
Deterministic Cache-based Execution of On-line
Self-Test Routines in Multi-core Automotive

System-on-Chips

Andrea Floridia∗, Tzamn Melendez Carmona∗, Davide Piumatti∗, Annachiara Ruospo∗, Ernesto Sanchez∗
Sergio De Luca†, Rosario Martorana†, Mose Alessandro Pernice †
∗Dipartimento di Automatica e Informatica, Politecnico di Torino, Italy

†STMicroelectronics, Italy

Abstract—Traditionally, the usage of caches and deterministic
execution of on-line self-test procedures have been considered two
mutually exclusive concepts. At the same time, software executed
in a multi-core context suffers of a limited timing predictability
due to the higher system bus contention. When dealing with self-
test procedures, this higher contention might lead to a fluctuating
fault coverage or even the failure of some test programs. This
paper presents a cache-based strategy for achieving both deter-
ministic behaviour and stable fault coverage from the execution of
self-test procedures in multi-core systems. The proposed strategy
is applied to two representative modules negatively affected by a
multi-core execution: synchronous imprecise interrupts logic and
pipeline hazard detection unit. The experiments illustrate that it
is possible to achieve a stable execution while also improving
the state-of-the-art approaches for the on-line testing of embed-
ded microprocessors. The effectiveness of the methodology was
assessed on all the three cores of a multi-core industrial System-
on-Chip intended for automotive ASIL D applications.

I. INTRODUCTION

Test solutions based on the usage of Software Test Li-

braries (STLs) are increasingly becoming adopted for the on-

line testing of automotive processor-based System-on-Chips

(SoCs) [1]–[7]. They are based on a set of software self-test

procedures, intended for detecting the occurrence of possible

permanent faults affecting the processor core. The main idea

of this approach (initially proposed in [8]) is to convert test

patterns into software instructions and accumulate their results

to create a so-called test signature. Then, such a signature is

compared with the expected test signature (obtained in a fault-

free scenario) to determine whether the test passed or failed.

When the test is executed in field, the test signature represents

the only way to safely detect the occurrence of faults [9]–

[12]. Self-test procedures can be broadly distinguished into

two main categories [2], [7]: boot-time and run-time tests.

The former are executed during the namesake phase of the

device, when it is entering the on-line phase. The latter are

executed concurrently with the application software. Some

boot-time test programs, in order to be effective, require a

proper sequence of instructions to be executed without any

interruption. Moreover, the STL must comply with the typical

requirements of the embedded software, since it coexists with

an Operating System or an application program. Therefore,

the resources usage (namely code and data memory) should

be minimal. The vast majority of the existing Software-

Based Self-Test (SBST) techniques [10] were conceived con-

sidering exclusively a single-core execution. However, high-

performance multi-core System-on-Chips are nowadays mas-

sively deployed in automotive applications. When dealing with

these systems, to increase the system availability, parallel test

is highly desirable. The run-time tests can be executed in

parallel, usually during the processor idle times. On the other

hand, the boot-time tests require special considerations [13]

due to the shared portion of system RAM devoted to the

test and the fact that cannot be interrupted. In particular, this

last assumption cannot be guaranteed anymore. Indeed, the

embedded software running in a multi-core context suffers of a

limited timing predictability [14], due to the higher system bus

contention. These conflicts on the system bus generate stalls

when fetching instructions from the main memory and thus

the exact stream of instructions entering the pipeline cannot
be determined in advance anymore. In a multi-core SoC, this

has two important consequences on the self-test procedures

requiring a specific sequence of instructions. The first one

concerns the fault grading: the fault coverage is uncertain and

it might vary depending on which portion of the processor is

excited due to the system bus activity. Because of this, a given

fault location might not be excited correctly and therefore

remains undetected. The second one is related to the signature

generated by the test program, which is now unstable. It means

that the self-test procedure cannot safely identify whether the

mismatch in the signature is due to the occurrence of a fault

or due to an unexpected instructions stream.

