Special Day on Embedded Al Paper

Overcoming Challenges for Achieving High in-situ
Training Accuracy with Emerging Memories

Shanshi Huang, Xiaoyu Sun, Xiaochen Peng, Hongwu Jiang, and Shimeng Yu

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
Email: shimeng.yu@ece.gatech.edu

Abstract—Embedded artificial intelligence (AI) prefers the
adaptive learning capability when deployed in the field, thus in-
situ training on-chip is required. Emerging non-volatile memories
(eNVMs) are of great interests serving as analog synapses in deep
neural network (DNN) on-chip acceleration due to its multilevel
programmability. However, the asymmetry/nonlinearity in the
conductance tuning remains a grand challenge for achieving high
in-situ training accuracy. In addition, analog-to-digital converter
(ADC) at the edge of the memory array introduces an additional
challenge - quantization error for in-memory computing. In this
work, we gain new insights and overcome these challenges through
an algorithm-hardware co-optimization. We incorporate these
hardware non-ideal effects into the DNN propagation and weight
update steps. We evaluate on a VGG-like network for CIFAR-10
dataset, and we show that the asymmetry of the conductance
tuning is no longer a limiting factor of in-situ training accuracy if
exploiting adaptive “momentum” in the weight update rule. Even
considering ADC quantization error, in-situ training accuracy
could approach software baseline. Our results show much relaxed
requirements that enable a variety of eNVMs for DNN
acceleration on the embedded Al platforms.

Keywords—eNVMs, DNN, in-situ training, asymmetry and
nonlinearity, ADC

I. INTRODUCTION

Embedded Al prefers the adaptive learning capability when
deployed in the field. When new data is coming, the embedded
Al platforms could fine tune its model without sharing the data
back to the data center. This could potentially relieve the
network bandwidth or privacy/security concerns. Therefore,
implementing analog synapses on-chip that could be in-situ
trained is an attractive solution. To this end, researchers are
fascinated by the eNVMs that are capable of multilevel
programmability. Today’s DNN models tend to become deeper
and more complicated with increasing number of parameters. As
a result, the frequent data movements back and forth between
the compute units and memory units becomes the critical
bottleneck to the system performance and energy-efficiency. To
alleviate this memory access bottleneck, in-memory computing
paradigm is proposed to reduce data movements by emerging
the computing units with the memory units [1]. Convolution
operation contains vector-matrix multiplication (VMM), which
takes up most of the computations in DNN. The crossbar nature
of memory array supports analog VMM operations, which could
boost the efficiency of convolution computation significantly
with appropriate weight mapping to the memory cells by input
sharing. In addition, in-memory computing could also improve

978-3-9819263-4-7 /DATE20/©2020 EDAA

the parallelism within the memory array by activating multiple
rows, using the analog mechanism to conduct multiplication and
perform current summation along bit lines (BLs).

Generally, both SRAM [2] and eNVMs [1] could be used for
in-memory computing. Compared to the SRAM, eNVMs are
more attractive for embedded Al platforms as they could keep
stored parameters after power-off and do not need to transfer
data to another storage device, and could be instantly turned on
when receiving the awake signal. The eNVMs of interests
include resistive random access memory (RRAM) [3], phase
change memory (PCM) [4], ferroelectric field effect transistor
(FeFET) [5], and electro-chemical random access memory
(ECRAM) [6], etc. However, achieving high in-situ training
accuracy using eNVMs for large-scale DNN remains a grand
challenge today [7-8]. Material and device engineering solutions
are still demanding. Alternatively, circuit techniques such as
adding auxiliary transistors in the bit-cell (e.g. 3-tranisistor-1-
capacitor [9] or 2-transistor-1-FeFET [10]) have been proposed,
which may adversely increase area and power. Therefore, it is
highly desirable to revisit the origins of this problem from the
algorithm’s perspective.

