
Special Session Paper

Using Universal Composition to Design and

Analyze Secure Complex Hardware Systems

Ran Canetti††, Marten van Dijk ∗, Hoda Maleki†, Ulrich Rührmair§, Patrick Schaumont♯

Abstract—Modern hardware typically is characterized by a
multitude of interacting physical components and software mech-
anisms. To address this complexity, security analysis should
be modular: We would like to formulate and prove security
properties of individual components, and then deduce the security
of the overall design (encompassing hardware and software) from
the security of the components. While this seems like an elusive
goal, we argue that this is essentially the only feasible way to
provide rigorous security analysis of modern hardware.

This paper investigates the possibility of using the Universally
Composable (UC) security framework towards this aim. The
UC framework has been devised and successfully used in the
theoretical cryptography community to study and formally prove
security of arbitrarily interleaving cryptographic protocols. In
particular, a sophisticated analytical toolbox has been developed
using this framework. We provide an introduction to this frame-
work, and investigate, via a number of examples, ways by which
this framework can be used to facilitate a novel type of modular
security analysis. This analysis applies to combined hardware and
software systems, and investigates their security against attacks
that combine both physical and digital steps.

Index Terms—Universal Composition Framework, Hardware
Security, Physical Cryptography and Security

I. INTRODUCTION

A. Overview and Motivation

Due to miniaturization, multiple functionalities, concur-

rently running apps, high connectivity, and yet other aspects,

modern computers and hardware systems have turned into out-

standingly intricate objects. As Google’s Ulfar Erlingsson once

put it [1], hardware systems ”have become these incredibly

complex spaceships that have landed in our backyards, and we

use them to make coffee.” Besides the well-known underload

in average scenarios the quote alludes to, it also points to some

of the resulting, severe security and privacy issues: (i) How can

users make sure that the ”spaceships” in their backyards only

have the desired functionalities (and no others)? (ii) How can

system designers ensure that the complex interplay of software

and hardware, and of high-level and low-level components,

still creates an overall secure system? Both aspects represent

highly non-trivial challenges for the security community.

This paper is concerned mostly with question (ii). We

observe that the situation of complex modern hardware is

partly similar to the intricate composition of concurrently

running, multiple protocol instances. The so-called ”Universal

††Boston University, canetti@bu.edu. Support by the NSF MACS Project.
∗CWI Amsterdam and UConn. Supported by the NSF MACS Project.
†Augusta University, hmaleki@augusta.edu
§LMU Munich and University of Connecticut, ruehrmair@ilo.de
♯WPI, pschaumont@wpi.edu. Supported by NSF Award 1617203.

Composition” (UC) framework [2] has been introduced almost

two decades ago in the theoretical cryptography community in

order to deal with exactly such situations, and currently proba-

bly represents the most advanced framework for their analysis.

Its sophisticated tool box allows, for example, proving security

properties of arbitrary parallel protocol compositions within

certain, well-defined circumstances — or also disproving the

existence of schemes that compose securely in certain situa-

tions.

The main novelty of our work now lies in suggesting that

this existing UC machinery may be beneficially adapted and

translated to a hardware context, too. This relates both to

using the tools and theorems of the UC framework for novel

formal proofs in a hardware setting (a future research avenue

mainly for theoreticians), as well as to applying the general

thinking behind the UC model in the practical construction of

secure, multi-layered hardware (a task relevant for practition-

ers, engineers, and hardware designers). Furthermore, thinking

about security analysis already at the stage of designing basic

components might, we hope, lead to further collaboration

between the communities and result both in more secure

hardware and in more practically relevant and fruitful research.

At the same time, we would like to stress that this work is

just an expository first step, and does not include full-fledged

theorems or comprehensive adaptations of the UC framework

for general secure hardware design. This must remain subject

to future activities. Instead, this paper aims to make the

hardware community aware of the large potential that lies in

the intersection of hardware security and the UC formalism.

To this end, we provide a number of concrete examples that

hopefully guide readers at least through the outskirts of the

UC jungle. We also attempt to communicate some of the

general UC-thinking to practitioners and engineers, trying to

make them more sensitive to security concerns and pitfalls that

arise whenever even seemingly simple software and hardware

primitives are combined across various system layers. By

doing so, we hope to prepare the grounds for a new and

potentially fruitful research area in the interplay of hardware

security and theoretical cryptography.

