GRAMARCH: A GPU-ReRAM based Heterogeneous
Architecture for Neural Image Segmentation

Biresh Kumar Joardar”, Nitthilan Kannappan Jayakodi®, Janardhan Rao Doppa’, Hai Lif, Partha Pratim Pande”, Krishnendu Chakrabarty"

*School of EECS, Washington State University
Pullman, WA 99164, U.S.A.

{biresh.joardar, n.kannappanjayakodi, jana.doppa, pande} @wsu.edu

Abstract— Deep Neural Networks (DNNs) employed for image
segmentation are computationally more expensive and complex
compared to the ones used for classification. However, manycore
architectures to accelerate the training of these DNNs are
relatively unexplored. Resistive random-access memory
(ReRAM)-based architectures offer a promising alternative to
commonly used GPU-based platforms for training DNNs.
However, due to their low-precision storage capability, these
architectures cannot support all DNN layers and suffer from
accuracy loss of the learned models. To address these challenges,
we propose GRAMARCH, a heterogeneous architecture that
combines the benefits of ReRAM and GPUs simultaneously by
using a high-throughput 3D Network-on-Chip. Experimental
results indicate that by suitably mapping DNN layers to processing
elements, it is possible to achieve up to 53X better performance
compared to conventional GPUs for image segmentation.

Keywords— Heterogenous, 3D, ReRAM, NoC, DNNs

L

Many advanced image analysis tasks require predicting a
categorical label for each pixel in the image, also known as
image segmentation. DNNs employed for segmentation, e.g., U-
Net [1], FCN [2], are usually more complex and computationally
expensive than their classification counterparts. However, the
design and optimization of suitable hardware architectures
targeting these DNNs remain relatively unexplored. From a
hardware perspective, DNNs for image segmentation present
two major challenges: (a) DNNs for segmentation introduce
additional layers, e.g., Deconvolution. Conventional hardware
architectures for DNNs are not optimized for deconvolution; and
(b) Segmentation introduces skip connections between layers for
feature sharing to improve prediction accuracy [1][2]. This
results in a significant increase in data communication when
executing training/inference on a manycore platform. Due to
their inherent parallelism, GPUs are often the first choice to train
and execute any kind of DNN architectures. However, despite
their popularity, GPUs have some major limitations: (a) high
area, (b) high power consumption, and (c) limited memory
bandwidth [3]. The additional computation involved with these
DNN:ss (discussed above) will lead to higher power consumption
and execution time on GPUs, while the additional data traffic
will put even more stress on the already limited memory
bandwidth. A good hardware design for image segmentation
should optimize for both deconvolution and skip connections.

Metal-oxide resistive random-access memory (ReRAM) has
been used to design high-performance hardware architectures
for DNN training and inference due to their ability to perform
matrix and vector operations [4][5]. ReRAMs are more area and
energy efficient compared to their GPU counterparts [3].

INTRODUCTION

This work was supported, in part by the US National Science Foundation
(NSF) grants CNS-1564014, CCF 1514269, CSR-1717885 and USA Army
Research Office grant W91 1NF-17-1-0485.

978-3-9819263-4-7/DATE20/©)2020 EDAA

228

"Department of ECE, Duke University
Durham, NC, USA.
{hai.li, krishnendu.chakrabarty } @duke.edu

Furthermore, ReRAMs compute “in-memory” without the need
for expensive off-chip memory access. Hence, ReRAMs
provide a promising solution to implement DNN training [5].
However, existing ReRAM-only implementations for DNNs
have some notable limitations: (a) ReRAMs have low precision,
which affects prediction accuracy as backpropagation algorithm
used to train DNNSs, is precision sensitive [6]. Despite all the
advantages, training DNNs on ReRAMs can potentially lead to
no convergence or a loss of accuracy in the trained model [6][7];
and (b) ReRAMs are not suited for implementing all DNN
layers, e.g., Batch-Normalization and Soft-Max. Both these
layers require high precision to prevent overflows [8][9].
Existing ReRAM-only architectures are not able to support these
layers due to the absence of any high-precision computing units.
Hence, such ReRAM-only solutions have limited capabilities
and require additional external resources to enable these
precision-critical layers such as normalization. Therefore, we
need to address these shortcomings of ReRAM-only solutions.
Furthermore, the training of a DNN involves repeated memory
access to fetch data and weights along with data sharing between
DNN layers. In DNNs for image segmentation, communication
is a major concern as the skip connections introduce additional
traffic. Without appropriate Network-on-Chip (NoC) support,
the high amount of traffic can create performance bottlenecks
resulting in an increase in execution time.