Fig. 1 shows the key challenges of in-memory computing
with analog synapses. First, training with eNVMs suffers from
non-idealities such as asymmetry/nonlinearity, device-to-device
(D2D) variation and cycle-to-cycle (C2C) variation. The
asymmetry is labeled as +/- for potentiation and depression
(P/D) and the nonlinearity factor (NL) is labeled from 0 to 9.
Definitions on these factors could be referred to our prior work
[11]. These non-ideal effects make the conductance shift from
the desired delta weight (AW) calculated by stochastic gradient
decent (SGD) in backpropagation. Also, since the programming
pulse to change the conductance could not be arbitrarily small,
although the conductance of the devices are continuous, the
states of the devices are limited. In addition, ADC at the edge of
the crossbar array introduces quantization error for both forward
and backward propagations. In this work, we perform a
comprehensive study on these effects and seek hardware-aware
algorithm solutions for in-situ training with eNVMs.

Capitalizing on the recent progresses in low-precision fixed-
point training, we use WAGE [12] framework that quantizes the
weight, activation, gradient and error as our algorithm baseline.
WAGE is suitable for in-memory computing for two reasons.
Firstly, it is a low precision training methods meaning that both
the forward and backward propagations receive the quantized

1025

Special Day on Embedded Al Paper

00 02 04 06 08 10 00 02 04 06 08 1.0

g4 —5(1=9] 14020 variation 8 Eoc variat — Before ADC
51.0 51_ 51.0 '- + Ev‘l,,‘ ' ‘)’,‘ eee ‘),k "t‘
st Sog S04 5 ﬁ(:
'Eo.a 'E -E E—v: 2 IR "
0. 0.6 ° °
Sod S Jo= #1451 § g HER H H i
3 - o4 = ooe
E;M ﬁ-uz Nonlinearity ._E“ . Vm"" K K2 ""4 ‘
EM E Mean =3 E oL U ! o Js -
chy 5™ St =04 5 9 YN’ P/D=+5/-5 [ADC }-»
= = Z 00 02 04 06 08 10 b Quantized
of Pulse(normalized) (b) l | | | (c) partialsum -

) # of Pulse(normalized) # of Pulse(mormalized)

Fig. 1. Crossbar array for in-memory computing (b) with device non-idealities such as asymmetric and nonlinear conductance tuning, and device to device (D2D)
variation and cycle-to-cycle (C2C) variation (a) and ADC quantization error (c). A reference column by subtraction is used to represent negative weights.

@ ® e
Backward

Fig. 2. Modified WAGE [12] training flow incorporating hardware non-
ideal effects of layer i.

input for convolution. Secondly, it uses fixed-point quantization
which limits the quantization range to [-1, 1] for the entire
training process, while some other work [13] still uses floating
range quantization which requires update of the quantization
boundary for each iteration. Although the other work [13] could
support ex-situ training for low precision inference, WAGE is
more suitable for in-situ training on the device on the fly. In
addition, WAGE uses stochastic quantization for gradient,
which promises the convergence on low precision gradient. Our
contribution to WAGE method is to incorporate the non-ideal
effects of hardware into its training flow as shown in Fig. 2. The
device non-idealities are added in the weight update stage and
the ADC quantization is realized by modifying the convolution
function as shown in the pseudo-code (Fig. 3).

The paper is structured as follows. In section II, we discuss
the effects of each non-ideal effect and propose possible
mitigation methods. Then, the simulation results are presented

MaxPool
Flatten

MaxPool

Fig. 4. VGG-like 8 layers neural network for CIFAR-10 dataset.

1026

Modified WAGE Algorithm: Incoperting Non-ideal
effects and ADC quantization.

Add Non-ideal Effect:
If quantize_momentum is True:
//Nomalize gradient calculated from the SGD to [-1,1]
gk = normalize(g")
//Calculate the momentum based on the mometum factor
AW (1) = pAWG (t — 1) + (1 = B)(—gn)
//Quantize the momentum to reduce the overhead to save it.
A%‘(t): QM (AW (t), My,)
//Stocahstic quantize to get pulse, the pulse width is deterimed by
the gradient precision g, and the propability is scaled by the
learning rate lr to control the percentage of weight update.

pulse’ = QGAWL (D), gp, IT)

If nonlinearity is True:
//map pulse to conductance change base on current value

AW, = f(pulse!, Wi nl_level)

If C2C variation is true
//Wnii is the real weight update applied to the weight corrsponding
to the conductance change of eNVM cell.

