in total. We use the

same DeepLabv3+ networks like in the previous section (pre-

trained on the Cityscapes dataset) to generate the output

probabilities on the KITTI dataset. In our tests we mainly

use the MobilenetV2 while the stronger Xception65 network

serves as a reference network as to be explained subsequently.

Since an evaluation of meta regression and classification

requires a train/validation/test splitting, the small amount of

142 labeled images seems almost insufficient. Hence, we

acquire alternative sources of useful information besides the

(real) ground truth. First, we apply a variant of SMOTE

for continuous target variables for data augmentation (see

[29], [30]) to augment the structured dataset of metrics. In

addition, we utilize the Xception65 net with high predictive

performance, its predicted segmentations we term pseudo

ground truth. We generate pseudo ground truth for all images

where no ground truth is available. The train/val/test splitting

of the data with ground truth available is 70%/10%/20%. We

use the alternative sources of information to create different

compositions of training data, i.e., R (real), RA (real and

augmented), RAP (real, augmented and pseudo), RP (real

and pseudo) and P (pseudo). The shorthand “real” refers to

ground truth obtained from a human annotator, “augmented”

refers to data obtained from SMOTE and “pseudo” refers

to pseudo ground truth obtained from the Xception65 net.

These additions are only used during training. We utilize the

Xception65 network exclusively for the generation of pseudo

ground truth, all tests are performed using the MobilenetV2.

A selection of results for meta classification AUROC as

functions of the number of frames, i.e., the maximum time

series length, is given in fig. 2. The meta classification results

for neural networks presented in subfigure (a) indeed show,

that an increasing length of time series has a positive effect on

meta classification. On the other hand, the results in subfigure

(b) show that gradient boosting does not benefit as much from

time series. In part this can be accounted to overfitting which

we observe in our tests when using gradient boosting. Results

TABLE II
RESULTS FOR META CLASSIFICATION AND REGRESSION FOR DIFFERENT

COMPOSITIONS OF TRAINING DATA AND METHODS. THE SUPER SCRIPT

DENOTES THE NUMBER OF FRAMES WHERE THE BEST PERFORMANCE AND

THUS THE GIVEN VALUE IS REACHED. THE BEST RESULTS FOR EACH DATA

COMPOSITION ARE HIGHLIGHTED.

Meta Classification IoU = 0, > 0
Gradient Boosting Neural Network with ℓ2-penalization

ACC AUROC ACC AUROC

R 81.20%(±1.02%)4 88.68%(±0.80%)6 79.67%(±0.93%)10 87.42%(±0.75%)10

RA 80.73%(±1.03%)9 88.47%(±0.73%)7 78.62%(±0.61%)11 87.00%(±0.81%)10

RAP 79.64%(±1.03%)7 87.80%(±0.82%)3 77.08%(±1.05%)9 86.34%(±0.84%)10

RP 78.45%(±0.88%)8 87.11%(±0.90%)4 76.35%(±0.67%)9 85.70%(±0.88%)11

P 77.56%(±0.95%)5 86.40%(±0.93%)5 75.68%(±0.67%)11 85.12%(±0.92%)11

Meta Regression IoU

Gradient Boosting Neural Network with ℓ2-penalization

σ R2 σ R2

R 0.114(±0.004)5 87.02%(±1.00%)5 0.113(±0.005)1 87.16%(±1.25%)1

RA 0.116(±0.004)3 86.39%(±1.11%)3 0.116(±0.005)1 86.46%(±1.32%)1

RAP 0.112(±0.003)7 87.51%(±0.61%)7 0.114(±0.005)1 86.97%(±1.10%)1

RP 0.112(±0.002)9 87.45%(±0.72%)9 0.115(±0.003)2 86.69%(±0.85%)2

P 0.114(±0.002)11 86.88%(±0.67%)11 0.117(±0.004)3 86.24%(±0.99%)3

for meta regression and meta classification are summarized

in table II. For gradient boosting as regression method we

observe that the incorporation of pseudo ground truth slightly

increases the performance. Noteworthily, we achieve almost

the same performance when training gradient boosting either

with pseudo ground truth exclusively or with real ground

truth exclusively. This shows that meta regression can also be

learned when there is no ground truth but a strong reference

model available. We provide video sequences that visualize

the IoU prediction and the segment tracking1. For further

results, especially those of the linear models, we refer to [17].

The results of the linear models are below those of gradient

boosting in both meta tasks and are therefore not discussed

in detail, here. In contrast to the single frame approach using

only linear models, we increase the AUROC by 5.04 pp. for

meta classification and the R2 by 5.63 pp. for meta regression.

IV. FALSE NEGATIVE DETECTION BY DECISION RULES

In this section, we draw attention to false-negative detection

and the issue connected to the probabilistic output of seg-

mentation networks when trained on unbalanced data, i.e., a

dominant portion of pixels is assigned to only a few classes.