In this paper, we address all these challenges by proposing
GRAMARCH: a GPU and ReRAM-based architecture for image
segmentation that has the following capabilities: (a) Accelerate
the matrix and vector operations necessary for training, (b)
Appropriately map DNN layers on GRAMARCH to minimize
the overall communication, (c) Design a 3D NoC for high-
throughput data movement (d) Execute any DNN layer
including Normalization and Soft-Max, (e) Solve the problem of
accuracy loss due to low precision computation with ReRAMs.

II. RELATED WORK

Floating-Point (FP32) precision is the de-facto
representation for variables while training DNNs. However,
low-precision training offers a more compute- and memory-
friendly alternative [11]. Prior works, e.g., [8][11][12], have
successfully employed low-precision for training/inference.
However, training with low precision is challenging as weight
updates are often too small and get rounded to zero, resulting in
accuracy loss [8]. Moreover, DNN layers such as Normalization
and Soft-Max are prone to overflow errors and require full-
precision support [7][8]. To enable these layers and preserve the
quality of weight updates, mixed-precision training for DNNs
was proposed in [8][9]. However, this methodology requires
storing an extra copy of weights and gradients in FP32, which is
expensive in terms of memory. In [11], the authors propose

stochastic rounding to train DNNs in low precision, which
eliminates the excess memory overhead. However, they only
focus on the software implementation aspect of this problem.

ReRAMs can be employed as memory as well as to perform
in-situ multiply-and-accumulate (IMA) [5]. Hence, ReRAM-
based PIM architectures are popular for accelerating both
inference [10][13] and training of DNNs [5][14]. However, as
mentioned above, ReRAM-based designs have two main
drawbacks: (a) trained models suffer from accuracy loss [6][7],
and (b) they do not support layers like normalization [10].
Existing sole ReRAM-based solutions, e.g., PRIME [13], TIME
[14], ISAAC [10], and PipeLayer [5] do not address these
challenges. REGENT [15] solves the accuracy loss problem
using a combination of ReRAM and GPUs. However, it does not
support normalization/soft-max layers. Also, existing works
mostly target DNNs for classification and are not optimized for
image segmentation. In [16], the authors have designed an
ReRAM-based architecture for segmentation. However, it only
supports inference and does not consider the effect of skip-
connections. Skip-connections introduce high traffic with
multicasting. Without suitable hardware support, this can
repeatedly stall execution, leading to higher execution time.

In this work, we propose the design of GRAMARCH: a high-
throughput, NoC-enabled, heterogeneous architecture with GPU
and ReRAMs, targeted specifically to train DNNs for image
segmentation. GRAMARCH advances the state-of-the art by
addressing the shortcomings of existing ReRAM-only solutions.

III. THE GRAMARCH ARCHITECTURE
A. Training on ReRAMs: Challenges

Image segmentation involves predicting a class label for
every pixel in an image. Typical DNN architectures employed
for segmentation consists of convolution and deconvolution
layers (followed by pooling and/or normalization) with Skip
connections [1][2]. Normalization layers are often used with
these DNNSs for better prediction accuracy and improvement in
training time [17]. Fig. 1 illustrates a typical DNN used for
image segmentation. Deconvolution involves sparse matrices
that introduce significant amount of redundant multiplications
with zeros whereas skip connections introduces high amount of
traffic with multicasting. Conventional ReRAM-based
architectures intended for classification, are not optimized for
either of them, which can lead to sub-optimal performance.

Moreover, ReRAM-based implementations can only support
limited precisions (2 to 6 bits of storage per cell [5]), which

presents a major hurdle for reliable DNN training. Complex
DNN:s including CNNs, are sensitive to precision of data. Low
precision leads to poor convergence behavior and/or accuracy
loss for the trained model [6][7]. This happens as the weight and
activation gradients are often too small to represent in low
precision for many DNNs [8]. Moreover, layers that perform
large reductions (sums across the elements of a vector), e.g.,
normalization and softmax, are prone to data overflow and
should be carried out in full precision [8]. ReRAM-based
implementations cannot implement these layers due to limited
precision. This enforces unnecessary constraints on the choice
of DNNss that can be trained (e.g., no normalization layers) on
existing ReRAM-only architectures, which can lead to lower
accuracy and/or higher training time. Existing solutions for
reliable low-precision training e.g. [8], have high memory
overhead (~1.5X higher than FP32). Stochastic rounding is a
light-weight alternative, but not realizable with ReRAMs. Also,
low-precision training with stochastic rounding requires
normalization to be effective [7]. Existing ReRAM-only
architectures cannot execute normalization due to low-precision
and will require additional hardware to execute this operation.

