
Programming Quantum Computers
Using Design Automation

(Executive Session Paper)

Mathias Soeken1 Thomas Haener2 Martin Roetteler3
1Integrated Systems Laboratory, EPFL, Lausanne, Switzerland

2Institute for Theoretical Physics, ETH Zurich, Switzerland
3Station Q, QuArC, Microsoft Research, Redmond, WA, USA

Abstract—Recent developments in quantum hardware indicate
that systems featuring more than 50 physical qubits are within
reach. At this scale, classical simulation will no longer be
feasible and there is a possibility that such quantum devices may
outperform even classical supercomputers at certain tasks. With
the rapid growth of qubit numbers and coherence times comes the
increasingly difficult challenge of quantum program compilation.
This entails the translation of a high-level description of a
quantum algorithm to hardware-specific low-level operations
which can be carried out by the quantum device. Some parts
of the calculation may still be performed manually due to the
lack of efficient methods. This, in turn, may lead to a design gap,
which will prevent the programming of a quantum computer. In
this paper, we discuss the challenges in fully-automatic quantum
compilation. We motivate directions for future research to tackle
these challenges. Yet, with the algorithms and approaches that
exist today, we demonstrate how to automatically perform the
quantum programming flow from algorithm to a physical quan-
tum computer for a simple algorithmic benchmark, namely the
hidden shift problem. We present and use two tool flows which
invoke RevKit. One which is based on ProjectQ and which targets
the IBM Quantum Experience or a local simulator, and one which
is based on Microsoft’s quantum programming language Q#.

I. INTRODUCTION

With the rapid development of quantum hardware, quantum

computers will soon reach sizes—measured in the numbers

of qubits on which they operate—which allow them to solve

problems that are out of reach for any of the best classical

supercomputers. Quantum computers get this computational

advantage over classical computers from the principles of

superposition of states and interference of computational

paths. Arguably the most simple case in which superposition

manifests itself is a single qubit which can be in any (nor-

malized) linear combination of two basis states. In contrast, a

bit in conventional computers is always in a single state. By

linearly increasing the number of qubits, superposition allows

quantum computers to exponentially increase their computa-

tional space, while still being able to execute operations on

this exponentially large space at low cost (in concrete terms

this means that, everything else being equal, e.g., a 17-qubit

quantum computer is twice as powerful as a 16-qubit quan-

tum computer). While classical probabilistic computation also

allows to access an exponentially large space with only linear

resources, a quantum computer can leverage the principle of

interference which allows to amplify or reduce the probability

of computational paths. When designed properly, a quantum
algorithm can combine the power to explore exponentially

many computational paths at low cost with the ability to

cancel out useless paths in such a way that a measurement
of the remaining paths reveals the answer to an interesting

computational problem.

Several quantum algorithms that are computationally supe-

rior to their classical counterparts have already been found.

The most prominent one arguably is Shor’s algorithm [1]

that allows to factorize integers in polynomial time, whereas

for classical computing nothing better than a sub-exponential

upper bound is known [2]. Consequently, Shor’s algorithm

can break public-key cryptography which is based on the

assumption that integer factorization is a hard task. Recently,

precise cost estimates to implement Shor’s algorithm for

factoring [3] and elliptic curve dlog [4] were obtained, based

on implementing and testing large-scale Toffoli networks.

In addition to Shor’s algorithm, there are other quantum

algorithms which play a role in scientific applications of

interest. Examples include:

• Grover’s search algorithm [5], which enables quadrati-

cally faster search in unstructured databases if the correct

element can be recognized efficiently by a predicate (e.g.,

NP-complete problems). This has implications for the

choice of security parameters in a post-quantum crypto-

graphic world. Perhaps surprisingly, it turns out that the

overhead due to implementing the defining predicate in

a reversible way can be quite substantial [6].

• The HHL algorithm [7], which offers an exponential

speedup for solving linear equations. Finding practical

use cases of the HHL algorithm remains a challenge and

the few real-world applications that have been identified

so far [8], [9] require large overheads due to implementa-

tion of the classical subroutines that define the problem.

• Quantum simulation [10] (see, e.g., [11], [12] for

overviews and pointers to the literature) to model atomic-

scale interactions efficiently [13], [14] allowing to ap-

proximate behavior in drugs, organics, and materials

science [15], [16], and has applications for simulating

quantum field theories [17].

In order to execute a quantum algorithm on a physical

quantum computer, the algorithm must be expressed in terms

of elementary quantum operations that can be understood

by a quantum computer—very much like classical computer

programs need to be expressed in terms of low-level machine

instructions to run on a classical computer. Quantum compilers

137978-3-9819263-0-9/DATE18/ c©2018 EDAA

are software programs that take a high-level description of

a quantum algorithm and map them into so-called quantum
circuits. Quantum circuits are not a physical entity, but an

abstraction of the physical operations that can be performed

to qubits of the physical system [18]. They are represented in

terms of sequences of low-level quantum operations. Quantum

circuits can be considered the “assembly code” of a quantum

computer, in which qubits play the role of registers. The goal

of quantum compilers is to find a quantum circuit that meets

the number of available qubits and minimizes the number

of quantum operations. A challenge for quatum compilers is

to map combinational non-quantum operations into quantum

circuits, while not exceeding the resource constraints due to

the limited number of qubits. This is a difficult problem, and

no satisfiable and sufficient solution is provided by today’s

state-of-the-art quantum compilers.

Quantum computing has made a big leap this year, as

research on physical devices is moving from the academic

environment into several companies [19]. Microsoft, Google,

IBM, Intel, Alibaba, as well as the rapidly growing startup

companies IonQ and Rigetti, are investing into building the

first scalable quantum computer. As of today, the largest

publicly available fully-programmable quantum computers1

are by IBM which features 17 qubits [20] and by Rigetti

which features 19 qubits [21]. Recently, Intel announced a

quantum computer with 17 qubits [22] and IBM quantum

computers with up to 50 qubits [23]. These sizes are not yet

practical, since it has been shown that supercomputers are able

to simulate low-depth quantum circuits with up to 56 qubits

classically [24], and full state vector simulation is possible for

up to 45 qubits [25]. The rapid progress in quantum computing

and quantum simulation underlines the importance of having

reliable and robust quantum programming toolchains.

II. QUANTUM PROGRAMMING LANGUAGES

Several quantum programming languages were proposed in

recent years, ranging from imperative to functional and low-

level to high-level [26]. Languages such as Quipper [27], Scaf-

fCC/Scaffold [28], [29], LIQUi|〉 [30], QWire [31], Quil [32],

Q# [33] and ProjectQ [34] enable programming of quantum

computers. Quipper is a strongly-typed, functional quantum

programming language embedded in Haskell; Scaffold is a

stand-alone C-like programming language and its compiler

ScaffCC leverages the LLVM framework; QWire is embedded

in the proof system Coq; LIQUi|〉 is embedded in F#; Q# is

a stand-alone F#-like language, and ProjectQ and Quil are

embedded in Python.

All mentioned languages offer extensible frameworks for

quantum circuit description and manipulation, and some of

them offer gate decomposition and circuit optimization meth-

ods, some classical control flow, and exporting of quantum

circuits for rendering or resource costing purposes.