The novelty of this paper consists in the establishment of

a deterministic methodology for executing in-field self-test

routines in a multi-core scenario. The proposed method, based

on cache memories, guarantees stable signature and determin-

istic fault coverage of those test routines (targeting specific

CPU modules) negatively affected by a multi-core execution.

The methodology does not require significant modifications

of the already-existing algorithms and it does not introduce

penalties from the memory footprint perspective. Along with

these advantages, it does not require any additional on-chip

resources.

The usage of caches has been explored to store the self-

1235978-3-9819263-4-7/DATE20/ c©2020 EDAA

test procedures intended for end-of-manufacturing testing of

processors within a shared-memory multi-core system [15].

The purpose of that work was to reduce the test applica-

tion time, avoiding off-chip memory accesses. The method

is applicable exclusively for end-of-manufacturing, since it

assumes that the self-test procedures are loaded into the caches

through an external tester (which is not available when in

field). Similarly, in [16] it was shown that a cache-aware test

scheduler can take advantage of the memory hierarchy for

speeding-up the run-time tests. Differently from these related

works, the proposed approach deals with the in-field execution

of boot-time procedures, and it uses caches for addressing the

uncertainties introduced by a multi-core architecture.

Finally, the parallel execution of boot-time tests was ana-

lyzed in [13]. The paper presents some scheduling alternatives,

exclusively considering the possible existing conflicts due to

shared resources without properly addressing the determinism

of the self-test procedures themselves in a multi-core scenario.

The paper is structured as follows: Section II describes

the main issues arising from a multi-core execution. Section

III presents the proposed strategy. Section IV describes the

experimental results gathered on an industrial design. Section

V concludes the paper, outlining future directions.

II. MULTI-CORE ISSUES

The aim of this section is to introduce the main issues

related to the execution of a Software Test Library (STL) in

a multi-core scenario. The STL is historically considered an

on-line test solution targeting exclusively the processor core.

However, when deploying the STL in a multi-core system, the

situation radically changes. Specifically, the behavior of some

boot-time self-test procedures cannot be guaranteed anymore,

producing unforeseen outcomes. In this context, as the experi-

ments of Section IV confirm, a given self-test procedure might

produce a wrong signature or an uncertain fault coverage.

The former inhibits the self-diagnostic capabilities of the test

program when in field. The latter concerns the fault grading,

since it is not possible to guarantee a given fault coverage. This

represents a serious concern, since modern functional safety

standards impose stringent quality requirements (e.g., the ISO

26262 for the automotive domain).

For clarity, let us consider a simple but yet effective

example: the forwarding mechanism of the classical 5-stage

pipeline DLX processor and a self-test routine for testing such

mechanism.

The reported example considers forwarding among two

consecutive instructions. However, the reader should note that

the same reasoning is perfectly applicable even to more com-

plex multiple-issue processors. The only difference is that the

forwarding can also take place among two consecutive issue

packets. Let us focus on the following forwarding path: the

EX to EX path that fed the processor adder. Figure 1a shows

a portion of the assembly code testing the aforementioned

path, along with its evolution across the pipeline stages in a

single-core scenario. In this case, the forwarding mechanism

is excited correctly. The second add instruction enters the

(a)

(b)

Fig. 1. Forwarding path (a), Broken forwarding path (b).

pipeline exactly one clock cycle after the first one, since the

memory subsystem has not produced any stall. In order to

detect the occurrence of performance faults [17] the processor

Performance Counters can be exploited (when available).

When testing these mechanisms, Performance Counters that

count the number of pipeline stalls are often used since

they could ease the detection of malfunctions in the hazard

detection unit (e.g., stalls inserted between instructions when

not needed). Figure 1b represents still the same code fragment,

but in a quite different scenario.