AW} = AWE + NV (0,0)

Add ADC quantization in Convolution:
//Binarize Input following two’s complementary base
in=a®-b°+ at b1+ ---+a™-p"
atef0,1], p°=-1,b'=2"0<i<n
Fori from 1 to n:
//Divide input and weight into k subarray according to the input
channel depth
Forj from 1 to k:

ps;; = adc (conv(inij,wj + 1))
—adc (conv(inij, 1))
//sum partial sum across sub array
ps; = ps; T psij v
//sum partial sum across scale, by multiplied with scale b*, the
partial sum is converted back to decimal value

ps = ps +ps; - b

Fig. 3. Pseudo code for adding device non-idealities and ADC
quantization into WAGE framework. Training is fully hardware-aware.

Design, Automation And Test in Europe (DATE 2020)

Special Day on Embedded Al Paper

in section III to support our hypothesis. All of our evaluations
are done for CIFAR-10 dataset with an 8-layer VGG-like
network (Fig. 4).

II. IMPACT FACTORS FOR IN-SITU TRAINING ACCURACY

A. Asymmetritry/Nonlinearity

In the general DNN training process, weights are updated
with the gradients calculated from SGD. For eNVMs-based
accelerator, the gradients are mapped to the number of
programming pulses to be applied on the device to change the
weight (conductance). However, for most of realistic devices,
the change is nonlinear respect to the pulse, and it will be based
on the current conductance value. Generally the change will be
large at the beginning when leaving maximum conductance
Gmax or minimum conductance Gmin and will gradually
saturate while approaching Gmin/Gmax, causing the
conductance change nonlinear and asymmetric for increase and
decrease. Recent work [14] shows that nonlinear but symmetric
conductance tuning (up to P/D=+6/+6) just slightly hampers
training accuracy, while nonlinear but asymmetric conductance
tuning (with small P/D=+1/-1) causes significant accuracy loss
(Fig. 5). While the prior works observed this phenomenon, no
thorough analysis was done. Our hypothesis is as follows: when
the device is approaching the Gmax by consecutive positive
pulses, a negative pulse (as defined by a sign change in AW) will
make a large drop of the conductance, as shown in Fig. 6 (a), as
the asymmetric conductance tuning curve predicts. Similar
argument could be applied when the device is approaching
Gmin. In other words, it is statistically easier for the device to
return the middle range of the conductance than approaching
Gmax or Gmin. Fig. 6 (c) shows the ideal software weight
distribution after the convergence, and Fig. 6 (d) shows the
actual weight distribution (converted back from device
conductance) when training with P/D=+3/-3. This result
validated our hypothesis: weights are more uniformly
distributed from -1 to +1 in ideal software training, while the
weights are concentrated around 0 in actual device training. The
weight distribution here is not like most of the floating-point
training case which follows Gaussian distribution. We think this
may be caused by the uniform initialization and the fixed
boundary cut off manner of the WAGE quantization training
method. Here we assume the weight +1/-1 are mapped to
Gmax/Gmin, and a reference column is used for subtraction to
represent the negative weights (Fig. 1 (c)).

With asymmetric/nonlinearity, if the global minima of the
DNN’s loss function landscape is at a location where some of
the weights are near +1/-1, then any undesired sign change for
AW will make it out of the global minima, since a sign flip
means a large conductance change under asymmetry. There are
three types of undesired AW sign change in the training
process: 1) sampling error of batches; 2) oscillation around local
minima; 3) oscillation around global minima (Fig. 7).