Moreover, the role of NoC has not received significant
attention in ReRAM-based architectures. For instance, Pipelayer
[5] achieves significant speed-up by using a clever pipelining of
DNN layers. Due to the higher SIMD capability of ReRAMs, it
is possible to achieve extra-ordinary amount of parallelism in
each layer resulting in such speed-up. However, communication
is one of the major bottlenecks in a pipelined implementation.
Without an appropriate on-chip communication infrastructure,
the pipeline stages will be repeatedly stalled waiting for data to
arrive, leading to higher execution time. Hence, allocating more
resources to speed-up computation only is not effective if
communication cannot keep up with it. The overall execution
time will depend on both the time to compute and time to
communicate. The problem is more serious in DNNs for
segmentation due to their use of skip connections that results in
increased memory access and on-chip traffic. This exerts more
stress on the already limited memory bandwidth and the on-chip
network. A suitable hardware architecture to accelerate DNNs
used for segmentation must address all these challenges.

B. Overall Architecture

To overcome these challenges, we propose GRAMARCH: a
heterogeneous, 3D NoC enabled GPU and ReRAM architecture
with stochastic rounding to accelerate DNN training for image
segmentation. Fig. 2 shows the GRAMARCH architecture,

[NoCrouter

Input
Skip-Connections

[] rRerAM Tile

(9. ',*.

» !

Sample In-Situ Multiply
& hold M Accumulate (IMA)

A)]
| B
[]

DAC Stochastl PE Cluster

rounding

\‘ / { @
‘@@%i%x VD o @

—- (@ —-—a___

32-bit mput

All-Zeros, MSB

32 bit
T blt i <:| (16-bit)

Backward @
phase @

Hid

Adder 16-| blt
LFSR

+ |
60

M asbi)

16-bit output

C Convolutlon
DC: Deconvolutlo |::> @ﬁ} GPU GPU
(b)
DNN: C1- CZ (3-C4-DC1-DC2-DC3-DC4

Fig. 1: Communications in a U-Net /ike architecture
(ReLU, Pooling are included after each layer)

(c) (f)

Fig. 2: (a) Top view of proposed architecture, (b) Lower logic layer, (c)Upper ReRAM layer, (d) ReRAM
tile, (e) In-situ Multiply Accumulate (IMA) and (f) Stochastic rounding implementation. (This figure is
for illustration purpose only; Actual Implementation details of GRAMARCH is mentioned in Sec. IV(A))

Design, Automation And Test in Europe (DATE 2020) 229

which consists of two layers: the bottom layer consists of GPU
and Last Level Cache (LLC) tiles (Fig. 2(b)) while the top layer
consists of ReRAM (Fig. 2(c)). The overall architecture is
divided into multiple clusters for a two-level NoC design. The
clusters are identical in terms of the number of Processing
Elements a.k.a. PEs (ReRAM, GPU, and LLCs).

The ReRAM layer consists of morphable subarrays that can
be configured for both storage and computation. Therefore, the
ReRAM layer performs dual roles of both computing and
storage. The ReRAM tiles (Fig. 2(d)) are designed following
[10]. Each tile includes eDRAM buffers, in-situ multiply-
accumulate (IMA) units, output registers, along with shift-and-
add, sigmoid, and max-pool units. The IMAs (Fig. 2(e)) have
multiple crossbar arrays along with other peripheral circuitry
connected with a shared bus. However, unlike [10], each
ReRAM tile in the GRAMARCH architecture is equipped with
additional peripheral circuitry to implement stochastic rounding
(Fig. 2(e)) to address the accuracy loss due to low precision of
ReRAMs. The lower (logic) layer consists of GPU and LLC tiles
to support the precision-critical portions of DNN training. The
GPU tiles include a GPU core, while the LLC tiles include a
portion of the Last-Level cache and a memory controller (MC)
that can access data from the ReRAM (memory) layer. In
addition, each tile also includes a router for communication. The
LLC tiles are connected to the ReRAM layer using Through-
Silicon Vias (TSVs). This 3D integration enables low-latency
and high-bandwidth access to ReRAM-based memory, which
alleviates the memory bottleneck problem in conventional
GPUs. The PEs in both layers are connected via a high-
throughput NoC (discussed in a later section). Next, we discuss
two key features of the GRAMARCH architecture.

Stochastic rounding: Stochastic rounding is an unbiased
rounding scheme that makes a probabilistic decision of where
to round and has the desirable property that the expected
rounding error is zero. This property of stochastic rounding
makes it attractive for low-precision DNN training and prior
work have shown good results for training classification models
[11]. However, DNNs for segmentation can also benefit from it.
Fig. 3 shows the training error when U-Net [1] (a popular DNN
for image segmentation) is trained with both floating point (FP)
and low-precision + stochastic rounding (LP+SR) using images
from the CARVANA dataset [24]. It is clear from Fig. 3 that there
is negligible difference in accuracy between U-Net trained with
low-precision + stochastic rounding and a conventional full
floating-point representation. Similar behavior is observed with
the other DNN architectures considered in this work.