B. Related Work

There are three existing research strands in the wider

intersection between the UC framework and hardware security

that require mentioning. The first one deals with the use

of (assumedly) tamper-proof hardware tokens as a tool in

cryptographic protocols, and shows how the physical exchange

of such tokens allows secure communication schemes, for

978-3-9819263-4-7/DATE20/ c©2020 EDAA 520



Special Session Paper

Fig. 1. Layers of adversarial environments for computing systems.

example secure multiparty computation [3], [4]. The second

strands treats a physical cryptographic primitive, namely so-

called physical unclonable functions (PUFs), in the UC frame-

work [5]. As in the first strand, PUFs are used as a protocol

tool in this line of work, which must be exchanged physically

between different parties. Both strands strictly differ from our

efforts, however, as they do not aim to prove statements about

secure hardware, particularly not about the secure composition

of hardware and/or software components in complex devices,

as we do. The third strand, which is closer in spirit to the goals

of this work, considers UC security of multi-party computation

protocols in a setting where the adversary may, in addition

to its usual capabilities of controlling the communication and

some of the parties, also obtain arbitrary “leakage” information

on the internal states of parties (see [6] and a number of follow

up works). However, both the formalism and the analysis

provided there are more high-level and are not sufficiently fine-

grained to address realistic hardware design issues. Indeed,

to the best of our knowledge, our work thus is the first that

suggests to apply the UC framework to analyze and prove the

security of complex, multi-layered hardware systems.

II. APPLYING THE UC PARADIGM TO HARDWARE

SYSTEMS

Figure 1 describes the common design abstractions in mod-

ern electronic design covering the (micro) transistor level up to

the (macro) application level. Designers express functionality

and structure of a design in terms of abstractions common at

each level. Abstraction is essential to deal with complexity,

and it plays a fundamental role in verifying the correctness

of the design. However, these abstractions do not apply to the

attacker, as the following example illustrates.

Consider an attack on a secure web server by an attacker

who is physically remote. The attacker may use a combination

of attack vectors that target different components within the

web server: The attacker may use replay or out-of sequence

messages at the protocol level; it can use malformed requests

at the algorithm level; it can use timing effects at the pro-

cessor/instruction level; it can also use any combination of

Fig. 2. Universally Composable framework. The module communicates
with the outside world through its defined API. Dashed arrows indicate the
information leakage to the adversary. a) illustrates the physical realization
of module M , while b) shows the ideal functionality of module M . The
simulator communicates with FM in order to simulate the leakage function
L(x).

the above. In other words, attacks are not restricted by the

abstraction levels used within the design. This leads to the

following design challenge for secure design. How can a

designer rely on the design abstractions that are so crucial

for correct and efficient design, while at the same time taking

into account that an attacker can exploit any aspect of the

implementation? This is, in essence, what secure composition

of hardware and software aims to achieve. Figure 1 describes

an intuitive solution. The design is decomposed into ’ideal

primitives’, which guarantee a perfect implementation not only

from the functional point of view, but also from the security

point of view. A designer builds a secure design using such

ideal primitives.

While we do not know, today, how to solve this design

challenge in the general sense, designers have proposed a

myriad of techniques that achieve ’ideal primitives’ hardened

against specific attackers. First, software and hardware can be

hardened using common countermeasures. Second, software

and hardware designs can introduce appropriate constraints

towards the lower layers to guarantee that countermeasures

remain correct as the design is refined into implementation.

The objective of our work is to investigate how this chal-

lenge can be addressed in a formal manner. From the Universal

Composability framework [2] we learn that we can specify the

expected behavior of a physical realization PM of a module

M via an ideal functionality FM . The main idea is to have

FM precisely describe how we would like a realization of

the module to react to each and every external impetus. The

security definition will essentially then say that PM is “at least

as secure as” the ideal functionality FM , in the sense that

no “external environment,” which is represented as a single

centralized, adversarial algorithm that interacts with a system,

can tell whether it is interacting with the real system or the

ideal system.

An ideal functionality can impose both functionality and

secrecy requirements: Having FM , on input a function f ,

responds with f(x) for some stored value x, means that

the implementation must also output f(x); Furthermore, it

means that no information other than f(x) should be leaked.