To alleviate the problem of undesired sign change, we
propose using adaptive “momentum” by increasing AW along
the direction which has a constant AW sign. As shown in
equation (1), AW applied at current step is the exponential
moving average of the gradients from the history of previous
steps plus the SGD value at current step. In this case, some

Design, Automation And Test in Europe (DATE 2020)

90%

80% :
Polarity of P/D
—.— -

—— +/+
—A—

Accuracy

70%

80%F CIFAR-10

0o 2 4 6 8
Nonlinearity Level(NL)

Fig. 5. Accuracy vs. NL level for symmetric and asymmetric weight
update with SGD method.

interrupt sign flip could be avoided. § is defined as momentum
factor, which decides the averaging window size.

AW() =AW (E -1+ (1=) (—32) (1)

By using momentum in weight update, the first two types of
undesired sign change could be eliminated while oscillation
around the global minimal is unavoidable during training.
However, with the momentum and stochastic quantization, the
probability of approaching global minima will be higher than
that of leaving it. Fig. 6 (a) and (b) show the difference between
the conductance change without and with momentum. Without
momentum, the probability of updates totally depends on the
current gradient from SGD independently. Any sign change of
AW may lead to big jump-back of conductance (AG) towards
the middle range of conductance. With momentum, for the
example of weight increase, the probability of P update will be
accumulated while approaching the target more smoothly. Even
if for the current update step, the conductance change is not
taken, the probability will accumulate as training goes on. The
more steps on the same directions taken, the higher the
probability to go toward that direction. When the conductance
exceeds the target, the negative gradient by SGD will just

@ ®
o 17 o 1%
£ [~ PNL=+5)wiomomentum] £ '“[— P(NL=+3) wl momentum
g 1.0 D(NL=-5) G step size 8, — D(NL=5) \‘AG step siz
7}
3 3
T 0 Giss T 0.8 B
E ______ Gis t E ______ Gie2
O 08 /}G, 1 gl 1 O 08 @
e 3

0.4 ;)
E . / ﬁ .
T 0.2 [lag o/ i .
£ | E 1 e it
o o i i1 o 0.0t g
Z %0 0z 04 05 08 102 00 02 04 06 08 10

(a) # of Pulse(normalized) (b) # of Pulse(normalized)
a8 IEpoch=185 bt

5
PID=0 P/D=+3/-3 [EEpoch=185

cony 0.10
layer 3 conv
layer 3

0.00 0.00
© 10 08 00 05 10 0 05 00 05 10
Weight Value Weight Value

Fig. 6. (a) Conductance update trend without momentum. (b) Conductance

update trend with momentum. (c) Weight distribution w/o nonlinearity. (d)
Weight distribution with P/D = +3/-3 for conv layer 3 at epoch=185.

1027

Special Day on Embedded Al Paper

a, some bad batch give opposite gradient
direction against the rest, could happen

anywhere e
c. oscillation

around global

b. oscillation around
local minima

Error of loss function

v

Weight Space
Fig. 7. Three types of undesired AW sign change during training.

decrease the P update probability, thus it may not cause jumping
back while making the weight stay near the target. Although
further increasing weight is also undesired, it will not go far
away from the target because of the saturation nature of the P
curve. As a result, the momentum compensate the
asymmetry/nonlinearity of the conductance tuning if the global
minima is located around Gmax/Gmin on some dimensions.

B. Update Step Size

Generally, eNVMs are analog synapses where cell
conductance could be viewed as continuous variable between
the dynamic range Gmin and Gmax, but the update step for the
device could not be arbitrarily small as it is quantized by the
programming pulse number. The applicable pulse number
generally defines the weight precision (strictly speaking, the
gradient precision since the weight is represented as
conductance which could be located on any value because of the
asymmetric nonlinearity and C2C variance of update). Table 1
surveys state-of-the-art device technologies ranging from 5-bit
to 10-bit. Higher precision is preferred as smaller conductance
update step size could reduce the impact of sign change under
asymmetry. For the late stage of training, same update step is
also necessary for exploiting the global minima. Using WAGE,
we translate AW as the probability to apply a pulse through the
stochastic quantization. Then the non-idealities of eNVMs are
added to get the final weight update value AW,;. Besides
momentum, a learning rate (Ir) is also used to modulate this
probability after normalization to tune the percentage of weights
updated at one time. The stochastic quantization is better than
the deterministic quantization since it makes the weight update
possible for small gradient. This is important to prevent the
small gradient being diminished.