This shows that stochastic rounding support in GRAMARCH
enables it to retain the efficiency of ReRAMs (high-throughput
and low-energy matrix multiplications) while achieving near-
GPU accuracy. However, ReRAMs cannot implement
stochastic rounding; additional peripheral circuits are required
to enable stochastic rounding in ReRAMs. The stochastic
rounding circuit used in this work is based on the
implementation in [7]. It consists of three parts: (a) LFSR: It
generates pseudo-random 16-bit sequences, (b) Adder: It adds
the 32-bit number (that is to be rounded) with the LFSR output,
and (c¢) Truncate: This truncates the result of addition to 16-bits
after addressing over/under-flow conditions (as shown in Fig.
2(f)). Here, we adopt the pipelined DNN implementation
commonly used in ReRAM-based architectures [5]. Hence, it is

80% ——FP ——LP+SR
60%
40%
20%
0%

Training
error

Epochs

Fig. 3: Training error for U-Net with Full Precision (FP) and Low precision
with stochastic rounding (LP + SR) on the CARVANA dataset [24]

important that the additional circuitry must match the
throughput of ReRAM crossbars to ensure that the pipeline of
DNN execution is not stalled. For example, an NxN ReRAM
crossbar will produce N bitline currents in one ReRAM cycle
(100ns, which is the read latency for the crossbar array [10]). In
a pipelined implementation, outputs are generated in every
ReRAM cycle. Thus, all N bitline currents need to be processed
in one cycle, before the next set of N bitline currents are
generated in the next cycle to avoid pipeline stalls. We design
the stochastic rounding circuit following this timing constraint
for a 16-bit output using the Cadence Genus synthesis tool and
Nangate 45nm library. Synthesis results indicate that stochastic
rounding can be enabled in ReRAM crossbars with negligible
area overheads (each circuit adds <1% of IMA [10] area).

Deconvolution: Deconvolution can be implemented by
inserting zeros to smaller inputs, followed by a convolution
operation on the upsized input data [18]. Existing ReRAM
architectures, are not optimized for such an operation and will
spend significant amount of time performing multiplications
with zeros wasting both computing resources and
communication bandwidth. In [18], the authors address this by
using a zero-skipping methodology. For brevity, we do not
repeat the details of zero-skipping here. By leveraging the
knowledge of predetermined sparseness patterns, it is possible
to skip multiplications by zeros to reduce execution time and on-
chip traffic. On-chip traffic has a major impact on overall
performance. Hence, we include zero skipping in GRAMARCH
to reduce on-chip traffic and enable better mapping of DNNs to
PEs. However, only adopting zero-skipping optimizations is not
sufficient. Skip-connection, which is another key feature in
DNNs used for segmentation, also results in an increase in on-
chip traffic. This can cause performance bottleneck and needs
extra architectural considerations. We address this problem next.

C. NoC design and DNN mapping

In this subsection, we first discuss the NoC design used in
GRAMARCH. Next, we discuss the importance of mapping the
DNN layers on appropriate PEs for achieving best performance.
NoC design: As shown in Fig. 2, the proposed architecture
consists of two layers: the upper layer consists of ReRAM tiles
while the bottom layer consists of GPUs and LLCs. Due to
heterogeneity in the proposed architecture, there are two
distinctly unique execution platforms: (a) ReRAMs provide
high-throughput and energy-efficiency, but low precision
execution; (b) GPUs provide relatively slower but a full-
precision computing platform. For the best performance and
negligible loss of accuracy, we should map the compute-
intensive layers, i.e., convolution and deconvolution on the
faster ReRAMs. The precision-critical yet less time-consuming
Normalization and Soft-Max layers should be mapped on to the
GPUs. In the absence of any precision sensitive layers, the
output of one ReRAM crossbar is directly communicated to
other ReRAM(s) for further processing in the upper layer only
(without the involvement of the lower layer). However, in the

230 Design, Automation And Test in Europe (DATE 2020)

case of normalization (or softmax), there is vertical traffic
between the ReRAM and GPU layers. These traffic patterns
must be considered to design the NoC for optimal performance.

It is well known that mesh is widely adopted as the NoC
architecture of choice for manycore architectures. However, the
communication in DNNSs is limited to (a) data sharing between
adjacent layers in the DNN, and layers connected using the skip
connections, and (b) Memory traffic to fetch/store data while
performing the computations in each DNN layer. As a result,
only a limited number of links in a mesh NoC are utilized [19].
The majority of the links remain unused (or under-used), leading
to load imbalance. Hence, we can concentrate several of these
PEs that inject less traffic, into clusters, to create a hierarchical
two-level NoC, which can deliver similar level of performance
as a mesh with fewer links. It also improves load balancing and
enables the design of more scalable architectures [19][22].