Theoretically, it would be sufficient if a programming

language for quantum computing supported the gate set of

the target hardware. The similarity between such an approach

1in contrast to special-purpose quantum computers such as the D-Wave
quantum annealer

and classical assembly language brought into existence quan-

tum assembly languages such as QASM [35] and OPEN-

QASM [36]. While sufficient for today’s quantum hardware

which is able to perform a few gate operations on less than

20 qubits, programming in such a language is neither scalable

nor particularly user-friendly. Rather, a quantum programming

language should provide high-level abstractions in order to

shorten development times and to enable portability across a

wide range of quantum hardware backends, similar to today’s

compilers for classical high-level languages such as C++.

In addition to purely classical and purely quantum sub-

routines, typical quantum algorithms also require classical

functions to be evaluated on a superposition of inputs, e.g., the

modular exponentiation in Shor’s algorithm for factoring [1].

Therefore, such “mixed” constructs must also be supported

by the language and the compiler must be able to translate

these constructs to instructions which can be executed by the

quantum hardware.

III. QUANTUM COMPUTING BASICS

This section introduces the necessary background on quan-

tum algorithms and quantum circuits. This introduction is kept

brief on purpose and focuses on the most important notations

and definitions that are necessary in the course of this paper.

For a more detailed overview on the matter, we refer the reader

to the standard literature [37].

A quantum algorithm is implemented in terms of a quan-

tum program, which is a sequence of high-level quantum

operations that are performed on a set of qubits. A qubit
state is modeled as a column vector |ϕ〉 = (α0

α1
) with two

complex-valued elements α0 and α1, called amplitudes, such

that |α0|
2 + |α1|

2 = 1. The values |α0|
2 and |α1|

2 are the

probabilities of whether the qubit state will be 0 or 1 after

measuring it, respectively. The classical states for a logic 0

and logic 1 are |0〉 = (1
0
) and |1〉 = (0

1
), respectively. Hence,

we may also write the state of a qubit as |ϕ〉 = α0|0〉+α1|1〉.
The notation |·〉 is called Dirac or bra-ket notation and

typical for denoting quantum states. A state in which the

measurement outcome has an equal probability of being 0 or

1 is for example 1
√

2
(1
1
), which is abbreviated as |+〉, since it

occurs very frequently in the design of quantum algorithms.

A different state with the same measurement probabilities is

|−〉 = 1
√

2

(
1

−1

)
. Although the measurement probability is the

same, the quantum state is not, which is one reason that makes

quantum computing significantly different from probabilistic

computing.

Qubit registers refer to quantum states involving multiple

qubits. As an example, a 2-qubit register is represented by

the state

(
α00

α01

α10

α11

)
= α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉,

which has four amplitudes, one for each classical state |00〉,
|01〉, |10〉, and |11〉. In general, an n-qubit register is a column

vector |ϕ〉 =
∑

b∈Bn αb|b〉 with 2n amplitudes. This reflects

the exponential power of qubits.

Quantum operations are modeled in terms of unitary matri-

ces, called quantum gates. A matrix U is unitary if UU † =
U

†
U = I , where U† refers to the conjugate transpose of U

(also referred to as the Hermitian or adjoint of U), and I

138 Design, Automation And Test in Europe (DATE 2018)

|0〉

|0〉

H
|Ψ〉

(a)

|ϕ1〉

|ϕ2〉

|ϕ3〉

|ϕ4〉

R1

R2 U1

R3

R4

U2

(b)

Fig. 1: Some basic examples for quantum circuits. Circuits are

read from left to right. Shown in (a) is a simple quantum circuit

that entangles two qubits. The circuit consists of a Hadamard

gate H and a controlled NOT gate and which creates upon

input |0〉|0〉 the resulting output state |Ψ〉 = 1
√

2
(|00〉 + |11〉).

Shown in (b) is an example for a larger quantum circuit

consisting of local rotations R1, . . . , R4 acting on single

qubits, larger unitary gates U1, U2 acting on several qubits,

and two measurement operations applied to the top two qubits.

is the identity matrix. A unitary matrix is length-preserving

and therefore maps one qubit state into another qubit state.

A quantum operation that acts on a single qubit is a 2 × 2
unitary matrix, and a quantum operation that acts on an n-

qubit register is a 2n × 2n unitary matrix. An example for a

single qubit operation is the so-called Hadamard operation

H = 1
√

2

(
1 1

1 −1

)
. This operation can be used to create

a superposition of the two basis states |0〉 and |1〉, since

H|0〉 = 1
√

2
(|0〉 + |1〉). The CNOT operation is a 2-qubit

quantum operation that maps |ϕ1〉|ϕ2〉 �→ |ϕ1〉|ϕ1 ⊕ ϕ2〉,
where ‘⊕’ is the exclusive-OR operation. The CNOT operation

inverts the target qubit |ϕ2〉 if the control qubit |ϕ1〉 is 1.

It can be represented as the unitary matrix

(
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

)
. The

unitary matrix of the CNOT operation is a permutation matrix.

A quantum operation whose unitary matrix is a permutation

matrix is called a classical operation. This also means that all

classical operations must be reversible, since otherwise they

cannot be represented in terms of a permutation matrix.

A quantum algorithm describes the interaction of quantum

operations with qubits. Researchers use quantum circuits as

an abstraction to illustrate these interactions. Fig. 1(a) shows

an abstract representation of such a quantum circuit. The

horizontal lines represent qubits, the boxes represent quantum

operations that interact with the qubits, and time moves from

left to right. Consequently, the vertical direction corresponds

to space (i.e., number of qubits) and the horizontal direction

to time (i.e., number of quantum operations). There are three

types of operations: (i) quantum operations (R1, . . . , R4 in the

figure), (ii) classical operations (U1 and U2 in the figure), and

(iii) measurements which are illustrated by a meter. Classical

operations perform classical computations, such as arithmetic

operations—but acting on qubits rather than bits. A quantum

circuit can be seen as a way to represent a large unitary

matrix composed of smaller ones. The absence of a gate in

a circuit corresponds to the identity matrix. Fig. 1(b) shows

a simple quantum algorithm consisting of a Hadamard gate

followed by a CNOT operation. The CNOT operation has a

Quantum algorithm

Quantum programming language

(e.g., Q#, ProjectQ)

Quantum compilation

(e.g., RevKit, libraries, optimization)

Target platform

(e.g., quantum computer, quantum simulator)

implement in

translate using

map into

Fig. 2: The high-level design flow for mapping quantum

algorithms to quantum computers.

special notation with a solid circle for the control qubit and

an ‘⊕’ symbol for the target qubit. This quantum algorithm

takes as input two qubits initialized in state |0〉 and creates

the 2-qubit state 1
√

2
(|00〉 + |11〉). This state is entangled,

i.e., by measuring one qubit the outcome of the second is

immediately determined. This also means that the explicit

state of one of the qubits cannot be described individually.

Sequential composition of two gates in a quantum circuit

corresponds to matrix multiplication and parallel composition

of gates corresponds to taking the Kronecker product, denoted

‘⊗’. The unitary matrix represented by the quantum circuit in

Fig. 1(b) is CNOT(H ⊗ I).
Note that today’s quantum algorithms rely on a variety of

different combinational calculations. Factoring needs constant

modular arithmetic [1], computing elliptic curve discrete log-

arithms using a quantum algorithm requires generic modular

arithmetic [4], the HHL algorithm needs reciprocals and New-

ton type methods [7], amplitude amplification algorithms need

implementations for search and collision [5], and quantum

simulation algorithms need addressing and indexing functions

for sparse matrices as well as computing Hamiltonian terms

on the fly [11].