It is assumed that the processor is part of a larger multi-

core system, and the self-test procedure is executed in parallel

by the other cores. As a result of the other processors’

activities, the accesses to the memory subsystem are delayed.

As depicted in that figure, the forwarding mechanism is not

triggered at all. The second add enters the pipeline at the fifth

clock cycle and can retrieve the content of R7 directly from

the register file, without exercising the forwarding path. This

is a possible scenario that a self-test routine might encounter

when executed in parallel in a multi-core SoC. In this context,

the self-test procedure yields two possible outcomes:

• Wrong signature;

• Exact signature but lower fault coverage.

When the Performance Counters contribute to the signature,

it is likely that the test program will produce an unstable

signature. Considering the examples of Figure 1a and 1b, the

execution time is slightly increased in 1b due to the additional

stalls, but yet enough for altering the values of the Performance

Counters, that will report 3 additional stalls. Once again,

these stalls are completely unpredictable and consequently

also the signature. However, it might happen that the self-

test procedure does not use the Performance Counters, making

the signature stable. One could erroneously believe that the

test program still performs correctly as expected: however,

although it returns a correct signature, the fault coverage

is likely to be quite different (specifically, lower than the

expected one) considering that some processor portions are

not exercised. Indeed, in the scenario depicted in Figure 1b

the forwarding path EX to EX is not excited at all (along

with the possible permanent faults on that path). The signature

is identical to the case in Figure 1a (assuming Performance

Counters are not used) since all the instructions, even if

delayed, will properly yield the correct results but using

different processor paths. Even though these phenomena have

1236 Design, Automation And Test in Europe (DATE 2020)

been described using as example the forwarding unit, they

are applicable to all those self-test procedures that require

a specific sequence of instructions to be executed without

interruptions. These claims will be experimentally justified in

Section IV.

III. PROPOSED APPROACH

The main intent of this paper is to propose a strategy for

executing in a deterministic manner self-test routines in a

multi-core context, while striving for a low system resources

occupation. These requirements are those commonly found in

safety-critical embedded applications, in which the software

has to be predictable and the memory resources are limited.

The vast majority of computer programs exhibit the so-

called principle of locality: that is, a given program will access

a (relatively) small portion of the available address space. Two

locality principles exist: temporal and spatial locality. The for-

mer states that if a given memory address is referenced, then it

is likely that it will be referenced again soon. The latter stems

from the observation that programs are generally executed

sequentially and data are often stored in contiguous memory

locations: therefore, if a given memory location is accessed,

then it is likely that the locations nearby will be accessed

soon. Caches leverage these principles, by storing the content

the most referenced addresses (i.e., data and instructions).

This provides isolation, considerably increasing the processor

performances. Although these advantages, the caches are not

deterministic since the actual increase in performance depends

on the program length and organization, the cache size itself,

and how often a context switch is performed. Therefore, issues

could arise when using caches in conjunction with self-test

procedures, since they require a precise execution.

However, it is possible to achieve a deterministic cache-

based execution if the test program is executed without any

interruption and it exhibits strong temporal and spatial locality.

The idea is to move the self-test routine within the innermost

level of caches (i.e., the ones private to each processor core),

isolating its execution from the rest of the system. From the

above mentioned definitions of the locality principles, it is

possible to derive a general structure, that embeds the single-

core version of the self-test procedure. Given a generic boot-

time test program, the few modifications required are:

1) The test program should be executed twice in a loop-

based fashion. The body of the loop (blocks c and d in

Figure 2b) is represented by the instructions intended for

testing the processor which compose the single-core self-

test procedure (Figure 2a, blocks b and c). This allows

for a strong temporal locality, since all the addresses

are referenced exactly twice. During the first iteration

(hereinafter loading loop), the test program is moved into

the instruction cache. At the same time, the content of the

data memory addresses referenced (if any) during this

first iteration are moved within the data cache, assuming

a write allocate cache memory. If this is not the case

(i.e., a no-write allocate policy) each store operation must

be followed by a dummy load operation to the same

(a) (b)