As the softmax output of a segmentation network gives a

pixel-wise class distribution over all q predefined classes, the

most commonly used decision rule, also known as maximum

a-posteriori probability (MAP) principle, selects the class of

highest probability. This is however merely one example of a

cost-based decision rule and it is by far not the only possible

selection principle. One could also penalize each confusion

event by a specific quantity

cz (ŷ, y) :=

{

0 , if ŷ = y

ψz(ŷ, y) , if ŷ != y
, ψz(ŷ, y) ∈ R≥0 (4)

that valuates the aversion of a decision maker towards the

confusion of the predicted class ŷ with the actual class y. The

1See https://youtu.be/YcQ-i9cHjLk
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decision on the predicted class for pixel z given image x now

minimizes the expected cost:

ŷz(x) = arg min
y′∈C

Ez[ cz(y′, Y ) | X = x ] (5)

= arg min
y′∈C

∑

y∈C\{y′}

ψz(y′, y) fz(y|x) . (6)

Seen from this angle, the standard MAP principle corresponds

to cost functions that attribute equal cost to any confusion

event, cf. (1). Although it seems reasonable, according to com-

mon human sense, to assume that ψz(y′, y) should be different

depending on the type of confusion, another decision policy

may reveal ethical problems when it comes down to providing

explicit numbers [22]. Therefore, the choice of cost functions

to increase the sensitivity towards rare objects is subjected to

constraints. A way out is offered by the the mathematically

appealing “natural” Maximum Likelihood (ML) decision rule

which is known for its strength in finding instances of under-

represented classes in unbalanced datasets [20]. The latter rule

assigns costs inverse proportional to the class frequencies, i.e.,

ψz(y′, y) =
1

p̂z(y)
= |X |

(

∑

x∈X

1{yz(x)=y}

)−1

∀ y′ != y (7)

with p̂z(y) being the estimated a-priori probability (prior)

from data X for class y ∈ C at location z. Considering a

segmentation network as statistical model, the softmax output

fz(y|x) can then be interpreted as a-posteriori probability of

pixel z in x belonging to class y. Via the softmax adjustment

with the priors

ŷz(x) = arg min
y′∈C

∑

y∈C\{y′}

1

p̂z(y)
fz(y|x) (8)

= arg max
y∈C

fz(y|x)

p̂z(y)

(Bayes’ Th.)
= arg max

y∈C
fz(x|y) (9)

the class affiliation y becomes an unknown parameter that

needs to be estimated using the principle of maximum likeli-

hood. The ML rule aims at finding the class y for which the

features x are most typical, independent of any prior belief

about the semantic classes such as the class frequency. We

apply the ML rule in a position-specific manner in order to

handle pixel-wise class imbalance, see fig. 3 and fig. 4. Results

for DeepLabv3+ (Xception65 and MobilenetV2) models on

Cityscapes data are reported as empirical cumulative distribu-

tion functions (CDFs) of the category human for segment-wise

precision (F p) and recall (F r) in fig. 5.

We observe an advantage of Bayes in terms of precision

since F
p

ML
≺ F

p

B
for both models, where ≺ stands for 1st

order stochastic dominance [31] saying that typical preci-

sion values for Bayes are right shifted compared with ML.

For any precision value v , in particular for low precision

values, the frequency with which an instance’s precision is

below v is significantly less with Bayes than with ML. In

terms of recall, we observe the opposite behavior, i.e., ML

is superior over Bayes in this metric. The steep ascent of

the ML curves additionally indicates that most ground truth

Bayes Maximum Likelihood

Fig. 3. Illustration of two segmentation masks obtained with the Bayes
decision rule (left) and the Maximum Likelihood decision rule (right).

0.010

0.020

0.030

0.040

0.050

Fig. 4. Estimated pixel-wise prior probabilities of class human in Cityscapes.
For every other category, there is another heatmap with the property that the
values at each pixel position over all heatmaps sum up to 1.

segments are predicted with high recall. More relevantly, ML

significantly reduces the number of non-detected segments,

i.e., F r

B
(0) > F r

ML
(0). Hence, the ML prediction can serve

as uncertainty mask revealing image regions where an rare

class object might be overlooked. For further reading, we refer

to [21].

V. OUTLOOK

The presented methods have clearly demonstrated their

performance for false positive and false negative detection in

semantic segmentation. Within this line of research, we plan

to continue our work on constructing further time-dynamical

metrics that quantify temporal uncertainty, as well as methods

for false negative detection that do not overproduce false

positives. Furthermore, transferring meta classification and

regression to the task of object detection is a logical next step

for future research.

Besides the mentioned algorithmic activities, several topics

that can be considered as applications of false positive detec-

tion / false negative detection or segmentation quality assess-

ment should be developed in the future. One application of

meta regression is active learning for semantic segmentation.

Here MetaSeg can be used as part of the query strategy.

As a future direction of reseach, work on out-of-distribution

detection is a necessary next step to address the OOD failure

mode. We believe that the concept of meta classification and

our method MetaSeg will play a significant role. Furthermore,

we expect that the development of new uncertainty measures

will play a crucial role [32], [33]. It is also an interesting

question, in as much approaches of uncertainty quantification

that guarantee OOD - detection can be transferred to machine

learning with high dimensional input data [12], [34].

On the other hand, synthetic data should be integrated in

this line of method development. We expect that work on

domain adaptation, active transfer learning methods as well as
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Fig. 5. Empirical cumulative distribution functions in Cityscapes for segment-
wise precision and recall of class human.

the generation of synthetic corner cases will play a vital role

in the future. For all these applications, we believe that ex-

pressive uncertainty quantification and well-performing meta

classification frameworks are key-components to establish new

approaches or leverage existing ones.

Source codes for our frameworks are available on GitHub,

see https://github.com/mrottmann/MetaSeg.
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