IV. QUANTUM DESIGN AUTOMATION: GENERAL FLOW

Fig. 2 abstractly illustrates the overall programming flow for

quantum computers. The capabilities of the targeted quantum

computer are taken into account when developing the quantum

algorithm. A quantum algorithm consists of quantum parts and

classical combinational operations. The quantum algorithm

must be translated into a quantum circuit. While automatic

and satisfactory solutions exist for translating the quantum

parts, no sufficient solution exists for automatically translating

the combinational operations. In fact, the current quantum

programming flow depends on predefined library components

for which manually derived quantum circuits exist. Such a

manual flow is time-consuming, not flexible, and not scalable.

Rather, one would like to express the quantum program at a

high level of abstraction and have a compiler which is able to

automatically translate the entire circuit, even if no manually

Design, Automation And Test in Europe (DATE 2018) 139

optimized libraries are available. It is thus crucial that the

quantum programming language used to express the quantum

program supports such a design flow.

V. COMPILING BOOLEAN FUNCTIONS

The translation of classical combinational operations into

quantum circuits involves reversible logic synthesis [39]. Due

to the physical properties of quantum states, all operations

need to be performed in a reversible manner. State-of-the-

art approaches first create a reversible logic circuit with

reversible gates, which are Boolean abstractions of classical

reversible operations. Other methods translate reversible gates

into quantum circuits [40], [41], [42]. Many approaches for

reversible logic synthesis have been proposed in the last 15

years (e.g., [43], [44], [45], [46]).

It is customary to distinguish reversible synthesis algorithms

based on whether the Boolean function that is input to the

algorithm is already a reversible function or not. For a re-

versible Boolean function f : Bn → B
n, reversible synthesis

algorithms find an n qubit quantum circuit that realizes the

unitary

U : |x〉 �→ |f(x)〉. (1)

Several algorithms have been proposed for this task. They

differ depending on f ’s representation. Most of the early

algorithms expect f to be represented as a truth table (see,

e.g., [43], [47], [48], [49], [50]). The explicit truth table

representation limits the application to large functions, i.e.,

n > 20. Alternative implementations have been proposed

that work on symbolic representations of f , e.g., as binary

decision diagrams (BDDs) [46], [51] or Boolean satisfiability

problems [52]. These approaches are able to find quatum

circuits also for some Boolean functions that are much larger.

However, the symbolic function representation does not always

guarantee a compact function representation. Nonetheless, the

main drawback of such reversible functions algorithms is that

they require a reversible input function, which is rarely the

case in most algorithms of interest.

The second class of reversible synthesis algorithms con-

siders irreversible functions f : Bn → B
m as input. Since

a quantum circuit can not represent irreversible functions, f

must be embedded into a reversible function. This may be

done either explicitly or implicitly. In the explicit case one

finds a reversible function g : Br → B
r such that

g(x1, . . . , xn, 0, . . . , 0) = (y1, . . . , ym, ym+1, . . . , yr), (2)

if f(x1, . . . , xn) = (y1, . . . , ym). Finding g such that r is

minimum is coNP-hard [53] and does therefore not scale

to larger functions, although symbolic methods can help to

slightly increase the range of applicable functions [53], [54].

An embedding as in (2) is referred to as in-place embedding,

since the input values are not restored after the application of

g. As an example, explicit embedding with symbolic reversible

logic synthesis was applied to find in-place reversible circuits

for the reciprocal function 1/x up to n = m = 16 digits in x

and r = 31 (see [55]).

One can easily show that there exists a reversible function

g with r = m+ n, by chosing

g(x, y) = (x, y ⊕ f(x)) (3)

where x = x1, . . . , xn, y = y1, . . . , ym, and ‘⊕’ refers to

the bitwise application of the XOR operation in this case.

Such an embedding is also referred to as Bennett embedding.

So-called ESOP (exclusive sum-of-products) based reversible

synthesis approaches [56], [57], [58] find reversible circuits

that realize (3). In order to apply ESOP-based synthesis

one must find 2-level ESOP expressions for each of the m

outputs in f (see, e.g., [59], [60]). This approach can be time

consuming and limits the application to large functions. In [55]

ESOP-based synthesis was successfully applied up to n = 25
for the reciprocal function.

Scalable reversible synthesis algorithms require additional

helper qubits, called ancillae. Given an irreversible Boolean

function f : B
n → B

m, they find an (n + m + k) qubit

quantum circuit that realizes the unitary

U : |x〉|y〉|0k〉 �→ |x〉|y ⊕ f(x)〉|0k〉. (4)

If k = 0, the synthesis problem corresponds to ESOP-based

synthesis, but for k > 0, the synthesis algorithm can use

the k additional qubits to store intermediate computations.

The most effective methods use multi-level logic network

representations such as BDDs [45], [61], [62], And-inverter

graphs [63], [64], XOR-majority graphs [55], or LUT net-

works [65]. These methods are referred to as hierarchical
reversible logic synthesis. Intermediate results represented

by internal nodes in the corresponding logic networks are

mapped on the additional qubits. If the network has many

internal nodes, many ancillae are required, however, pebbling

strategies [66] may be employed to trade off the number

of qubits for quantum operations [67]. One of the biggest

problems in hierarchical reversible logic synthesis is the fact

that k is a result of the synthesis algorithm, i.e., it is determined

by the algorithm’s requirements for temporary storage. One

of the largest challenges in reversible logic synthesis is to

find reversible synthesis algorithms that take k as an input

parameter and guarantee to return a quantum circuit that

satisfies the space requirements.

VI. ILLUSTRATIVE EXAMPLE

In this and the following sections, we use the example of

the hidden shift problem for Boolean functions to illustrate

the complete flow of programming a quantum computer.

For this purpose, we leverage the quantum programming

languages ProjectQ [34] and Q# [33] interfaced with the

quantum compilation framework RevKit [68]. ProjectQ and

Q# allow for a high-level description of the algorithm using

several meta-constructs, and enables interfacing a physical

quantum computer. RevKit is used to automatically translate

the combinational parts in the quantum algorithm for the

hidden shift problem into quantum gates.

ProjectQ is an open source software framework for quantum

computing with a modular compiler design which allows

domain experts to easily extend its functionality. Further-

more, this modularity enables portability of quantum algorithm

140 Design, Automation And Test in Europe (DATE 2018)

implementations. Specifically, once an algorithm has been

implemented, it can be run using various types of backends,

be it software (simulator, emulator, resource counter, etc.) or

hardware (classical and/or quantum).

Q# [33] is a scalable, multi-paradigm, domain-specific pro-

gramming language for quantum computing by Microsoft. The

Q# framework allows describe how instructions are executed

on quantum machines. The machines that can be targeted

include many different levels of abstraction, ranging from

various simulators to actual quantum hardware. Q# is multi-

paradigm in that it supports functional and imperative pro-

gramming styles. Q# is scalable in that it allows to write pro-

grams to target machines of various sizes, ranging from small

machines with only a few hundred qubits to large machines

with millions of qubits. Finally, being a bona-fide stand-alone

language, Q# allows a programmer to code complex quantum

algorithms, offers rich and informative error reporting, and

allows to perform various tasks such as debugging, profiling,

resource estimation, and certain special-purpose simulations.