Fig. 2. The proposed Cache-based strategy. On the left-hand side the single-
core version. On the right-hand side the modified multi-core test program
version. In case of no-write allocate caches, the Test Program Body might be
lightly modified.

address. This will provoke a read cache miss, that in turn

causes data to be moved within the data cache. Therefore,

during the execution loop all the store operations will

not generate a write miss, since they will find the proper

data already in cache. It is important to note that during

the loading loop the test program must not perform any

check of the signature. Since the first execution might

be still influenced by the other processors’ activity, the

computation of the signature is unreliable. Instead, the

second iteration (the execution loop) is the real test

program execution. Since the program is executed entirely

from the caches, the signature can be computed without

the risk of being influenced by the rest of the system.

2) The entire test procedure code must be loaded in the

instruction cache during the loading loop. This feature

brings spatial locality and it avoids instruction cache

misses during the execution loop that could potentially

alter the signature. This condition implies that:

2.1) Conditional branches that could potentially yield a

different execution flow in the execution loop must

be avoided. Exceptions are those conditional branches

that intentionally alter the execution flow but due to

the effect of a fault. Moreover, this does not preclude

the applicability of the proposed methodology to loop-

based test programs, as long as by the end of the test

program all the possible branches are taken.

2.2) The size of the multi-core version (Figure 2b) of the

self-test procedure must fit into the available cache

memory. If the resulting test program is larger than the

available cache size, it must be split into two or more

smaller self-test procedures. It is important to note that

this step is exclusively required if the cache memory is

not large enough, and it does not compromise the fault

coverage of the original single-core test procedure.

3) Both data and instruction caches should be initialized, by

invalidating their content (Figure 2b, block b) prior the

test program execution (Figure 2b, block c and d).

The proposed strategy based on cache memories achieves

Design, Automation And Test in Europe (DATE 2020) 1237

the requirements of both deterministic behavior and low re-

sources usage since:

• Caches decouple the processor from the rest of the

system. Therefore, the instruction stream is not altered

by other processors’ activity;

• The code is allocated in the cache memories, without

altering the self-test routine memory footprint.

IV. CASE STUDY AND EXPERIMENTAL RESULTS

This Section is organized as follows: the first subsection

describes the target multi-core device. From the second sub-

section, the experimental results are reported. These include

the evidences of issues presented in Section II and then the

gathered results for the proposed methodology. Its effective-

ness is also compared with other possible alternatives.

A. Case Study

The device used in the experimental part of this work

was an industrial triple-core System-on-Chip, manufactured

for automotive safety-critical applications ranked as ASIL D.

It embeds three dual-issue processor cores. Hereinafter, these

cores will be labeled as cores A, B and C. The two cores A

and B are the same 32-bit processor model, while the core

C is different since it implements an extended instruction set

able to deal with 64-bit operands. Each processor includes

two Tightly-Coupled Memories modules (for data and instruc-

tions), along with private data (4 kB) and instruction (8 kB)

caches. The caches support both write allocate and no-write

allocate policies (configurable before being used).

For the purpose of this work, stuck-at faults were exclu-

sively considered. Nevertheless, the applicability of the pro-

posed methodology is not limited exclusively to this specific

fault model. The total number of stuck-at faults of these

processors varies from 643,209 (core C) to 473,052 (core B).

It is worth noting that although core A and B are conceptually

identical, they underwent different physical design processes.

Therefore, from the testing viewpoint they are quite different,

since the stuck-at fault lists are different. Accordingly with

the aim of this paper, the faults belonging to the Interrupt

Control Unit and Hazard Detection Unit were exclusively

considered. The self-test procedures developed for these units

are significant examples of the complications that arise when

considering a multi-core execution.