Hence, we adopt a two level NoC design (Fig. 2). To design
the two-level NoC, all available PEs are divided among C
clusters. The PEs in each cluster are interconnected by the first
level mesh NoC while each cluster is connected to other clusters
via the second level mesh NoC. Note that due to its multi-hop
nature, mesh NoC is not effective for long-range
communication. However, as each DNN layer communicates
with a limited number of other layers only, it is possible to
reduce long-range traffic by mapping these communicating
DNN layers to nearby PEs. Hence, a mesh NoC suffices for both
levels in the two-level NoC; spatial nearness among
communicating DNN layers is ensured by the DNN mapping to
PEs (hence traffic is mostly short-range). We discuss the role of
mapping in next subsection. Also, mesh NoC can implement
efficient multicast techniques, e.g., tree multicast, that leads to
further performance improvements. Hence, we design a two-
level mesh-mesh NoC in both layers of the proposed architecture
as depicted in Fig. 2. On the other hand, the vertical traffic from
ReRAM to GPUs is facilitated by the TSVs. The GPUs access
data from ReRAMs via the LLC (and MC) tiles which connects
to the ReRAM cluster directly above it via the vertical links. The
3D integration allows high bandwidth and low latency data
transfer from ReRAM to the GPU cores. Due to lack of long-
range traffic (ensured by the mapping policy), similar two-level
NoC is used in the logic layers as well i.e. GPUs and LLCs in
same cluster are connected via the first level NoC while
individual clusters communicate via the second level mesh NoC.

Interestingly, we note from Fig. 1, that there is a significant
amount of multicast communication during DNN training. For
example, in a U-Net like architecture (as shown in Fig. 1), PEs
executing the forward phase of C2 must share the output with
other PEs responsible for (a) DNN layer C3, (b) DC3, and (c)
backward phase of C2. In conventional unicast-based hardware
architectures, this would result in a ~3X increase in the number
of messages originating from PEs executing C2. In a pipelined
DNN implementation, where communication is a major
bottleneck, this is undesirable. Hence, multicast support by the
NoC is crucial. The mapping policy plays a significant role as
well. Since output of previous layer(s) is the input to the current
layer, mapping the current layer across N PE clusters also results
in a N-fold increase in traffic (i.e., multicast due to mapping).
For example, in Fig. 2, if C1 (Convolution-1) is mapped to
Cluster-1 and C2 is mapped to Cluster-2 and Cluster-3, then the
output of C1 needs to be communicated from Cluster-1 to both

Algorithm 1: Mapping DNN layers to PEs

Input: DNN architecture, No. of available PEs
Output: Map (Best DNN Layer mapping to PEs)
Algorithm:
1 | numPE [.] = No. of ReRAMs/GPUs for given DNN
Map [.] = Random allocation of numPE [.]
Simulated Annealing (Repeat for MAX iterations):

MapNew [.] = Perturb (Map [.])

TrafficOnEachLink [.] = Traffic (MapNew [.])

Cost (MapNew [.]) = max (TrafficOnEachLink [.])

If P(Cost(MapNew [.]), Annealing Temperature):

| Map [.] = MapNew [.]

return Map [.] with best Cost
Cluster-2 and Cluster-3 (resulting in multicast). Therefore,
multicast communication not only depends on the connectivity
between the layers of DNNs, but it also arises due to mapping of
layers across multiple clusters. Unnecessary/random splitting
across multiple clusters will only increase the amount of
multicast. To handle the multicast communication and reduce
redundant traffic in NoC, we implement the tree multicast
technique. Unlike unicast communication, where each
destination cluster(s) receives a distinct message originating
from the source cluster, tree multicast sends a single copy of the
message to all destination cluster(s) along a common path. This
reduces the number of messages flowing through the NoC,
which accelerates training. Tree multicast is only used as an

example here. Other multicast techniques can also be employed
here. Next, we discuss mapping of DNN layers to GRAMARCH.

Mapping DNN layers to PEs: Algorithm 1 shows a high-level
description of the DNN mapping strategy adopted in this work.
For the pipelined DNN implementation, all DNN layers need to
be executed simultaneously. Hence, we need to first allocate
adequate resources (ReRAMs and GPUs) to each DNN layer
based on its individual requirement. Note also that in a pipelined
implementation, the overall delay is dominated by the slowest
stage. Hence, we need to balance all the pipeline stages, i.e.,
execution time of the DNN layers should be similar to each
other. As each layer has different number of operations to
perform, some layers take longer than others. In pipelined DNN
training, the overall execution time will be bottlenecked by these
slower layers. In order to balance the pipeline stages and
improve the execution time, the slower layers must be
accelerated by increasing the amount of parallelism in
computation, i.e., allocate more ReRAM crossbars/GPUs (Line
1, Algorithm-1). This ensures that each pipeline stage in DNN
training is balanced, thereby leading to high performance.
Considering the above constraints, we can formulate the
mapping as a combinatorial optimization problem: given N
number of total PEs (GPUs and ReRAMs) and L number of
layers in the DNN, the goal is to distribute the computations of
all L layers (both forward and backward phases) across the N
number of PEs to ensure spatial nearness among communicating
layers, reduce long-range traffic, and handle multicast
efficiently for better performance. There are two key challenge
in solving the above optimization problem: (a) Large space of
combinatorial solutions prohibiting an exhaustive search, and
(b) The objective function to evaluate the quality of a solution
depends on experimental analysis to measure the impact of
mapping on on-chip traffic. Together, they make the problem