Design, Automation And Test in Europe (DATE 2020) 521



Special Session Paper

Fig. 3. a) Each functionality in layer i may interact with multiple instances of
ideal functionality FM . The UC composition theorem indicates that replacing
the ideal functionalities FM of module M with its physical realization PM

preserves the promised security properties. In other words, (a) and (b) are
computationally indistinguishable.

For example, if module M maintains a secret key, then it

suffices to write FM so that it will simply not leak sufficient

information to the external environment.1 This will mean that

any physical realization must not leak the key either (or else

the adversary will be able to distinguish the realization from

the ideal behavior).

More precisely, in order to prove that the physical real-

ization PM is as secure as the ideal functionality FM , we

first model all the side information given to the adversary

Π by a constraint on the side information (see Figure 2).

This is represented by a possible set of leakage functions L

from which adversary Π selects one specific leakage function

L(x) ∈ L (say, all functions that leak at most B bits on the in-

ternal state). Here, input x represents all the information/state

of PM and L(x) filters this information/state. In order for

the designer of the larger system to prove that PM realizes

the ideal functionality FM , the designer needs to construct

a simulator S which sits in between FM and adversary Π
such that S simulates L(x) as seen from the real physical

system PM with only the limited information provided by

the ideal functionality FM . The goal is to show that PM is

computationally indistinguishable from FM ◦ S.

The elegance of the UC framework comes from its com-

position theorem which is illustrated in Figure 3. Applied to

our setting, the theorem states that if a system ρi at layer

Li of an electronic system uses a module M with ideal

functionality FM , then we may replace each use of FM by its

physical realization PM , without changing the overall security

of the overall system. In particular, ρi with plugins to FM is

computationally indistinguishable from ρi with plugins to PM .

This theorem allows us to reason about security in a modular

fashion.

Above we explained how modules compose in the UC

framework, but we need to be careful. We stress that the

1The UC framework posits an adversarial execution environment and
models the environment by way of a single computational entity, named
environment. To avoid confusion, in this paper we will often use the term
adversary instead of environment.

process of abstraction in the UC modeling does not restrict the

adversary: Indeed, the adversary remains the same throughout.

Instead, the thinking is to replace more and more components

of the proposed solution with their ideal counterparts. In

particular, in UC modeling the adversary remains the same

throughout the process of the successive abstractions in Figure

1. What changes is the replacement of lower-level components

with idealized ones. For example, if for one module M we

prove security with respect to a class of leakage functions

L (this describes the strength of the adversary Π) and if

for another module M ′ we prove security with respect to a

class of leakage functions L′, then M and M ′ with their

interactions may not necessarily be secure against the com-

bined/composed adversary described by L with L′: Due to the

interactions/protocol between M and M ′, the leakage from M

together with leakage from M ′ may break security because

M and M ′ may share state (e.g., a key is shared and the

different leakage functions together simply leak too much for

the composition of M and M ′ to be secure). This argument

also hold for composing layers – again leakage at the transistor

level can possibly be combined with leakage from digital

information from a software level to break security.

Notice, however, that the composition theorem makes the

composition of leakage sources more manageable, and in fact

modular: Given that ∃S PM ≈ FM ◦ S, and ∃S′ PM ′ ≈

FM ′ ◦ S′, the composition theorem tells us that there exists a

simulator Sρ for the ideal functionality ρ which combines FM

and FM ′ such that the physical realization Pρ of ρ realizes

ρ with calls to FM and FM ′ substituted by PM and PM ′ .

This latter proof shows that even an adversary with access to

both L and L′ cannot break security. For example, assume

the adversary is strong enough to do a power side channel

analysis and can therefore use this to learn a leakage function

for module M as well as a leakage function for module M ′.

In this sense L and L′ are similar in nature but different with

respect to their input space (as these describe the different

states of the different modules). As another example, at the

processor architecture level we wish to provide ‘hardware

isolation’ as a security guarantee – here, the interactions

between the CPU (i.e., module M ) and DRAM (i.e., module

M ′) are implemented as a hardware access control system

which isolates untrusted computing (by e.g. the higher layer

OS which uses the processor architecture layer) away from

accessing a secure memory compartment in DRAM.