RevKit is an open source C++ framework and library that

implements a large set of reversible synthesis, optimization,

and mapping algorithms. By default, RevKit is executed as

a command-based shell application, which allows to perform

synthesis scripts by combining a variety of different com-

mands. As an example, the command sequence

revgen --hwb 4; tbs; revsimp; rptm; tpar; ps -c (5)

generates a reversible function describing the 4-input re-

versible hidden-weighted bit function, synthesizes it into a

reversible circuit using transformation-based synthesis [43],

performs simplification of the resulting circuit, maps it into

Clifford+T gates using the mapping described in [42], opti-

mizes the T count using the T-par algorithm presented in [69],

and finally prints statistics about the final quantum circuit. All

RevKit commands provided by the shell can also be accessed

via a Python interface, e.g., ‘revkit.revgen(hwb = 4)’

for the first command in (5). Using the Python interface,

RevKit can be executed from within ProjectQ using the

projectq.libs.revkit module.

A. Quantum algorithm: the Boolean hidden shift problem
For the illustrative example, we review the hidden shift

problem for Boolean functions [70]. In general, the hidden

shift problem is a quite natural source of problems for which

a quantum computer might have an advantage over a classical

computer as it exploits the property that fast convolutions can

be performed by computing Fourier transforms and pointwise

multiplication. See [71] for general background on hidden

shifts and related problems and [70] for the case of hidden

shifts over Boolean functions. Recently, the hidden shift

problem for bent functions was also studied in [72] from the

point of view of classical simulation of the resulting quantum

circuits. The problem of computing hidden shifts for Boolean

functions is the following:

Definition 1 (Hidden shift problem): Let n ≥ 1 and let f, g :
B

n → B be two Boolean functions such that the following

conditions hold: (i) f , and g are bent functions, and (ii) there

exist s ∈ B
n such that g(x) = f(x + s) for all x ∈ B

n.

|0〉⊗n

1

H
⊗n

2

Ug

3

H
⊗n

4

U
f̃

5

H
⊗n

6

|s〉

Fig. 3: Quantum algorithm for the hidden shift problem for a

bent functions f . The quantum circuit assumes access to the

shifted function g(x) = f(x + s) which is implemented by

the diagonal unitary operator Ug =
∑

x
(−1)g(x)|x〉〈x|. Also,

the algorithm needs access to the dual bent function f̃ , which

again is computed into the phase via a diagonal unitary.

Moreover, let oracle access for g and the dual bent function

f̃ be given. The task is then to find the hidden shift s.

Bent functions are Boolean functions which have a perfectly

flat Fourier (i.e., Hadamard) spectrum, which in a sense makes

them resemble random noise. It is easy to see that bent

functions can only exist if the number of variables n is

even. What makes the hidden shift problem for bent functions

attractive is that it can be shown that classical algorithms

cannot find the shift efficiently, whereas quantum algorithms

can find the shift with only 1 query to g and 1 query to f̃ .

Moreover, the quantum algorithm to find hidden shifts is very

simple as shown in Fig. 3: the gates needed are Hadamard

gates, diagonal unitaries to implement the shifted function and

the dual bent function, and measurements in the computational

basis. An attractive feature of the algorithm is that—assuming

perfect gates—the answer is deterministic, i.e., the measured

bit pattern directly corresponds to the hidden shift. We assign

each operation in the quantum algorithm an index from 1 to

6, written below each gate.

B. Maiorana-McFarland bent functions

Arguably, the most simple example for a bent function is

the inner product f(x, y) = xy
t =

∑
n

i=1
xiyi of two bit-

vectors x = x1, . . . , xn and y = y1, . . . , yn. Note that this is

a Boolean function f : B2n → B on an even number 2n of

variables. The function can be generalized to

f(x, y) = xπ(y)t + h(y) (6)

for an arbitrary permutation π ∈ S2n on all 2n boolean

bitvectors of length n and an arbitrary Boolean function

h : B
n → B. This leads to the class of so-called

Maiorana-McFarland bent functions2. The dual bent function

is f̃(x, y) = π
−1(x)yt + h(π−1(x)) [70]. Asymptotically,

the size of this class scales as O(2cn2
n

) which is doubly

exponential in n, however, which is just an exponentially small

fraction of the set of all Boolean functions on 2n variables.

A simple counting argument shows that most permutation π

do not have an efficient circuit, however, there exist natural

families of Maiorana-McFarland bent function for which the

permutation π as well as the Boolean function h can be

implemented efficiently.

The same basic circuit as shown in Fig. 3 can be used

to solve the hidden shift problem for Maiorana-McFarland

2Named after mathematicians James A. Maiorana (1946–2014) and Robert
L. McFarland who were the first to study these functions about 50 years ago.

Design, Automation And Test in Europe (DATE 2018) 141

1 from projectq.cengines import MainEngine

2 from projectq.ops import All, H, X, Measure

3 from projectq.meta import Compute, Uncompute

4 from projectq.libs.revkit import PhaseOracle

5

6 # phase function

7 def f(a, b, c, d):

8 return (a and b) ^ (c and d)

9

10 eng = MainEngine()

11 x1, x2, x3, x4 = qubits =

eng.allocate_qureg(4)

12

13 # circuit

14 with Compute(eng):

15 All(H) | qubits

16 X | x1

17 PhaseOracle(f) | qubits

18 Uncompute(eng)

19

20 PhaseOracle(f) | qubits

21 All(H) | qubits

22 Measure | qubits

23

24 eng.flush()

25

26 # measurement result

27 print("Shift is {}".format(8 * int(x4) + 4 *
int(x3) + 2 * int(x2) + int(x1)))

Fig. 4: ProjectQ python code for an instance of the hidden shift

problem where f(x) = x1x2 ⊕ x3x4 and g(x) = f(x+ 1).

bent functions. Note however, that in contrast to the case of

the inner product function for which f̃ = f holds, for the

more general case where π is not the identity permutation, the

diagonal unitary Uf =
∑

x
(−1)f(x)|x〉〈x| implementing the

bent function f and the shift g is different from the diagonal

unitary U
f̃
=

∑
x
(−1)f̃(x)|x〉〈x| implementing the dual bent

function. For the Maiorana-McFarland family specifically, the

difference in implementing f and f̃ is to use the inverse

permutation π−1 instead of π and to apply it to the x-variables

instead of the y variables and similarly the role of x and y

has to be changed in the evaluation of h.

VII. INTEROP WITH PROJECTQ AND SIMULATOR / IBM

BACKEND

In this section, we show how to program a concrete instance

of the hidden shift problem using ProjectQ and RevKit. We

choose f(x) = x1x2 ⊕ x3x4 as a Boolean function on 4
variables, and g(x) = f(x + 1), i.e., s = 1. It can be shown

that f = f̃ .

Fig. 4 shows the ProjectQ Python code for this example.