O 0 3 N B LN

Design, Automation And Test in Europe (DATE 2020) 231

intractable. Therefore, we solve this optimization problem using
simulated annealing (SA)-based heuristics as it can uncover
high-quality solutions in a reasonable amount of time.

First, we start with a randomly chosen mapping of DNN
layers to PEs (Algorithm-1, Line-2). Next, we Perturb the
candidate mapping solution to get a new mapping (Algorithm-
1, Line-3). Here, a valid Perturb is defined as allocating whole
or part of the resources (PEs) required by a randomly chosen
DNN layer, to a different cluster than its current location. For
instance, if DNN layer L1 is initially mapped to P PEs in
Cluster-1 (Fig. 2), then a valid perturbation can be one of the
following: (a) Allocate all P PEs required by L1 to any other
cluster (not Cluster-1) that has enough unmapped PEs to
accommodate L1, or (b) Allocate P1 PEs to any other cluster
(with enough unmapped PEs) while leaving P2 PEs on cluster-
1 (Here, P1 + P2 = P). Next, to evaluate the quality of the new
mapping, we first determine the on-chip Traffic patterns
corresponding to a given mapping (Line-5 of Algorithm-1). We
discuss the experimental procedure for this in the next section.
The optimization tries to reduce the Cost which is defined as the
maximum amount of traffic flowing through any link in the
NoC. This is crucial to ensure spatial nearness between
communicating layers as multiple long-range traffic via a link
will cumulatively add up, resulting in high traffic. This affects
performance as the associated DNN layer(s) will have to wait
longer for data to arrive (via the congested link) before it can
start computation, leading to higher execution time. Overall, the
mapping strategy complements the NoC in delivering best
performance. We decide whether to discard/keep the new
mapping based on the annealing temperature and Cost of both
current and previous mapping solutions (Line-8). Finally, we
obtain the best mapping (Line-9). We repeat the entire procedure
(Algorithm-1) multiple times with different initial solutions and
annealing schedules for thorough exploration of design space.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

We employ GemS5-GPU [21] to obtain network- and
processor-level information for the logic layer (GPUs and
LLCs). We modified the Garnet network within Gem5-GPU to
implement the NoC. The LLC in each cluster is shared among
all the GPU cores in that cluster. The ReRAM crossbar and tile
configurations/area are based on information available in [10].
To the best of our knowledge, Gem5-GPU (or other widely used
full system, cycle-accurate simulators) currently do not model
DNN training on ReRAM crossbars. However, DNN execution
on ReRAM tiles exhibits deterministic behavior without any
run-time dependences. Moreover, ReRAM arrays execute
instructions in-order and instruction latencies are deterministic
[3]. As shown in [10], deterministic execution models suffice to
reliably capture ReRAM performance parameters, e.g.,
execution time, on-chip traffic, etc. Hence, we use the ReRAM
execution models from [10] to simulate the ReRAM layer of
GRAMARCH. The mapping of layer weights to ReRAM tiles
and the resulting pipeline structure are determined off-line. Data
transfers over the NoC are then statically determined to ensure
conflict-free routing at each cycle based on the ReRAM
execution models and DNN mapping to PEs. We do not discuss
more details about the ReRAM execution models here for the
sake of brevity; they are already elaborated in [10]. The ReRAM

Table-1: Relevant parameters for the GRAMARCH architecture
Logic layer: 64-tiles (48-GPUs + 16-LLCs)
GPUs Fermi architecture, 1400 MHz, Private L1 (64kB)

LLCs Shared L2 (1MB) per cluster
ReRAM layer: 64-tiles per cluster, C=16 clusters

ReRAM tile [8-ADCs(8-bits), 128x8-DACs (1-bit), 12-crossbars,
128x128 memristor size, I0MHz, 2-bit resolution

8-SRs per tile, 0.0032 mm? (~1% of ReRAM tile area)

Stochastic
rounding (SR)

execution model and Gem5-GPU are used together to simulate
all the DNN layers. Some of the important parameters for the
GRAMARCH architecture are listed in Table-1. The number of
ReRAMs in each cluster is obtained based on the area estimates
reported in [10] including the synthesis results for stochastic
rounding. ReRAM crossbars in the same tile are connected to a
bus. Each ReRAM tile communicates with other cores (GPUs
and LLCs) and other ReRAM tiles via the NoC.