Similarly, in order to show that a collection of counter-

measures “compose securely” we would need to show how

these counter-measures can be “sequentialized” so that each

counter-measure can be treated as a layer that builds on the

guarantees of the layers below, and provides an additional set

of guarantees (or, abstractions) that can be used by the higher

layers. There is a caveat when composing counter measures

as each counter measure CM is specific to a certain class of

leakage functions LCM and counter measures are integrated

as they are not implemented as separate ‘modules’. The latter

does not allow us to apply the composition theorem. Instead,

one needs to argue the security of a physical realization of

522 Design, Automation And Test in Europe (DATE 2020)



Special Session Paper

multiple counter measures in one universal approach. And in

such a universal approach we need to model adversary Π as an
adversary who can learn all leakage functions LCM together

at the same time. Indeed, applying protection mechanisms

together without taking care of potential circularity, may lead

to breaking security: For example, we may add redundancy to

thwart a fault injection attack and this is in conflict with the

masking added to thwart a power side channel attack. As a

hardware security engineer we must first define the adversary

with its leakage function from which we wish to protect

ourselves and next find a holistic counter measure approach

in order to reach this goal of being secure against such an

adversary. The decision of what kind of (strong) adversary we

need to take into account is often given to us after doing a

(business) risk analysis with respect to security breaches.

III. THE ENVIRONMENT, ALSO KNOWN AS:

THE ADVERSARY

When reasoning from the hardware perspective of an elec-

tronic system, we need to understand how the interaction

between the environment and functionality (as depicted in

Figure 2) represents all the ways in which the physical, actual

external environment interacts with the system. In fact UC

modeling invites us to formalize in a mathematical language

the capabilities of the actual physical adversarial environment

and its interactions with the system.

Recall that the UC modeling separates between the input

and output interfaces, which represent the desired input/output

behavior of the system, and “side channel”, or “adversary

interfaces” which allow the environment to gain information

on the internal state of the system, and also influence the

behavior of the system. Specifically, the adversary interface

allows the environment to obtain the result of a leakage

function L, applied to the internal state of the system. This

function can represent physical observations such as a heat

map, or other observable for which the adversary has designed

a suitable monitoring tool.

This modeling allows the adversary to be the same across all

layers; the different capabilities or monitoring tools per layer

are captured by the code of the respective ideal functionalities

and systems. In other words the interaction with the environ-

ment in the UC model consists of several layers ranging from

leakage coming from the micro (transistor) level to leakage

from higher levels (for example, cache side channel).

The above discussion has so far missed an important point:

Indeed, the UC model makes explicit in a leakage function

L(x) what kind of additional information can be observed by
an adversary. This describes a passive adversary. Also possible

is to have an active adversary who is able to extend the API

by being able to modify the physical system other than what

the digital API describes. For example, the CPU clock can be

made to run faster and this can lead to power glitches which

will change the state of the functionality. Now the abstract

notation of a UC model falls short in that the analyst needs

to think ahead and formalize both an extended API (which

properly reflects the adversary) as well as how the functionality

behaves given the extra inputs over the API extension. Thus

capabilities comes in two forms:

• Communication from Functionality to Adversary: The ad-

versary has a fine tuned tool which can be used to monitor

interactions and extract information from interactions.

• Communication from Adversary to Functionality: The

adversary has a means to influence the functionality

beyond what the digital API specifies.

Example – Cold-Boot Attack: The Cold-Boot Attack illus-

trates how difficult it can be to deal with a multi-layered

adversary. This attack is used to break trusted-boot config-

uration based on disk encryption or trusted platform modules

[7]. Volatile memory-modules containing sensitive content and

encryption keys are the final outcome of a controlled trusted-

boot operation. When a computer’s power is removed, the

volatile sensitive content disappears, leaving only the hard-

ened encrypted disk and trusted-platform module to defend.

However, by cooling the memory chips, the data remnence can

be significantly extended, to the point where the chips can be

manually removed and inserted into a different computer under

control of the attacker. This completely breaks the assumption

of the disk-encryption mechanism. A logical mechanism that

prevents leakage L(x) of an in-memory secret x is disabled
by building a new physical pathway that enables that leakage.