The problems related to the Hazard Detection Unit (which

includes also the forwarding mechanism) were already pre-

sented in Section II. In the considered processors, the Hazard

Detection Unit is composed of a Hazard Detection Control

Unit and a Forwarding Logic. The former detects dependencies

among issue packets, driving the forwarding paths and possi-

bly stalls the pipeline if the forwarding is not possible. The

latter is composed by the multiplexers that directly fed and col-

lect the results produced by the different execution units of the

processor. Several algorithms exist in the literature for testing

these mechanisms [18], [19]: in the following it was decided to

implement the one presented in [19] since it targets a multiple-

issue processor. The above-mentioned testing algorithm ex-

TABLE I
MULTI-CORE STLS EXECUTION: STALLS DUE TO THE MEMORY

SUBSYSTEM

Active Cores IF Stalls
[clock cycles]

MEM stalls
[clock cycles]

1 200,679 117,965
2 717,538 305,801
3 1,878,336 663,386

haustively test all the possible existing forwarding paths, both

interpipeline (that is, dependencies between instructions of the

same issue packet) and intrapipeline (dependencies between

instructions of two consecutive issue packets). Moreover, it

leverages performance counters for tracking the number of

pipeline stalls in the processor during the self-test procedure

execution (for detecting wrongly inserted stalls by the hazard

control unit).

Concerning the Interrupt Control Unit, synchronous impre-
cise interrupts were examined. Such class of interrupts are

still generated as consequence of a particular instruction being

executed (i.e., synchronously) and from sources within the

CPU. But, unlike precise interrupts [20], the imprecise ones

are not recognized immediately, but only after that a variable

number of instructions are executed beyond the interrupting

instruction. The actual number of instructions depends on

the instructions stream entering the pipeline, which is highly

unpredictable in a multi-core system. Therefore, also the self-

test procedures targeting these interrupts suffer of an unstable

signature that varies depending on the other processors’ activ-

ity. For testing this mechanism, a self-test procedure based on

the strategy presented in [21] was implemented. The second

column of Table II and the third of Table III report the number

of faults within these units. Finally, caches were configured

with a write allocate policy: therefore, for both test programs,

it was not required to insert additional load operations to avoid

write misses in the execution loop (as explained in Section III).

Furthermore, for both test programs, it was not necessary to

split them, since the instruction cache was large enough to

contain the entire self-test procedure code.

B. Uncertainties in multi-core SoC

A first set of experiments consisted in analysing the behavior

of the STL in a multi-core context. Considering the system

under analysis, two STLs were developed (core A and B

share the same STL). The test programs targeting imprecise

interrupts and hazard detection unit were not included in the

library for this initial set of experiments, since their behavior

was analyzed separately. The STLs were executed in parallel

on the physical microcontroller, with a software structure

similar to the one presented by the authors of [13]. Their

execution was tracked leveraging an external debugger, that

monitored the number of clock cycles of stall due to the

memory subsystem in each processor core. Table I reports the

gathered measurements. As it can be noticed, when moving

from a single-core scenario (in which all the other cores are

completely turned off) to a triple-core scenario, the number of

stalls in the system increased considerably. As it can be noted,

1238 Design, Automation And Test in Europe (DATE 2020)

the major source of stalls is the instruction fetch unit (second

column of Table I). This is a direct consequence of the higher

bus contention: the instruction fetch operations are delayed

due to the other processors requests, and as a consequence

the pipeline is stalled. Moreover, it is worth noting that the

figures in the second and third row of Table I represent average
values gathered across several executions. The actual number

of clock cycles of stall varies depending on the initial SoC

configuration (and therefore it is not predictable).