C. D2D Variation and C2C Variation

D2D variation is caused by that NL values differ across
devices, this will not be a problem as the DNN model could have
self-adapt to such static variation. C2C variation is due to the
conductance variation upon each pulse. This could be a more
severe problem if the C2C variation overwhelms the direction

TABLEI. SURVEY OF REPRESENTATIVE ANALOG SYNAPSES REPORTED IN
LITERATURE WITH WEIGHT PRECISION, P/D, AND C2C VARIATIONS.

Analog synapse Weight (grad) c2C P/D
reported precision

HZO FeFET([5] 32=5bit 0.5% 1.75/1.46

2T-1FeFET[10] 64=6bit 0.5% 0.85/0.85

2PCM+3TIC[9] 64=6bit 1.5% 0.2/-0.2
EpiRAM[15] 64=6bit 2% 0.5/-0.5

TaOx/HfOx[3] 128=7bit 3.7% 0.04/-0.63
ECRAM[6] 1000=10bit <0.5% 0.347/0.268

1028

that is defined by the SGD. With significant C2C variation, a
positive update step may end up with conductance decrease,
resulting in an opposite direction of momentum move. Since
C2C variation’s standard deviation is related to the range of cell
conductance, smaller step size will have higher probability of
wrong direction update, which means low precision gradient and
high nonlinearity level will be more robust to the C2C variation.
Typical C2C values for some representative devices are shown
in Table 1.

D. ADC Quantization

The output of the VMM is represented as the current value
on BL which is an analog signal. Although, in theory, eNVMs-
based accelerator could take analog signal as input for the next
stage [16], digital inputs are preferred for more reliable
calculation. Also for training, the intermediate activation need
to be saved for later usage in backpropagation and gradient
calculation, the digital activation will be more suitable than the
analog one. As the unrolled weight matrix is often larger than
the memory sub-array size, ADC is used to digitize the partial
sums from sub-arrays for later accumulations and propagations.
To make the positive conductance to represent weight value
which could be negative, read-out currents obtained from the
weight columns and the reference column will go through ADCs
first and then subtract digitally (Fig. 1 (c)). It is noted that unlike
the partial sum value which is always zero centered, the
positively accumulated current may have different means for
different DNN layers and wider dynamic range.

Reference
Output H (-
T ¥ =7
15 d
Difference H
1 after ADC 1 '
Array «-Ja G by
Output
21213 2 3 2 245 57

Fig. 8. ADC quantization example. Because of the round-down manner
of ADC, their error will bias towards negative (e.g., -0.7 is quantized to -
1), causing the output easier being cut by the subsequent ReLU function.

One drawback of ADC is that it has the round-down manner
instead of the round-nearest operation that is used in most of the
quantization algorithm, thus the partial sum tends to be biased
towards negative (Fig. 8). Since we use ReLU as activation
function, biasing towards negative will deactivate many neurons
and prevent training from convergence. To solve this problem,
we propose adding +1 to the LSB of all the negative partial
sums, so that the positive results round down while the negative
results round up. Such round-center quantization will have less
errors than the round-down one as addition of partial sums from
different sub-arrays will further accumulate the quantization
errors. It is also possible to add +0.5 to mimic the round-nearest
operation but it means higher precision required in hardware, so
we do not use such method in our hardware-software co-
simulation.

III. EVALUATION RESULTS

PyTorch platform is used for our simulation with the
following default settings: 8-bit weight (gradient), 8-bit
activation/error under the WAGE framework. For analysis with

Design, Automation And Test in Europe (DATE 2020)

Special Day on Embedded Al Paper

nonlinearity/asymmetry, P/D=+3/-3 is used as default if without
specification. 128x128 sub-array size are used for ADC
quantization except the first layer. Batch size =200 for all cases
except the big batch analysis. The software baseline accuracy is
92% for CIFAR-10 dataset without any non-idealities and
partial sum quantization.