In other words, the Cold-Boot Attack initiates a new type

of communication; a pathway at a low physical abstraction

based on the physical environment of the trusted computing

system. Such attacks and countermeasures can be captured in

UC analysis by incorporating the adversary’s ability to modify

the physical behavior of memory under temperature change

within the standard model of computation (that usually ignores

physical aspects of computations.)

Example – Speculative Execution Attacks: In recent years,

we have witnessed a broad range of attacks that exploit

micro-architecture features in high-performance processors as

leakage channels [8]. When processors execute instructions

speculatively, the micro-architecture state is temporarily dif-

ferent from the logical state of the program. The difference

is exploited as a leakage function, such as by observing

execution time of branch instructions and memory accesses.

The observations, in turn, are available from standard built-

in performance monitoring infrastructure. Micro-architecture

speculation, and performance monitoring are both instrumental

at building fast computers and high-performance software.

The combination of both, on the other hand, has enabled a

leakage model L(x) that has affected every major processor
architecture in the past two years. Again, such attacks and

countermeasures can be captured by incorporating within the

model of computation the ability of the adversary to measure

the duration of certain short execution snippets.

One main principle arises from these examples: it is dan-

gerous to reason about security in too abstract high levels of

environment-functionality interaction.

Design, Automation And Test in Europe (DATE 2020) 523



Special Session Paper

IV. (IDEAL) FUNCTIONALITIES VERSUS (REAL) PHYSICAL

PROCESSES

Strictly speaking, real electronic systems do not solely

implement the abstract Boolean functions they are designed to

compute: Only at the higher layer, when looking only at digital

information, we may see an input and output behavior that can

be modeled as a (deterministic) function. At the lower layer,

physical noise in the form of jitter, glitches, etc. transforms

the input-output behavior into a physical statistical process.

The physical realization of a Boolean functionality f(.)
hence does not only implement f(.); instead, it implements an
analog function that contains enough information to deduce

f(.) — and perhaps much more. To illustrate this, assume

for simplicity that the physical realization can be modeled as

taking x as input, computing y = f(x), and adding noise by
computing np(y), where p is a statistical parameter (e.g., with

bias p a bit in y is flipped). If p itself is a function of x, then

the physical realization outputs

z = np(x)(y) with y = f(x).

Here, y may be a binary string while z is an element of a

much richer structure, e.g., as a vector of real values. Clearly,

z embeds y but adds additional information about x as a result

of np(x)(.). An adversary, who observes z, can exploit this

to extract information about x which the ideal functionality

f(.) does not want to reveal. When we talk about an ideal
random process (rather than ideal functionality) we want p

to be independent of x such that x → y → z represents a

Markov model and z does not leak more information about x

than y leaks information about x. The UC framework allows

capturing and representing this additional information by way

of formulating the appropriate internal states for the relevant

physical modules, and then letting the Boolean outputs be

one derivative of the analog internal state, and the “leakage

function” be another derivative of the same internal state.

Example – Reliability based PUF Attack: In this example

the functionality represents a PUF that takes a binary string,

called challenge, as input and generates a binary bit, called

response, as output. In theory and at first glance, this purely

digital and deterministic model of a PUF is fine. However,

in practice, the inevitable measurement noise transforms this

input-output behavior into a statistical process; the PUF in

reality does not represent a deterministic function. This fact

initially sounds like a merely practical nuisance that can

be overcome by suitable error correction. However, as some

recent attacks have shown [9], it is actually more than that, and

is highly security relevant: By repeating the measurement of a

response to the same challenge for several times, the adversary

can obtain ”reliability” information, in the form of an estimate

of the probability the response bit is equal to 0. This is a finer
grained type of information about how the PUF computes its

response bit, and can boost the machine learning performance

from exponential to polynomial in certain PUF architectures,

for example in the XOR Arbiter PUF (compare [9], [10], [11],

[12]). The overall reason that enables these novel polynomial

attacks, and that initially perhaps has lead to the incomplete

belief that there are no such attacks, is the inaccurate and

incomplete modeling of a PUF as a deterministic mathematical

function on the logical level. Once more, we stress that the

above attacks obviously need to be distinguished from a PUF-

attack on a pure protocol level (see, e.g., [13], [14]), or from

a purely physical PUF-attack (such as [15], for example).