C. Uncertain Fault Coverage

From the experiments described above it is clear that the

behavior of an STL is highly unpredictable in a multi-core

context, since it is influenced by the whole system activity. The

second set of experiments focused on demonstrating the effects

of these pipeline stalls on the self-test procedures. Specifically,

these experiments involved the achievable fault coverage on

the processor hazard detection unit. For these experiments,

the SoC post-layout gate-level netlist and a commercial fault

simulator were used. As extensively explained in Section

II and demonstrated with the previous experiments (Table

I) Performance Counters (PCs) are unreliable in a multi-

core scenario. Therefore, when they contribute to the self-

test procedure signature, a straightforward solution for dealing

with the instability of the signature might be removing the

usage of PCs, sacrificing fault coverage. However, as depicted

in Table II this is not enough for guaranteeing a deterministic
fault coverage of the forwarding logic. First, the algorithm [19]

was modified, removing the usage of PCs. Then, the obtained

self-test procedure was executed in parallel on the different

processors considering different scenarios: number of active

cores (two or three), code position in memory (low, mid and

high Flash addresses) and different code alignment options

(e.g., aligned at word, double-word or double double-word).

TABLE II
FORWARDING LOGIC FAULT SIMULATION RESULTS

Core # of Faults min - max FC [%]
no caches no PCs

FC [%]
with caches no PCs

A 53,298 64.14 - 75.19 79.61
B 57,506 63.61 - 79.59 82.08
C 113,212 56.24 - 66.48 68.79

Each of these logic simulations was then fault simulated,

and the results are shown in third column of Table II. For

sake of conciseness, the minimum and the maximum value of

fault coverage are reported only. As it can be observed, the

fault coverage considerably oscillates: in the worst case, it was

observed a difference of about 16%. It is important to note that

the signature did not change during the logic simulations and
yet the fault coverage varied significantly. These fluctuations

depend on how many issue packets consecutively (namely

in consecutive clock cycles, without any stall in between)

enter the processor pipeline, activating different forwarding

paths. On the contrary, when executing the self-test procedure

embedded in proposed cache-based approach (fourth column

of Table II), the fault coverage significantly increased (about

the 4% in the best case) while being stable across the different

TABLE III
ICU AND HDCU FAULT SIMULATION RESULTS

Core Module # of Faults FC Sigle-Core
no caches [%]

FC Multi-Core
with caches [%]

A
ICU 14,230 46.57 51.36

HDCU 16,096 62.53 70.37

B
ICU 13,149 46.39 50.97

HDCU 15,783 63.84 70.12

C
ICU 13,888 54.94 60.91

HDCU 19,931 65.66 68.09

scenarios. The fault coverage obtained for core C is lower

compared to the one of cores A and B because the multiplexers

are 64-bit wide to support 64-bit operations. However, general

purpose registers are still 32-bit wide. Therefore, the signature

must be represented using 32 bits, which causes some faults

effects to be masked. Nevertheless, the reader should note

that improvements of the already existing algorithm for the

forwarding logic would have been outside the scope of this

work. For this reason, increasing further the fault coverage

was not considered.

D. Unstable Signature

The third set of experiments (Table III) concerned Interrupt

Control Unit and Hazard Detection Control Unit (ICU and

HDCU respectively). For the HDCU, the complete algorithm

of [19] was used (namely with performance counters). For

the ICU, the aforementioned self-test procedure based on [21]

was used. The fourth column of Table III represents the fault

coverage figures when the self-test procedures were executed

in the selected SoC in a single-core scenario (i.e., with the

other cores switched off) without resorting to the proposed

approach. In this scenario, the signatures produced by the test

programs were stable as the fault coverage. However, when

moving to a multi-core execution without using the caches
the test procedures inevitably failed in any configuration.

Introducing caches, the produced signatures become stable,

and therefore the fault coverage can be computed. As the

reader can notice, the achieved fault coverage in a multi-core

execution is higher than in the single-core scenario. This lower

fault coverage stems from the fact that the memory subsystem

introduces 8 clock cycles of latency when fetching an issue

packet from the Flash even in a single-core execution. Thus, it

is not possible to fully excite all the forwarding paths or trigger

correctly all the imprecise interrupts. Furthermore, while for

the HDCU the coverage was similar over the three processors,

the coverage for the ICU is about 10% higher in the core

C. This arises from the implementation of the ICU itself. In

details, the unit exposes some software-accessible registers for

differentiating among the possible sources of interrupt. In the

core A and B, different interrupt events are mapped to the

same bits. As a result, even here some fault effects are masked

(unlike core C).