The corresponding quantum circuit that is generated by the

code is shown in Fig. 5. Lines 10–11 initialize a ProjectQ

engine with 4 qubits, named x1, x2, x3, and x4, and

stored in a list qubits. Line 15 performs step 1 of the

quantum algorithm described in Fig. 3. Line 16 describes

the shift by s = 1, implemented using an X operation on

the least-significant qubit x1. Together with the phase circuit

computed for f in line 17, it computes step 2 in the quantum

algorithm. As input to the PhaseOracle statement we can

provide a predicate f implemented as Python function. The

PhaseOracle statement converts the Python code in f into a

|x1〉

|x2〉

|x3〉

|x4〉

15

H

H

H

1

H

16

X

17

X H

H

H

3

H

20

4

21

H

H

H

5

H

22

6

|1〉

|0〉

|0〉

|0〉

2

18

Fig. 5: Quantum circuit that is implemented by the Python

code in Fig. 4; indexes below the gates correspond to the steps

in Fig. 3, indexes above the gates correspond to the lines in

Fig. 4.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

1
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
1

1
1

P
ro

b
ab

il
it

y

Measurement outcome

IBM QE chip

Fig. 6: Histogram depicting the average and standard deviation

of the outcome probabilities of three runs of the code in Fig. 4.

Each run consists of 1024 executions of the circuit on the IBM

Quantum Experience chip. The correct shift s = 1 was found

with average probability p ≈ 0.63.

Boolean expression. This expression is then passed to RevKit,

which automatically compiles the expression into a circuit

computing the function described by f into the global phase of

the circuit. The Uncompute statement in line 18 uncomputes

all operations that were specified in the Compute block in

lines 14–16, by applying all operations in inverse order. This

will also add step 3 of the algorithm to the quantum circuit.

Since f̃ = f , we again compute the phase circuit for f

in line 20, apply Hadamard gates to each qubit for step 5

of the algorithm, and finally measure all qubits in line 22.

The resulting state of the qubits, computed using simulation,

corresponds to the shift s = 1. The program outputs ‘Shift

is 1.’ By changing two lines of code in 4, the backend can

be changed to the IBM Quantum Experience chip. Doing so

and running three times 1024 shots of the circuit yielded the

results depicted in Fig. 6.

Fig. 7 shows a Python code that implements an instance

of the hidden shift problem for a Maiorana-McFarland bent

function where n = 3, π = [0, 2, 3, 5, 7, 1, 4, 6], and h = 0.

Fig. 8 shows the corresponding circuit. The program is similar

142 Design, Automation And Test in Europe (DATE 2018)

1 from projectq.cengines import MainEngine

2 from projectq.ops import All, H, X, Measure

3 from projectq.meta import Compute, Uncompute,

Dagger

4 from projectq.libs.revkit import PhaseOracle,

PermutationOracle

5 import revkit

6

7 # phase function

8 def f(a, b, c, d, e, f):

9 return (a and b) ^ (c and d) ^ (e and f)

10

11 # permutation

12 pi = [0, 2, 3, 5, 7, 1, 4, 6]

13

14 eng = MainEngine()

15 qubits = eng.allocate_qureg(6)

16 x = qubits[::2] # qubits on odd lines

17 y = qubits[1::2] # qubits on even lines

18

19 # circuit

20 with Compute(eng):

21 All(H) | qubits

22 All(X) | [x[0], x[1]]

23 PermutationOracle(pi) | y

24 PhaseOracle(f) | qubits

25 Uncompute(eng)

26

27 with Compute(eng):

28 with Dagger(eng):

29 PermutationOracle(pi, synth=revkit.dbs) | x

30 PhaseOracle(f) | qubits

31 Uncompute(eng)

32

33 All(H) | qubits

34 Measure | qubits

35

36 eng.flush()

37

38 # measurement result

39 print("Shift is {}".format(sum(int(q) << i for

i, q in enumerate(qubits))))

Fig. 7: ProjectQ python code for an instance of the hidden shift

problem where f(x, y) = xπ(y)t, π = [0, 2, 3, 5, 7, 1, 4, 6],
and s = 5.

to the program in Fig. 4. We create 6 qubits and partition

them into three qubits x for x1, x2, x3 and three qubits

y for y1, y2, y3. The inner product is realized by the bent

function specified by the Python function f. We use the

function PermutationOracle to create a quantum circuit

from a permutation, which is then applied to the qubits in

x. The function PermutationOracle calls RevKit using

transformation-based synthesis [43] followed by a mapping

of Toffoli gates into Clifford+T gates using the algorithm

presented in [42]. For the second part of the circuit, we need

a quantum circuit for the inverse permutation π−1. Instead of

inverting π, we compute another quantum circuit for π and

invert the circuit using the Dagger statement. Note that for

this compilation we chose decomposition-based synthesis [47]

for finding a Toffoli network for the permutation. Since each

permutation is uncomputed after the phase circuit for the inner

product, the final circuit consists of four subcircuits realizing

either π or its inverse. These are emphasized using dashed

boxes in Fig. 8.

VIII. INTEROP WITH Q# AND SIMULATOR BACKEND

In the following we describe a programming flow that

implements the same high-level algorithm, i.e., an instance of

the hidden shift problem for Maiorana-McFarland functions,

but implements it in Q#. While at a high level, the interop

between RevKit and Q# happens as described in Fig. 2, the

actual invocation of RevKit in the design flow is slightly

different from the RevKit/ProjectQ interop in that RevKit is

used as a pre-processor to produce the code for the permutation

oracle as Q# native code. Subsequently, the Q# compiler is

then invoked to compile the algorithm and to target a simulator

backend that is part of the Microsoft Quantum Development

Kit (QDK).

The code for the hidden shift problem shown in Fig. 9 is

structurally quite similar to familiar languages such as C# and

Java in its use of semicolons to end statements, curly brackets

to group statements, and double-slash to introduce comments.

Q# also uses namespaces to group definitions together, and

allows references to elements from other namespaces.

The Q# code begins with a namespace statement (line 1)

which declares the symbols and makes then available for other

projects. The mechanism to include other namespaces is via

the open keyword. This is used here in line 3 to include the

basic gates such as the Hadamard gate H and in line 5 to

include the “canon” which is a large library of useful oper-

ations, functions, and combinators. For the current example

we use operations ApplyToEach and MResetZ from the

canon. The implementation of the permutation oracle itself is

provided in another namespace which is included in line 7.

The basic unit in Q# to model side effects on quantum data is

an operation such as the operation HiddenShift declared in

line 9. Besides operations, Q# also supports functions which

allow to modify state that is purely classical. Note that the

definition of an operation or a function must begin with a

declaration of the type signature of the function, including its

input and output types. This is done in lines 10–14 of the

present example.

Operations and functions are first-class citizens in Q#, i.e.,

they can be passed as arguments. In the present case, Ustar

is an operation that implements the diagonal operator U
f̃

as

defined earlier. If an operation changes the state of a quantum

register (modeled here as Qubit[] array), then its type is

Qubit[] => (), where () denotes the unit type. Opera-

tions are the only way the state of an abstract quantum machine

model can be manipulated. Q# can be used to target many

abstract quantum machine models, including future physical

implementations of scalable quantum computers. Currently,

the main target of Q# is a state-of-the-art simulator that can

easily handle up to 30 qubits on a standard computer and

over 40 qubits on a distributed computer using an MPI-based

implementation.