Instead, it lives right at the boundary between physics and

mathematics, so to speak. Again, this shows the relevance of

accurate modeling physical security primitives across different

layers of abstraction.

In truth ’noise’ is more complex in that it is interwoven

with functionality f (represented as an interactive protocol

or algorithm) in a more complex way. Another principle is

that one should model a functionality as a random/statistical

interactive process.

V. TRANSFERRING UC COMPOSITION AND PROOFS TO A

HARDWARE CONTEXT

The UC composition theorem makes the following state-

ment: Assume we have two functionalities FA and FB , a

protocol PA that realizes FA with the assistance of making

calls to FB , and another protocol PB that realizes FB . Stated

more compactly we have that PFB

A realizes PA, and PB

realizes FB . Then, the composition theorem says that PPB

A

realizes FA. More specifically, assume there is a simulator

SA such that PFB

A ≈ FA ◦ SA, and a simulator SB such that

PB ≈ FB ◦SB . Then there is a composite simulator SAB such

that PPB

A ≈ FA ◦ SAB .

This is a powerful statement which can help the security

analyst in the following ways. For example, a module with

counter measure PB needs to assume that it has access to an

ideal functionality FA which offers a certain property which

the counter measure is able to amplify in making the whole

module PB being able to resist the (modeled) adversary. In

a way the root of trust is reduced to only FA, i.e., there is

a secure physical realization PA for the smaller module with

ideal functionality FA.

Example – Masking as a Side-Channel Countermeasure:

In order to resist an adversary with access to the power side

channel, circuitry (PB) can be implemented using masking

or secret sharing. A sensitive signal a is split into secret

shares {r0, r1, .., rk, a ⊕ r0 ⊕ r1 ⊕ ... ⊕ rk} using k random

numbers ri. As each share is statistically independent from

the others, the side-channel analysis becomes significantly

more difficult for the adversary. Regardless of the complexity

of such a higher-order side-channel attack, we observe that

secret sharing requires multiple independent and identically

distributed (iid) random bits for each masked bit. In practice,

random bits are generated by a combination of a True Random

Number Generator (TRNG) and a deterministic Pseudorandom

Generator (PRNG) [16]. The latter of these two, the PRNG,

requires protection from side-channel analysis since disclosure

of its internal state makes the shares predictable. Leakage-

resilient design techniques are applicable to the design of such

524 Design, Automation And Test in Europe (DATE 2020)



Special Session Paper

a PRNG [17], [18]. While leakage-resilient design is hard to

achieve in general algorithms, those general algorithms can

be masked using secret-sharing, with the shares created by

a leakage-resilient RNG. This illustrates how the security of

a masked algorithm FB can be built using leakage-resilient

random-number generation FA.

Another interpretation of the same ’AB’ argument is that an

adversary can have several leakage function that are specific to

different abstraction layers. The higher layer description of a

module implementation PB uses lower layer machinery – in a

sense PB calls lower layer implementations PA. The adversary

observes the lower layer PA differently than the higher layer

PB . Thus, we only need to prove the security of PA with

respect to the leakage function that corresponds to PA’s level

and we need to prove the security of PB with respect to the

leakage function that corresponds to PB’s level. By the UC

theorem this is sufficient to conclude that PPA
B

is secure with

respect to an adversary with access to both leakage functions.

VI. CONCLUSIONS & FUTURE DIRECTIONS

In sum, the UC framework may well enable modular

design and analysis of hardware and software components.

However, care must be taken in order to compose components

in ”the right way” so that the composition theorem can be

applied, Indeed, arbitrarily combining counter-measures might

not lead, in general, to an overall mechanism that provides the

combination of the individual protections.

A natural way to combine protection mechanisms in a

security-preserving manner is to apply these mechanisms in a

layered fashion. That is, logically order the protection mech-

anisms, and then show that (a) The first mechanism realizes

an ideal functionality F1 that provides some initial protection

guarantees, and (b) each subsequent mechanismMi, using the

protections provided by ideal functionality Fi, realizes an ideal

functionality Fi+1, where Fi+1 provides stronger guarantees

than Fi. Indeed, thinking about security along the lines of

the UC framework does seem to allow us understanding the

subtleties of the effect of module and layer interactions, and

the development of effective countermeasures, better.