For experimental evaluation, we choose variants of three
commonly employed DNN architectures used for segmentation:
(a) U-Net [1]: Fig. 1 illustrates this architecture. Normalization
is performed after every convolution/deconvolution layer; and
(b) FCN: This is similar to U-Net architecture, with fewer
deconvolutions and skip-connections similar to FCN-8
architecture [2], and (c) ResNet-FCN [23]: This resembles a
ResNet architecture followed by deconvolution layers and has
more skip-connections than FCN and U-Net. Both architectures
are evaluated for two input sizes: 32x32 and 128x128. We refer
the U-Net architecture with input size 32 and 128 as U32 and
U128, respectively. Similarly, the FCN, and ResNet equivalents
are referred as F32, F128 and R32, R128 respectively.

B. Performance Evaluation

First, we show the importance of appropriately mapping
DNN layers on the GRAMARCH architecture. Fig. 4(a) shows
the effect of multicast-aware placement on pipeline-stage
latency with three different candidates: (a) Seq-M: Sequential
mapping, i.e., Layer-i mapped to Cluster-i with multicast
support (if a layer needs PEs from more than a single cluster, the
excess is allocated among remaining free PEs in round-robin
fashion); (b) GRAM-U: Conventional unicast enabled DNN-
aware mapping (Algorithm-1) on GRAMARCH, and (¢) GRAM-
M: DNN-aware mapping with multicast enabled on
GRAMARCH. We observe that, on average, Seq-M performs
34% worse than even GRAM-U. This indicates that without a
suitable mapping strategy, only multicast support is not
sufficient. On the other hand, GRAMARCH with multicast
(GRAM-M) consistently outperforms its unicast counterpart
(GRAM-U), by 28% on an average. Repeated unicasts in
GRAM-U introduce duplicate traffic, which contributes to
higher pipeline-stage latency. These results shows that both
multicast support and a DNN-aware mapping in the NoC are
crucial for achieving high-performance.

To analyze deeper, we also show the actual mapping for
F128 on GRAMARCH clusters (ReRAM layer only). Fig. 4(b)
shows a communication sub-graph for the F128 architecture.
For the sake of clarity, we only show a subset of all
communications in F128. Fig. 4(c) and Fig. 4(d) show the
corresponding mapping of DNN layers on GRAMARCH for
GRAM-M and Seq-M, respectively. It should be noted that as
we only consider the layers in Fig. 4(b) for illustration, some of

232 Design, Automation And Test in Europe (DATE 2020)

mSeq-M mGRAM-U = GRAM-M

. @

TS, 08

£%2 04

HERAALL P &€

g o= N &N N 00 0

22

z &’&’Sggﬁ .‘.
(a) (b)

Iil

© (d)

Fig 4: (a) Effect of mapping and multicast on pipeline stage latency, (b) F128 Communication sub-graph, and Corresponding mapping to GRAMARCH clusters
(ReRAM layer only) in (c) GRAM-M, and (d) Seq-M configurations (C: Convolution, DC: Deconvolution, bC: Backward phase of Convolution)

the clusters in Fig. 4(c) and Fig. 4(d) are empty (the white
clusters). The arrows indicate the direction of traffic flow. The
precision-critical layers e.g. Normalization, are mapped to the
GPUs directly below the ReRAM cluster executing the prior
convolution/deconvolution layer. It is clear that GRAMARCH
with multicast (GRAM-M) ensures spatial nearness and takes
advantage of tree multicast during mapping. The
communicating layers are all placed nearby within a few hops
of each other. Moreover, to take advantage of tree multicast’s
behavior (single copy of message in each direction), the
destination layers have been mostly placed in the same
row/column to reduce traffic. On the other hand, sequential
mapping results in a more sporadic distribution of
communicating layers which results in long-range traffic.
Moreover, tree multicast is not as effective due to the sporadic
nature of mapping. Therefore, both multicast support and a
DNN-aware mapping are crucial for best performance.

Finally, we compare the full-system execution time with a
conventional GPU in Fig.5 (shown in log-scale). For this
experiment, we implement all the DNN architectures described
previously, in Caffe and execute them on an Nvidia GTX 1080Ti
GPU. Overall, as is evident from Fig. 5, GRAM-M outperforms
conventional GPU architectures by 33.4X on average and by
53X in the best case. This speed-up is mainly achieved due to
the accelerations provided by ReRAMs. Also, the mapping
strategy ensures that pipeline stages remain balanced and
communication does not become a bottleneck. Overall, GRAM-
M significantly outperforms GPU-based architectures in
training DNNs for image segmentation.