First, the effectiveness of momentum on compensating
nonlinearity/asymmetry is studied. By sweeping momentum
factor 5, we found 0.9 is roughly the optimum choice, achieving
90% accuracy (Fig. 9(a)). The rest simulations are based on this
value. On top of this momentum factor, in Fig. 9(b), we test the
training performance with various NL factors under asymmetry.
Applying the same learning rate will cause accuracy drop at high
NL level since very big conductance change may happen when
AW sign changes. By decreasing the learning rate, as a result of
the stochastic quantization, the frequency of weight updates will
decrease and reduce possible sign changes. The results show that
reasonable accuracy (~87%) is still possible with the extreme
P/D=+9/-9. To valid our hypothesis on the momentum’s effect,
we plot the weight distribution of the same layer with/without
momentum at the same epoch. As shown in Fig. 10, with
momentum, a more spread-out distribution is obtained than
without momentum, resembling the ideal software training.
Moreover, since the momentum for each weight should be
stored (e.g. off-chip), it is also preferred to be quantized for
saving the memory capacity. Fig. 9 (c) shows the quantization
effect of momentum, and 10~12 momentum bits are required to
avoid accuracy loss. This is higher than the gradient precision
because for momentum we could not use stochastic
quantization, and the momentum is to accumulate the small
change with the same sign, it should have relatively high
precision to avoid underflow.

We further test the effect of D2D variation assuming
P/D=+3/-3 with 0.5 standard deviation (Fig. 9(d)) and found the

959 100%
CIFAR-10
90% 80%

N\

ry

85% /
/A ~90%(8=0.9)
80% 40% K tuned learning rate

75% / 20%} CIFAR-10

~—*—same learning rate
[NL=3, grad_precision=g| with Momentum
0%

00 02 04 06 038 1.0 0 2

60%

Accuracy
Accuracy

709

4 6 8 10
(a) momentum factor(B) {b) NL level
Big Batch
0 2000 4000

90%| CIFAR-10

90% -—a—n
"
00w | 80%
> ~Re o) ~80%|
§ 80% g 70%
2 o
o CIFAR-10 Q 60Y
2 70% o 30
50% —— PID=+3/-3, B=0
A P/D=+3/-3, B=0.9
60%| = PID=31-3 it — with D2D variation
weight(grad.) precision=8 * —— Batch Size=4000
6 8 10 12 14 16 0 100 200
(¢) Momentum Precision (d) Epoch Number

Fig. 9. (a) Accuracy vs. momentum factor B. (b) Accuracy vs. device
nonlinearity factor under asymmetry. (c) Accuracy vs. momentum precision.
(d) Training traces w/wo momentum, D2D variation and big batch
size=4000.

Design, Automation And Test in Europe (DATE 2020)

0. 0.
Training Epoch:5 Training Epoch:185
PID=+3/-3 P/D=+3/-3
B:Momentum
- Factor 1
2 2 " mmp-o0
2 o0 g2 =09
a 8
0.05
0.0 0.00
1.0 05 00 05 10 1.0 05 00 05 10
(a) Weight Value (b) Weight Value

Fig. 10. Distribution of weights at initial training (epoch=5) and after
convergence (epoch=185).

training trends is almost the same with the case of P/D=+3/-3
without variation. We also use very big batch size=4000 to train
the network without momentum, which could reduce batch
sampling error but could not solve the oscillation problem both
around local and global minima. The black curve in Fig. 9(d)
shows that big batch size improves the accuracy to some level
compared to the small batch size (red curve) but could not
achieve the same result as by momentum.

Fig. 11(a) shows that training with very low weight
(gradient) precision down to 4-bit is feasible, if the learning rate
could be fine-tuned. Fig. 11(b) shows for devices with high
precision and low NL, high accuracy could be achieved without
C2C variation, but accuracy drops rapidly with the increase of
C2C variance from 1% to 5%. Instead, devices with low
precision and high NL is more robust to C2C variation, though
initial accuracy is lower. To understand this result, Fig. 12 shows
one batch sampling of AWni vs. W based on the real
conductance change. We could see that with smaller C2C
variation, bigger NL or smaller weight (gradient) precision,
there will be fewer points crossing over the positive AWni and
the negative AWni boundary, which means less sign changes for
the weight update.