E. Comparisons with other solutions

Finally, a common alternative to the proposed one consists

in exploiting the processor Tightly-Coupled Memories (TCMs,

also known as scratchpad memories) [22], [23]. This approach

Design, Automation And Test in Europe (DATE 2020) 1239

TABLE IV
TCM-BASED VERSUS CACHE-BASED APPROACHES FOR IMPRECISE

INTERRUPTS

Approach Overall Memory Overhead
[bytes]

Execution Time
[clock clycles]

TCM-based 2,874 16,463
Cache-based 0 18,043

is typically adopted for the execution of real-time programs.

Such programs are copied (during the system boot) and then

executed from the instruction TCM when required. Conceptu-

ally, TCMs are similar to caches since they consist in a bank

of SRAM local to each processor. Unlike caches, there is not

the concept of cache miss or hit, since data or instructions

have to be copied explicitly to these memories before being

used. This approach shows most of the advantages of the

proposed one. However, the fundamental drawback is that part

of the TCM should be permanently reserved for test purposes

(the amount of extra memory occupied is proportional to the

size of the test program). Clearly, this impacts negatively on

both portability and flexibility of the STL. Table IV compares

the two strategies (namely TCM-based versus cache-based

execution) for the self-test procedure targeting the imprecise

interrupts (similar results were obtained also for the hazard

detection units, but they were not reported for conciseness).

Since both approaches require few additional instructions to be

implemented, the flash overhead is negligible and not reported.

The same reasoning applies also for the fault coverage,
which is the same for both. Concerning the TCM-based, the

execution time consists in the time required for copying the

entire self-test procedure in the Instruction TCM and then

execute from there the self-test program. For the cache-based

one, it is the time required for executing as in Figure 2b. As

it can be viewed, the cache-based approach does not increase
the overall memory footprint of the self-test procedure, while it

requires to be executed slightly more than 1,500 clock cycles

compared to the TCM-based approach. It is worth noting that

this overhead might be negligible when the STL is executed

at-speed (8.25μs when the considered SoC operates at its

maximum frequency of 180 MHz).

V. CONCLUSION

This paper described a cache-based approach for achieving a

deterministic execution of self-test procedures when deployed

in field in a multi-core SoC. In this context, the suggested

methodology is able to deliver stable signature and determin-

istic fault coverage, without requiring additional on-chip re-
sources. Through the experiments, it was demonstrated the ap-

plicability to any self-test procedure without altering its overall

memory footprint. On the other hand, it requires slightly more

clock cycle to be executed compared to other strategies (e.g.,

the TCM-based ones). While considering stuck-at faults, few

specific test programs exhibit these issues in a multi-core

execution. Instead, it might be further emphasized with delay

faults which require test patterns applied in a timed sequence.

REFERENCES

[1] F. Reimann et al., “Advanced diagnosis: Sbst and bist integration in
automotive e/e architectures,” in 2014 51st ACM/EDAC/IEEE Design
Automation Conference (DAC), June 2014, pp. 1–6.

[2] (2019) ARM Software Test Library: [Online]. Available:
https://www.arm.com/products/development-tools/embedded-and-
software/software-test-libraries.

[3] (2019) Infineon Software Test Library: [Online]. Available:
https://www.hitex.com/tools-components/software-components/selftest-
libraries-safety-libs/pro-sil-safetcore-safetlib/.

[4] (2019) Cypress Software Test Library: [Online]. Available:
http://www.cypress.com/file/249196/download.

[5] (2019) Renesas Software Test Library: [Online]. Available:
https://www.renesas.com/en-eu/products/synergy/software/add-
ons.html#read.