V. CONCLUSION

ReRAMs provide a high-performance platform for training
DNNs. However, their low precision representation capability
poses a significant challenge. In this work, we propose
GRAMARCH, a heterogeneous ReRAM and GPU-based
architecture to address this challenge and train DNNs used for
image segmentation. Taking advantage of the heterogeneity in
architecture involving ReRAMs and GPUs, we map the DNN
layers appropriately, e.g., compute-intensive layers on ReRAM
and precision-critical layers on GPUs. Furthermore, to ensure
that communication does not become a bottleneck, we propose
a multicast-aware placement strategy to map DNNs on
GRAMARCH. Overall, complemented with a high-throughput
NoC and optimized layer mapping, GRAMARCH with multicast
(GRAM-M) can outperform conventional GPUs by up to 53X.

mGPU = GRAM-M

F128 R128 U128
Fig 5: GRAMRACH speed-up in execution time compared to GPU

Speed-up

REFERENCES

[1] O. Ronneberger, P. Fischer, T. Brox, "U-net: Convolutional networks for
biomedical image segmentation", in MICCAL pp. 234-241, 2015.

[2] J.Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in CVPR, MA, 2015, pp. 3431-3440.

[3] D. Fujiki, S. Mahlke, R. Das, "In-memory data parallel processor", in
ASPLOS, pp. 1-14,2018.

[4] M. Hu et. al, "Dot-product engine for neuromorphic computing:
Programming 1 T1M crossbar to accelerate matrix-vector multiplication,"
in DAC, 2016, pp. 1-6.

[S] L. Song, X. Qian, H. Li and Y. Chen, "PipeLayer: A Pipelined ReRAM
Based Accelerator for Deep Learning," in HPCA, 2017, pp. 541-552

[6] Y. Chen et. al., "DaDianNao: A Machine-Learning Supercomputer,” in
MICRO, 2014, pp. 609-622.

[7]1 T. Na, et.al, "On-chip training of recurrent neural networks with limited
numerical precision," in IICNN, 2017, pp. 3716-3723

[8] P. Micikevicius et. al., “Mixed
CoRR,abs/1710.03740, 2017

[9]1 D. Das et al., “Mixed precision training of convolutional neural networks
using integer operations,” in arXiv preprint arXiv:1802.00930, 2018

precision training,”

[10] A. Shafiee et. al., “ISAAC: a convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in SIGARCH., 2016, 14-26.

[11] N. Wang.et. al., “Training deep neural networks with 8-bit floating point
numbers,” In NIPS, 2018

[12] M. Courbariaux, Y. Bengio, and J. P. David, “Binaryconnect: Training
deep neural networks with binaryweights during propagations”, in
ArXiv e-prints, abs/1511.00363, November 2015

[13] P. Chi et al., "PRIME: A Novel Processing-in-Memory Architecture for
Neural Network Computation in ReRAM-Based Main Memory," in
ISCA, 2016, pp. 27-39

[14] M. Cheng et al., "TIME:A Training-in-memory Architecture for RRAM-
based Deep Neural Networks," in TCAD, 2019, vol. 38, no.5, pp.834-847

[15] B. K. Joardar et. al, "REGENT: A Heterogeneous ReRAM/GPU-based
Architecture Enabled by NoC for Training CNNs," in DATE, 2019, pp.
522-527

[16] S. Wen, H. Wei, Z. Zeng, and T. Huang, “Memuristive fully convolutional
network: An accurate hardware image-segmentor in deep learning,”
in IEEE TETCI, vol. 2, no. 5, pp. 324-334, 2018

[17] X.Y. Zhou and G.Z. Yang, “Normalization in training u-net for 2D
biomedical semantic segmentation,” in [IEEE RA-L, 2019

[18] Z. Fanet al., “Red: A reram-based deconvolution accelerator,” in DATE,
2019, pp. 1763-1768

[19] X. Liu et. al., “Neu-NoC: a high-efficient interconnection network for
accelerated neuromorphic systems,” in ASPDAC, 2018, 141-146

[20] X. Wang et al., "Low latency and energy efficient multicasting schemes
for 3D NoC-based SoCs," in Conf. on VLSI and SoC, pp. 337-342, 2011.

[21] J. Power et.al., "gem5-gpu: A Heterogeneous CPU-GPU Simulator," in
IEEE Computer Architecture Letters, vol. 14, no. 1, pp. 34-36, 2015

[22] B. Zimmer et al., "A 0.11 pJ/Op, 0.32-128 TOPS, Scalable Multi-Chip-
Module-based Deep Neural Network Accelerator with Ground-Reference
Signaling in 16nm," in Symp. on VLSI Circuits, 2019, pp. C300-C301.

[23] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image
Recognition," in CVPR, 2016, pp. 770-77

[24] https://www.kaggle.com/c/carvana-image-masking-challenge

Design, Automation And Test in Europe (DATE 2020) 233

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