The body element on line 15 specifies the implementation

of the operation. Q# operations may also specify implemen-

tations for variants, or derived operations, that are common in

quantum computing. These variants indicated by adjoint

(inverse), a controlled and controlled adjoint. If

the key-word auto is provided, then the compiler auto-

Design, Automation And Test in Europe (DATE 2018) 143

|x1〉

|y1〉

|x2〉

|y2〉

|x3〉

|y3〉

H

H

H

H

H

H

X

X

T

H

T

T

T
†

T

T
†

T
†

H H

T
†

T

T
†

T
†

T

T

T

H

X

X

H

H

H

H

H

H

X

H

T
†

T

T
†

T
†

T

T

T

H

X

H

X

T

T

T

T
†

T

T
†

T
†

H

X

H

H

H

H

H

H

|1〉

|0〉

|1〉

|0〉

|0〉

|0〉

Fig. 8: Quantum circuit that is implemented by the Python code in Fig. 7. The dashed boxes emphasize the subcircuits which

correspond to realizations of π and its inverse.

1 namespace Microsoft.Quantum.HiddenShift{

2 // basic operations: Hadamard, CNOT, etc

3 open Microsoft.Quantum.Primitive;

4 // useful lib functions and combinators

5 open Microsoft.Quantum.Canon;

6 // permutation defining the instance

7 open Microsoft.Quantum.PermOracle;

8

9 operation HiddenShift

10 // signature of input types

11 (Ufstar : (Qubit[] => ()),

12 Ug : (Qubit[] => ()), n : Int) :

13 // signature of output type

14 Result[] {

15 body {

16 mutable resultArray = new Result[n];

17 // allocate n clean qubits

18 using(qubits=Qubit[n]) {

19 ApplyToEach(H, qubits);

20 Ug(qubits);

21 ApplyToEach(H, qubits);

22 Ufstar(qubits);

23 ApplyToEach(H, qubits);

24 // measure and reset qubits

25 for (idx in 0..(n-1)) {

26 set resultArray[idx] =

MResetZ(qubits[idx]);

27 }

28 }

29 Message($"result: {resultArray}");

30 return resultArray;

31 }

32 }}

Fig. 9: Implementation of the correlation algorithm for the

Boolean hidden shift problem in Q#. This code is shipped as

an algorithm sample with the Microsoft QDK [33].

matically calculates the inverse or controlled version of the

operation based on the body, but in general it can make

sense to provide these implementations separately as more

efficient circuits might be known. While variants do not

occur in the implementation of the HiddenShift opera-

tion, they do occur in the implementation of the operation

PermutationOracle further below.

Q# allows the introduction of mutable variable as in line 16

which is returned to a driver program (which can be written in

a .NET language such as C# or F#) in line 30. Further notable

elements used in this code snippet are the allocation of clean

qubits (which by definition are initialized in the |0〉 state) in

line 18 by using the using keyword. Q# offers classical flow

and control constructs like in line 25 where the code iterates

through a range of integers using for. Finally, we remark

that Q# supports mutable and immutable types. The syntax

for declaring a new mutable variable is shown in line 16

1 namespace Microsoft.Quantum.PermOracle{

2 open Microsoft.Quantum.Primitive;

3

4 operation PermutationOracle

5 // signature of input types

6 (qubits : Qubit[]) :

7 // signature of output type

8 () {

9 body {

10 CNOT(qubits[2], qubits[1]);

11 H(qubits[0]);

12 T(qubits[2]);

13 T(qubits[1]);

14 T(qubits[0]);

15 CNOT(qubits[1], qubits[2]);

16 CNOT(qubits[0], qubits[1]);

17 CNOT(qubits[2], qubits[0]);

18 (Adjoint T)(qubits[1]);

19 CNOT(qubits[2], qubits[1]);

20 (Adjoint T)(qubits[2]);

21 (Adjoint T)(qubits[1]);

22 T(qubits[0]);

23 CNOT(qubits[0], qubits[1]);

24 CNOT(qubits[2], qubits[0]);

25 CNOT(qubits[1], qubits[2]);

26 H(qubits[0]);

27 CNOT(qubits[0], qubits[1]);

28 CNOT(qubits[1], qubits[2]);

29 }

30 adjoint auto

31 controlled auto

32 controlled adjoint auto

33 }

34

35 operation BentFunctionImpl

36 (n : Int, qs : Qubit[]) : () {

37 body {

38 let xs = qs[0..(n-1)];

39 let ys = qs[u..(2*n-1)];

40 (Adjoint PermutationOracle)(ys);

41 for (idx in 0..(n-1)) {

42 (Controlled Z)([xs[idx]], ys[idx]);

43 }

44 PermutationOracle(ys);

45 }

46 }

47

48 function BentFunction

49 (n : Int) : (Qubit[] => ()) {

50 return BentFunctionImpl(n, _);

51 }}

Fig. 10: Q# code for an instance of the hidden shift problem

where f(x, y) = xπ(y)t, π = [0, 2, 3, 5, 7, 1, 4, 6].

of an array that will hold the final result of the computation.

Assignment of mutable variables is done using set statements

as in line 26.

The definition of the instance Ug and U
f̃

of the hidden

shift problem itself is done by calling RevKit first during

144 Design, Automation And Test in Europe (DATE 2018)

a pre-processing state. The input for this is a description

of the permutation π to be implemented. The output of

this stage is another Q# program which is shown as the

PermutationOracle operation in Fig. 10. Note that this

operation makes use of primitive gates that are built-into the

Q# language and that are native to the underlying abstract

quantum machine model, such as H , T , and CNOT. Also

note that the Adjoint functor is used in lines 18, 20, and

21 which computes the inverse of the invoked operation.

The instance of the bent function is defined in the block

starting at line 48 and returns a function with signature

Qubit[] => (). The implementation of this function,

which depends on the number of variables (here denoted

by integer n using the Int primitive type) invokes another

operation from which the function is constructed using partial

application, which is the basic mechanism in which e.g.

currying can be implemented in Q#.

For space reasons, not all subroutines used in the imple-

mentation of the shifted bent functions and the test harness

are shown as snippets, however, these can be inspected as

sample Q# code that was shipped with the QDK [33]. The

test subroutine consists of a C# part that invokes the above

Q# program and targets the built-in simulator.

IX. CHALLENGES AND CONCLUSIONS

In this paper, we illustrated and discussed the high-level

design flow for mapping a quantum algorithm to quantum

computers using quantum programming languages. Expressive

syntactical constructs and a rich API in combination with

effective automatic compilation algorithms allow us to express

quantum algorithms at a high level without being burdened

with specifying each single quantum operation. This ultimately

leads to implement (i) more scalable algorithms, since te-

dious manual compilation of combinational components is

performed automatically, and (ii) more complex algorithms by

combining abstract high-level syntactic constructs offered by

the programming language. Therefore, programming quantum

computers is catching up with its classical counterpart in which

a variety of high-level programming languages and significant

effort in the development of compilers render manual assembly

descriptions unnecessary.

Several challenges remain and are awaiting satisfactory

solutions. In this paper, we only considered simple reversible

synthesis methods which do not require additional ancilla

qubits for the realization of the quantum circuit. This limits

their application to small functions with up to about 25

variables. In order to automatically compile larger functions,

reversible logic synthesis methods require additional qubits.

These are typically determined during the execution of the

algorithm, and cannot be bounded ahead of time. Synthesis

methods that find a solution without exceeding a given number

of ancillae are rare and the state of available solutions is still

in its infancy [65], [67].

Another issue is the verification of the synthesized circuits.

Simulating the quantum circuit may require to represent the

complete quantum state, which is exponentially large in the

number of qubits. Verified compilers that are “correct-by-

construction” address this issue [73]. However, when applying

post-optimization, one needs to verify that the optimized

circuit did not change the functionality, requiring to simulate

complete quantum states in the worst-case.