For the ADC analysis in Fig. 13(a), by sweeping different
ADC resolution bits, we found 8-bit will maintain a good
accuracy ~87%. If we use round-down quantization instead of
round-center, the ADC requirement increases to 11-bit.
Compared to prior work [17] for inference only where 3-bit
ADC is sufficient for a similar network, here we see a higher
resolution is required for training. This is mainly due to two
reasons. First, for training, the range of the partial sum may vary
from iteration to iteration, so we just use linear quantization for
easier implementation, which will require higher ADC precision
than the nonlinear quantization based on the statistics. Second,
in the simulation, weights are represented by only one analog

100% 95%

—=—NL=3, grad_precision=8
~#-NL=6, grad_precision=8
80% —A—NL=3, grad_precision=4
~30% e
~84%

60%

85%

40%

Accuracy
Accuracy

CIFAR-10

—#—tuned learning rate

80%
20%

—&— same learning rate CIFAR-10
0% 75%
4 6 8 0% 2% 4% 6%
(a) Weight (gradient) Precision (b) G2C Variation

Fig. 11. (a) Accuracy vs. device weight (gradient) precision. (b) Accuracy
vs. C2C variation. Momentum 3 =0.9 is applied.

1029

Special Day on Embedded Al Paper

0.4 0.4
Large weight(grad.) precision Large weight{grad.) precision
Small C2C Var Large £2C Var
0.2| Small B/ID 0.2 fLarse PID %
E
;0.0
<
02 1ppesars 02 pipargg s o
C2C variation std=1% €2C variation std= 5% n
i weight(grad.) precision=8 ik weight(grad.) precision=8
%40 05 00 05 10 10 05 00 05 1.0
(a) Weight (b) Weight
0.4 = 0.4
Smiall u@thl(grad.j precision Large weight(grad.) precision
Large:62C Var, Large C2C Var

SmallPD & °

0.2}

0:2[pjB=e3s iD= .

c2e vanannn“swsaie . €2 variation std=5% ° °
e welgﬁ’ﬁ(urad)ﬁe’&slgheﬁ’ i we!ghl(grad)preclslon—ﬂ
730 05 00 05 10 40 -05 00 05 1.0
(c) Weight (d) Weight

Fig. 12. Example of actual weight update pattern (AWni vs. W) in one
batch for different P/D, C2C variation, and weight (gradient) precision.
Due to C2C variation, the actual weight AWni update direction may be
different than the momentum’s sign. The red (blue) points are the actual
conductance change for the cells that should have weight increase
(decrease). Any red (blue) points falling into negative (positive) AWni
means a wrong update direction. When C2C variation is large, better
accuracy expected for (b) devices with large P/D and high precision or (c)
devices with small P/D and low precision.

e 90%
90%| CIFAR-10 s g CIFAR-10
809
80% %
> ~84% 2
 70% {70%
3 3
© 60% ©60% PID = +3/-3
< — 7-bit ADC quantization | << ADC precision = 8 bits
50%| |—— 8-bit ADC quantization % D2D variation std = 0.5
—— wio quantization 50% C2C variation std = 3%
40% lomentum precision = 12bits
i 40% Weight(grad.) precision = 6bits
3
0 25 50 75 100 0 30 60 90
(a) Epoch Number (b) Epoch Number

Fig. 13. (a) Training traces for different ADC resolutions. (b) Training
traces when asymmetry/nonlinearity, D2D, C2C, momentum and ADC
quantization effects all combined together.

synapse without any quantization which means the cell is
already very high precision. Even if the ADC precision looks
high, it has a big reduction from the full precision for the partial
sum.

Lastly, we run the simulation with all the non-ideal effects
combined, momentum quantization and ADC quantization. 86%
accuracy is still achievable as show in Fig.13 (b), which is a
remarkable result for in-situ training with practical eNVMs.