[6] (2019) Microchip Software Test Library: [Online]. Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/52076a.pdf.

[7] P. Bernardi et al., “Development flow for on-line core self-test of
automotive microcontrollers,” IEEE Transactions on Computers, vol. 65,
no. 3, pp. 744–754, March 2016.

[8] Thatte and Abraham, “Test generation for microprocessors,” IEEE
Transactions on Computers, vol. C-29, no. 6, pp. 429–441, June 1980.

[9] A. Paschalis et al., “Deterministic software-based self-testing of embed-
ded processor cores,” in Proceedings Design, Automation and Test in
Europe. Conference and Exhibition 2001, March 2001, pp. 92–96.

[10] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. S. Reorda, “Micro-
processor software-based self-testing,” IEEE Design Test of Computers,
vol. 27, no. 3, pp. 4–19, May 2010.

[11] N. Kranitis et al., “Hybrid-sbst methodology for efficient testing of
processor cores,” IEEE Design Test of Computers, vol. 25, no. 1, pp.
64–75, Jan 2008.

[12] L. Chen and S. Dey, “Software-based self-testing methodology for
processor cores,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 20, no. 3, pp. 369–380, March
2001.

[13] A. Floridia et al., “A decentralized scheduler for on-line self-test routines
in multi-core automotive system-on-chips,” in 2019 50th International
Test Conference, Nov 2019, pp. 1-10.

[14] M. Lv, W. Yi, N. Guan, and G. Yu, “Combining abstract interpretation
with model checking for timing analysis of multicore software,” in 2010
31st IEEE Real-Time Systems Symposium, Nov 2010, pp. 339–349.

[15] A. Apostolakis, D. Gizopoulos, M. Psarakis, and A. Paschalis,
“Software-based self-testing of symmetric shared-memory multiproces-
sors,” IEEE Transactions on Computers, vol. 58, no. 12, pp. 1682–1694,
Dec 2009.

[16] M. A. Skitsas, C. A. Nicopoulos, and M. K. Michael, “Daemonguard:
Enabling o/s-orchestrated fine-grained software-based selective-testing
in multi-/many-core microprocessors,” IEEE Transactions on Comput-
ers, vol. 65, no. 5, pp. 1453–1466, May 2016.

[17] T. Hsieh et al., “Tolerance of performance degrading faults for effective
yield improvement,” in 2009 International Test Conference, Nov 2009,
pp. 1–10.

[18] M. Psarakis et al., “Systematic software-based self-test for pipelined
processors,” in 2006 43rd ACM/IEEE Design Automation Conference,
July 2006, pp. 393–398.

[19] P. Bernardi et al., “Software-based self-test techniques for dual-issue
embedded processors,” IEEE Transactions on Emerging Topics in Com-
puting, pp. 1–1, 2018.

[20] J. E. Smith and A. R. Pleszkun, “Implementing precise interrupts in
pipelined processors,” IEEE Transactions on Computers, vol. 37, no. 5,
pp. 562–573, May 1988.

[21] P. Singh, D. L. Landis, and V. Narayanan, “Test generation for precise
interrupts on out-of-order microprocessors,” in 2009 10th International
Workshop on Microprocessor Test and Verification, Dec 2009, pp. 79–
82.

[22] J. Ax et al., “Coreva-mpsoc: A many-core architecture with tightly
coupled shared and local data memories,” IEEE Transactions on Parallel
and Distributed Systems, vol. 29, no. 5, pp. 1030–1043, May 2018.

[23] R. Banakar et al., “Scratchpad memory: a design alternative for cache
on-chip memory in embedded systems,” in Proceedings of the Tenth In-
ternational Symposium on Hardware/Software Codesign. CODES 2002
(IEEE Cat. No.02TH8627), May 2002, pp. 73–78.

1240 Design, Automation And Test in Europe (DATE 2020)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