REFERENCES

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer,” SIAM Journal on Computing,
vol. 26, no. 5, pp. 1484–1509, 1997.

[2] C. Pomerance, “A tale of two sieves,” Notices of the AMS, vol. 43,
no. 12, pp. 1473–1485, 1996.

[3] T. Häner, M. Roetteler, and K. M. Svore, “Factoring using 2n+2 qubits
with Toffoli based modular multiplication,” Quantum Information and
Computation, vol. 18, no. 7&8, pp. 673–684, 2017.

[4] M. Roetteler, M. Naehrig, K. Svore, and K. Lauter, “Quantum resource
estimates for computing elliptic curve discrete logarithms,” in Proceed-
ings of the 23rd Annual International Conference on the Theory and
Applications of Cryptology and Information Security (ASIACRYPT’17),
Hong King, China, ser. Lecture Notes in Computer Science, vol. 10625.
Springer, 2017, pp. 241–270.

[5] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Symposium on Theory and Computing, 1996, pp. 212–219.

[6] M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwandt, “Applying
Grover’s algorithm to AES: quantum resource estimates,” in Proceedings
of the 7th International Conference on Post-Quantum Cryptography
(PQCrypto’16), Fukuoka, Japan, ser. Lecture Notes in Computer Sci-
ence, vol. 9606. Springer, 2016, pp. 29–43.

[7] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for
linear systems of equations,” Physical Review Letters, vol. 103, no. 15,
p. 150502, 2009.

[8] B. D. Clader, B. C. Jacobs, and C. R. Sprouse, “Preconditioned quantum
linear system algorithm,” Physical Review Letters, vol. 110, no. 25, p.
250504, 2013.

[9] A. Scherer, B. Valiron, S. Mau, D. S. Alexander, E. van den Berg,
and T. E. Chapuran, “Concrete resource analysis of the quantum linear-
system algorithm used to compute the electromagnetic scattering cross
section of a 2D target,” Quantum Information Processing, vol. 16, no. 3,
p. 60, 2017.

[10] R. P. Feynman, “Simulating physics with computers,” International
Journal of Theoretical Physics, vol. 21, pp. 467–488, 1982.

[11] T. H. Johnson, S. R. Clark, and D. Jaksch, “What is a quantum
simulator?” EPJ Quantum Technology, vol. 1, no. 10, pp. 1–12, 2014.

[12] D. W. Berry, A. M. Childs, and R. Kothari, “Hamiltonian simulation
with nearly optimal dependence on all parameters,” in IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, 2015, pp.
792–809.

[13] A. Aspuru-Guzik, A. D. Dutoi, and M. Love, Peter J.and Head-Gordon,
“Simulated quantum computation of molecular energies,” Science, vol.
309, pp. 1704–1707, 2005.

[14] D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak, and
M. Troyer, “Solving strongly correlated electron models on a quantum
computer,” Physical Review A, vol. 92, p. 062318, 2015.

[15] R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, “Sim-
ulating physical phenomena by quantum networks,” Physical Review A,
vol. 65, p. 04323, 2002.

[16] B. Bauer, D. Wecker, A. J. Millis, M. B. Hastings, and M. Troyer,
“Hybrid quantum-classical approach to correlated materials,” Physical
Review X, vol. 6, p. 031045, 2016.

[17] S. P. Jordan, K. S. M. Lee, and J. Preskill, “Quantum algorithms for
quantum field theories,” Science, vol. 336, pp. 1130–1133, 2012.

[18] F. T. Chong, D. Franklin, and M. Martonosi, “Programming languages
and compiler design for realistic quantum hardware,” Nature, vol. 549,
no. 7671, pp. 180–187, 2017.

[19] D. Castelvecchi, “Quantum computers ready to leap out of the lab in
2017,” Nature, vol. 541, no. 7635, pp. 9–10, 2017.

[20] IBM, “IBM builds its most powerful universal quantum computing
processors,” 2017, press release by IBM, posted online May 17, 2017.

[21] Rigetti, “Unsupervised machine learning on Rigetti 19Q with Forest1.2,”
2017, press release by Rigetti, Inc., posted online December 18, 2017.

[22] Intel, “Intel delivers 17-qubit superconducting chip with advanced pack-
aging to QuTech,” 2017, press release by Intel, posted online October
10, 2017.

[23] IBM, “IBM announces advances to IBM quantum systems & ecosys-
tem,” 2017, press release by IBM, posted online Nov 10, 2017.

Design, Automation And Test in Europe (DATE 2018) 145

[24] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein,
E. Solomonik, and R. Wisnieff, “Breaking the 49-qubit barrier in the
simulation of quantum circuits,” arXiv preprint arXiv:1710.05867, 2017.

[25] T. Häner and D. S. Steiger, “0.5 petabyte simulation of a 45-qubit
quantum circuit,” in Int’l Conf. on High Performance Computing,
Networking, Storage and Analysis, 2017, pp. 33:1–33:10.

[26] J. Miszczak, “Models of quantum computation and quantum program-
ming languages,” Bull. Pol. Acad. Sci.-Tech. Sci., vol. 59, no. 3, pp.
305–324, 2011.

[27] A. Green, P. L. Lumsdaine, N. Ross, P. Selinger, and B. Valiron, “Quip-
per: A scalable quantum programming language,” in ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’13, Seattle, WA, USA, June 16-19, 2013, 2013, pp. 333–342.

[28] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong,
and M. Martonosi, “Scaffcc: Scalable compilation and analysis of
quantum programs,” Parallel Computing, vol. 45, pp. 2–17, 2015.

[29] J. Heckey, S. Patil, A. JavadiAbhari, A. Holmes, D. Kudrow, K. R.
Brown, D. Franklin, F. T. Chong, and M. Martonosi, “Compiler manage-
ment of communication and parallelism for quantum computation,” in
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’15, Istanbul, Turkey, March 14-18, 2015. ACM, 2015, pp. 445–456.

[30] D. Wecker and K. M. Svore, “LIQUi|>: A software design architecture
and domain-specific language for quantum computing,” 2014.

[31] J. Paykin, R. Rand, and S. Zdancewic, “QWIRE: a core language
for quantum circuits,” in Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017,
Paris, France, January 18-20, 2017, 2017, pp. 846–858.

[32] R. S. Smith, M. J. Curtis, and W. J. Zeng, “A practical quantum
instruction set architecture,” 2016, arXiv: 1608.03355.

[33] “Microsoft Quantum Development Kit,” 2017,
https://github.com/microsoft/quantum.

[34] D. S. Steiger, T. Haener, and M. Troyer, “ProjectQ: An open
source software framework for quantum computing,” arXiv preprint
arXiv:1612.08091, 2016.

[35] K. M. Svore, A. V. Aho, A. W. Cross, I. Chuang, and I. L. Markov,
“A layered software architecture for quantum computing design tools,”
IEEE Computer, vol. 39, no. 1, pp. 74–83, 2006.

[36] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, “Open
quantum assembly language,” arXiv preprint arXiv:1707.03429, 2017.

[37] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[38] M. Roetteler, M. Naehrig, K. M. Svore, and K. Lauter, “Quantum
resource estimates for computing elliptic curve discrete logarithms,” Int’l
Conf. on the Theory and Applications of Cryptology and Information
Security, 2017.