IV. CONCLUSION

In this work, we overcome the grand challenges for in-situ
training with eNVM devices. First, asymmetry/nonlinearity is
no longer a problem if momentum is introduced in the weight
update. D2D variation is not a concern, either. Low-precision

training is also possible. C2C variation is more problematic,
device engineering to suppress C2C variation is needed. ADC
resolution requirement is still high for on-chip training. This
work could potentially pave a theoretical milestone for
achieving high in-situ training accuracy with analog synapses.

ACKNOWLEDGEMENT

This work is supported by NSF-CCF-1903951 and ASCENT,
one of the SRC/DARPA JUMP centers.

(1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

S. Yu, “Neuro-inspired computing with emerging non-volatile memory,”
Proc. IEEE, vol. 106, no. 2, pp. 260-285, 2018

W.-S. Khwa, et al., “A 65nm 4Kb algorithm-dependent computing-in-
memory SRAM unit-macro with 2.3 ns and 55.8 TOPS/W fully parallel
product-sum operation for binary DNN edge processors,” in [EEE
International Solid-State Circuits Conference (ISSCC), 2018.

W. Wu, et al., “A methodology to improve linearity of analog RRAM for
neuromorphic computing,” in /[EEE Symposium on VLSI Technology,
2018.

W. Kim, et al., “Confined PCM-based analog synaptic devices offering

low resistance-drift and 1000 programmable states for deep learning,” in
in [EEE Symposium on VLSI Technology, 2018.

M. Jerry, et al., “Ferroelectric FET analog synapse for acceleration of
deep neural network training,” in /EEE International Electron Devices
Meeting (IEDM), 2017.

J. Tang, et al., “ECRAM as scalable synaptic cell for high-speed, low-
power neuromorphic computing,” in [EEE International Electron
Devices Meeting (IEDM), 2018.

G. W. Burr, et al., “Large-scale neural networks implemented with non-
volatile memory as the synaptic weight element: Comparative
performance analysis (accuracy, speed, and power),”in [EEE
International Electron Devices Meeting (IEDM), 2015.

S. Agarwal, et al., “Resistive memory device requirements for a neural
algorithm accelerator,” in [EEE International Joint Conference on Neural
Networks (IJCNN), 2016.

S. Ambrogio, et al., “Equivalent-accuracy accelerated neural-network
training using analogue memory,” Nature, vol. 558, pp. 60-67, 2018.

X. Sun, et al., “Exploiting hybrid precision for training and inference: A
2T-1FeFET based analog synaptic weight cell,” in JEEE International
Electron Devices Meeting (IEDM), 2018.

P.-Y. Chen, et al., “NeuroSim+: An integrated device-to-algorithm
framework for benchmarking synaptic devices and array
architectures,” in /EEE International Electron Devices Meeting (IEDM),
2017.

S. Wu, et al., “Training and inference with integers in deep neural
networks,” in International Conference on Learning Representations
(ICLR), 2018.

R. Banner, et al., “Scalable methods for 8-bit training of neural
networks,” in Advances in Neural Information Processing Systems
(NIPS), 2018.

X. Sun, et al., “Impact of non-ideal characteristics of resistive synaptic
devices on implementing convolutional neural networks,”in /EEE
Journal on Emerging and Selected Topics in Circuits and Systems
(JETCAS), 2019.

S. Choi, et al., “SiGe epitaxial memory for neuromorphic computing with
reproducible high performance based on engineered dislocations,” Nature
Materials, vol.17, pp. 335-340, 2018.

H.-Y. Chang, et al., “Al hardware acceleration with analog memory:
micro-architectures for low energy at high speed,” IBM Journal of
Research and Development, 2019.

X. Sun, et al., “XNOR-RRAM: A scalable and parallel resistive synaptic
architecture for binary neural networks,” in /EEE Design, Automation &
Test in Europe (DATE) Conference, 2018.

1030 Design, Automation And Test in Europe (DATE 2020)