A caveat of UC analysis for large complex electronic

systems is that comprehensive analysis appears to be pro-

hibitively complicated. Several approaches for mitigating this

complexity appear possible in practice. On approach is to

analyze only relatively small components with limited func-

tionality, and then building one’s way slowly to deal with

more complex components. This “bottom-up” approach might,

for instance, start with modeling of individual transistors or

other components, and build up to larger circuits. Alterna-

tively, one could take a “top-down” approach which starts

by capturing only higher-level components and abstractions,

and then works its way down to further refine component

structure. Either way, developing (or adapting) techniques

from formal verification is bound to be extremely useful.

Ideally, one would wish to reason about security in a Higher

Level Coding (HLC) language, and to have compilers that

implement countermeasures in secure ways. This means that

the complexity of analysis is pushed towards proving that the

compilers properly translate functionality (correctness), as well

as introduce countermeasures in order to guarantee security

(resilience and safety). Of course, designers will still need to

explain through annotation in their HLC code what is expected

from the compiler. As another example, one may construct a

library of gate implementations at the transistor level together

with realistic leakage functions. A compiler which translates

from circuit level to transistor level can use this library to

provide security guarantees. In this example, the difficulty lies

in how to obtain realistic leakage functions.

It is clear that reasoning about security of electronic hard-

ware systems is difficult, and will at least in parts always

remain so. Nevertheless, there do seem clear paths ahead

of us in terms of further applying UC analysis, and of

designing appropriate HLC and compilers. These steps might

help substantially improving the security of future generations

of complex, multi-layered electronic devices.

ACKNOWLEDGEMENTS

This note was inspired by a Dagstuhl workshop on Se-

cure Composition for Hardware Systems, organized by Divya

Arora, Ilia Polian, Francesco Regazzoni and Patrick Schau-

mont. We thank them and all the workshop participants.

REFERENCES

[1] U. Erlingsson, Personal communication at ASHES 2017.
[2] R. Canetti, “Universally composable security: A new paradigm for

cryptographic protocols,” in FOCS 2001.
[3] J. Katz, “Universally composable multi-party computation using tamper-

proof hardware,” in CRYPTO 2007.
[4] V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia, “Founding

cryptography on tamper-proof hardware tokens,” in TCC 2010.
[5] C. Brzuska, M. Fischlin, H. Schröder, and S. Katzenbeisser, “Physically

uncloneable functions in the universal composition framework,” in
CRYPTO 2011.

[6] N. Bitansky, R. Canetti, and S. Halevi, “Leakage-tolerant interactive
protocols,” in TCC 2012.

[7] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest
we remember: Cold boot attacks on encryption keys,” in USENIX 2008.

[8] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation of
transient execution attacks and defenses,” in USENIX 2019.

[9] G. T. Becker, “The gap between promise and reality: On the insecurity
of xor arbiter pufs,” in CHES 2015.

[10] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in DAC 2007.

[11] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmidhu-
ber, “Modeling attacks on physical unclonable functions,” in CCS 2010.

[12] U. Rührmair and J. Sölter, “Puf modeling attacks: An introduction and
overview,” in Conference on Design, Automation & Test in Europe, 2014.
European Design and Automation Association, 2014, p. 348.

[13] U. Rührmair and M. van Dijk, “Practical security analysis of puf-based
two-player protocols,” in CHES 2012.

[14] ——, “On the practical use of physical unclonable functions in oblivious
transfer and bit commitment protocols,” JCEN 2013.

[15] C. Helfmeier, C. Boit, D. Nedospasov, and J.-P. Seifert, “Cloning
physically unclonable functions,” in HOST 2013.

[16] V. Fischer, “Random number generators for cryptography, design and
evaluation,” URL: https://summerschool-croatia.cs.ru.nl/2014, 6 2014.

[17] Y. Yu, F. Standaert, O. Pereira, and M. Yung, “Practical leakage-resilient
pseudorandom generators,” in CCS 2010.

[18] M. M. I. Taha, A. Reyhani-Masoleh, and P. Schaumont, “Stateless
leakage resiliency from nlfsrs,” in HOST 2017.

Design, Automation And Test in Europe (DATE 2020) 525