[39] M. Saeedi and I. L. Markov, “Synthesis and optimization of reversible
circuits - a survey,” ACM Computing Surveys, vol. 45, no. 2, pp. 21:1–
21:34, 2013.

[40] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” Physical Review A, vol. 52, no. 5, p. 3457,
1995.

[41] N. Abdessaied, M. Amy, M. Soeken, and R. Drechsler, “Technology
mapping of reversible circuits to Clifford+T quantum circuits,” in Int’l
Symp. on Multiple-Valued Logic, 2016, pp. 150–155.

[42] D. Maslov, “Advantages of using relative-phase Toffoli gates with an
application to multiple control Toffoli optimization,” Physical Review
A, vol. 93, p. 022311, 2016.

[43] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Design Automation Confer-
ence, 2003, pp. 318–323.

[44] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Synthesis
of reversible logic circuits,” IEEE Trans. on CAD of Integrated Circuits
and Systems, vol. 22, no. 6, pp. 710–722, 2003.

[45] R. Wille and R. Drechsler, “BDD-based synthesis of reversible logic for
large functions,” in Design Automation Conference, 2009, pp. 270–275.

[46] M. Soeken, R. Wille, C. Hilken, N. Przigoda, and R. Drechsler, “Syn-
thesis of reversible circuits with minimal lines for large functions,” in
Asia and South Pacific Design Automation Conference, 2012, pp. 85–92.

[47] A. De Vos and Y. Van Rentergem, “Young subgroups for reversible
computers,” Advances in Mathematics of Communications, vol. 2, no. 2,
pp. 183–200, 2008.

[48] M. Saeedi, M. S. Zamani, M. Sedighi, and Z. Sasanian, “Reversible cir-
cuit synthesis using a cycle-based approach,” ACM Journal on Emerging
Technologies in Computing Systems, vol. 6, no. 4, p. 13, 2010.

[49] D. Große, R. Wille, G. W. Dueck, and R. Drechsler, “Exact synthesis
of elementary quantum gate circuits,” Multiple-Valued Logic and Soft
Computing, vol. 15, no. 4, pp. 283–300, 2009.

[50] D. Maslov, G. W. Dueck, and D. M. Miller, “Techniques for the synthesis
of reversible Toffoli networks,” ACM Trans. Design Autom. Electr. Syst.,
vol. 12, no. 4, p. 42, 2007.

[51] M. Soeken, L. Tague, G. W. Dueck, and R. Drechsler, “Ancilla-free
synthesis of large reversible functions using binary decision diagrams,”
Journal of Symbolic Computation, vol. 73, pp. 1–26, 2016.

[52] M. Soeken, G. W. Dueck, and D. M. Miller, “A fast symbolic transfor-
mation based algorithm for reversible logic synthesis,” in Int’l Conf. on
Reversible Computation, 2016, pp. 307–321.

[53] M. Soeken, R. Wille, O. Keszocze, D. M. Miller, and R. Drechsler,
“Embedding of large Boolean functions for reversible logic,” ACM
Journal on Emerging Technologies in Computing Systems, vol. 12, no. 4,
pp. 41:1–41:26, 2016.

[54] A. Zulehner and R. Wille, “Make it reversible: Efficient embedding of
non-reversible functions,” in Design, Automation and Test in Europe,
2017, pp. 458–463.

[55] M. Soeken, M. Roetteler, N. Wiebe, and G. De Micheli, “Design
automation and design space exploration for quantum computers,” in
Design, Automation and Test in Europe, 2017, pp. 470–475.

[56] K. Fazel, M. A. Thornton, and J. E. Rice, “ESOP-based Toffoli gate
cascade generation,” in Pacific Rim Conference on Communications,
Computers and Signal Processing, 2007.

[57] A. Mishchenko and M. A. Perkowski, “Logic syntheis of reversible wave
cascades,” in Int’l Workshop on Logic and Synthesis, 2002.

[58] C. Bandyopadhyay, H. Rahaman, and R. Drechsler, “Improved cube list
based cube pairing approach for synthesis of ESOP based reversible
logic,” Transactions on Computational Science, vol. 24, pp. 129–146,
2014.

[59] R. Drechsler, “Preudo-Kronecker expressions for symmetric functions,”
IEEE Trans. on Computers, vol. 48, no. 9, pp. 987–990, 1999.

[60] A. Mishchenko and M. A. Perkowski, “Fast heuristic minimization of
exclusive-sum-of-products,” in Reed-Muller Workshop, 2001.

[61] M. Soeken, R. Wille, and R. Drechsler, “Hierarchical synthesis of
reversible circuits using positive and negative Davio decomposition,”
in Int’l Design and Test Symp., 2010, pp. 143–148.

[62] A. Chattopadhyay, A. Littarru, L. G. Amarù, P.-E. Gaillardon, and
G. De Micheli, “Reversible logic synthesis via biconditional binary
decision diagrams,” in Int’l Symp. on Multiple-Valued Logic, 2015, pp.
2–7.

[63] M. Soeken and A. Chattopadhyay, “Unlocking efficiency and scalability
of reversible logic synthesis using conventional logic synthesis,” in
Design Automation Conference, 2016, pp. 149:1–149:6.

[64] B. Valiron, “Generating reversible circuits from higher-order functional
programs,” in Int’l Conf. on Reversible Computation, 2016, pp. 289–306.

[65] M. Soeken, M. Roetteler, N. Wiebe, and G. De Micheli, “Hierarchical
reversible logic synthesis using LUTs,” in Design Automation Confer-
ence, 2017, pp. 78:1–78:6.

[66] R. Královic, “Time and space complexity of reversible pebbling,” in
Conf. on Current Trends in Theory and Practice of Informatics, 2001,
pp. 292–303.

[67] A. Parent, M. Roetteler, and K. M. Svore, “REVS: A tool for space-
optimized reversible circuit synthesis,” in Int’l Conf. on Reversible
Computation, 2017, pp. 90–101.

[68] M. Soeken, S. Frehse, R. Wille, and R. Drechsler, “RevKit: A toolkit
for reversible circuit design,” Multiple-Valued Logic and Soft Computing,
vol. 18, no. 1, pp. 55–65, 2012.

[69] M. Amy, D. Maslov, and M. Mosca, “Polynomial-time T -depth opti-
mization of Clifford+T circuits via matroid partitioning,” IEEE Trans.
on CAD of Integrated Circuits and Systems, vol. 33, no. 10, pp. 1476–
1489, 2014.

[70] M. Roetteler, “Quantum algorithms for highly non-linear Boolean func-
tions,” in ACM-SIAM Symp. on Discrete Algorithms, 2010, pp. 448–457.

[71] A. M. Childs and W. van Dam, “Quantum algorithms for algebraic
problems,” Reviews of Modern Physics, vol. 82, no. 1, pp. 1–52, 2010.

[72] S. Bravyi and D. Gosset, “Improved classical simulation of quantum
circuits dominated by Clifford gates,” Physical Review Letters, vol. 116,
no. 25, p. 250501, 2016.

[73] M. Amy, M. Roetteler, and K. Svore, “Verified compilation of space-
efficient reversible circuits,” in Computer Aided Verification, 2017, pp.
3–21.

146 Design, Automation And Test in Europe (DATE 2018)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

