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Abstract—Faster and more accurate variation characteri-
zations of semiconductor devices/circuits are in great demand as 
process technologies scale down to Fin-FET era. Traditional 
methods with intensive data testing are extremely costly. In this 
paper, we propose a novel learning-based high-accuracy data pre-
diction framework inspired by learning methods from computer 
vision to efficiently characterize variabilities of device/circuit 
behaviors induced by manufacturing process variations. The key 
idea is to adaptively learn the underlying data pattern among data 
with variations from a small set of already obtained data and 
utilize it to accurately predict the unmeasured data with minimum 
physical measurement cost. To realize this idea, novel regression 
modeling techniques based on Gaussian process regression and 
partial least squares regression with feature extraction and 
matching are developed. We applied our approach to real-time 
variation characterization for transistors with multiple geometries 
from a foundry 28nm CMOS process. The results show that the 
framework achieves about 14x time speed-up with on average 
0.1% error for variation data prediction and under 0.3% error for 
statistical extraction compared to traditional physical measure-
ments, which demonstrates the efficacy of the framework for 
accurate and fast variation analysis and statistical modeling. 

I. INTRODUCTION  
With continuously scaling of the feature size of integrated 

circuits (ICs), manufacturing process variations caused by 
fluctuations in device/process parameters become increasingly 
difficult to be controlled, especially at advanced nanoscale 
technology node. The severe variations introduce inevitable 
large-scale variability of circuit performance, thereby leading to 
great parametric yield loss [1].  

A variety of techniques have been developed, such as Monte 
Carlo analysis and post-silicon tuning, to facilitate statistical IC 
analysis and optimization [2-3], so that variations can be 
estimated and minimized to ensure a robust design. The 
accuracy of underlying characterization for process variations 
greatly influence the effectiveness of these techniques. 

Accurately characterizing and modeling process variation, 
however, is not a trivial task. A large amount of variation data is 
required to capture both the systematic and random variations 
existing in various levels (e.g. lot-to-lot and within-wafer), thus 
a large number of test structures need to be deployed, by which 
lots of properties need to be measured. The intensive testing is 
extremely time-consuming by conventional physical measure-
ment, especially in Fin-FET era. 

Recently, several techniques have been proposed to reduce 
silicon characterization cost. The virtual probe (VP) [4-5] and 
the work in [6-7] aim to reduce the number of measured dies 
needed to characterize spatial variation by using numerical 
algorithms such as discrete cosine transform, sparse regression 

and hidden Markov tree. Although they successfully reduce the 
cost of characterizing the spatial systematic device/circuit 
performance variation, the detailed measurement data for 
statistical modeling (e.g., a comprehensive set of transistor I-V 
curves) cannot be obtained by these methods.  

For that, the work in [8-9] proposed a novel MOSFET 
parameter extraction method to extract an entire set of MOSFET 
model parameters using limited and incomplete I-V measure-
ments based on Bayesian inference. However, the efficacy of the 
method in reducing the testing costs for statistical extraction 
relies heavily on the simplicity of the compact model (e.g., in 
the model used in [8], there are only six key parameters to be 
extracted). As described in [8], for a standard BSIM model, 
those few I-V tests are not sufficient to extract all parameters. 

In this work, in order to enable the general device modeling 
or statistical modeling based on the standard models (e.g., 
BSIM) by using the incomplete measurements, we propose a 
novel learning-based framework to accurately recover the entire 
data set from incomplete test data, so as to minimize the testing 
cost. When the work in [4-7] focuses on reducing the number of 
measured dies, we try to reduce testing cost per die. The key idea 
is to adaptively learn the underlying data pattern from already 
obtained data which may come from either test-site measure-
ment or simulations using mature or early product design kits, 
and utilize it in the unmeasured data prediction, so that the 
required amount of physical measurement can be dramatically 
reduced. In the proposed framework, by borrowing the basic 
ideas in the computer vision field [10], feature extraction and 
matching techniques are developed to facilitate high-quality 
sampling and subsequent data prediction. Novel regression 
modeling methods are proposed to implicitly learn the under-
lying data pattern and accurately predict the unmeasured data. 
While the proposed framework is independent of the type of 
devices and measurements, we mainly use the MOSFET and I-
V measurements to validate the proposed approach.  

The rest of this paper is organized as follows. Section II 
introduces the key idea of the framework. The details of the 
framework are described in Section III. The efficacy of the pro-
posed framework is demonstrated by the experimental examples 
in Section IV. The final conclusion is made in Section V. 

II. KEY IDEA 
The key idea stems from the observation of the special 

property of variation testing, in which the devices measured on 
different dies are identical except for some process variations, 
without considering devices with defects, thus all the measured 
data can be interpreted as the combination of one specific data 
pattern describing the properties of the device and some varia-
tions. In other words, there may be redundant measurements for 
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repeatedly gathering the data describing basic device properties. 
For instance, Fig. 1(1) shows a set of industrial measured data 
of the identical 40nm transistors on 40 different dies. As shown, 
all the curves are highly overlapped after linear transformation 
(e.g., translation and scaling) on each of them, which demons-
trates there are high degree of similarity among these curves. 

Therefore, we proposed our framework, aiming to reduce the 
redundant testing cost by adaptively learning and utilizing un-
derlying data patterns. Fig. 1(2) shows the basic process. Firstly, 
several dies are physically measured to obtain the detailed data 
(e.g., I-V curve set) containing the needed data pattern. For the 
new dies under test, only a very small set of sample data is 
measured to capture the variation. Finally, by combining the 
obtained data, all the unknown data is predicted. 
 
 
 
 
 
 
 
 
 

Fig. 1. (1) I-V testing data (2) Basic process of the proposed framework. 
Note that for the devices with defects, as will be discussed in 

Section III-D, they can be detected by strict verification process 
and remeasured by traditional physical measurements. 

III. PROPOSED FRAMEWORK 
An overview of the proposed framework is shown in Fig. 2. 

It mainly consists of two stages: data preparation and training/ 
prediction. In the former stage, the core task is to generate high-
quality sample data by analyzing the already measured data. In 
the latter stage, the key task is to build accurate regression 
models. For that, feature extraction and matching techniques and 
novel regression modeling techniques are developed. 
 

 
Fig. 2. The flow of the proposed framework. 

Since most property testing is conducted by sweeping the 
inputs (e.g., voltages) and the data can be transferred to the form 
of curves, the data in this paper is represented as curve data. 

A. Feature Extraction and Sampling 
The sample points are of great importance for data 

prediction. The ideal samples are the points that carry all the 
critical information by which the entire data set can be predicted 
when the data pattern is known. By analogy with problems in 
computer vision field, such points can be treated as the features. 
By extracting and analyzing the feature points of already 
measured curves, the best feature locations (measurement 
inputs) of unknown curves are estimated. 

1) Feature Extraction 
Similar to the usual features (e.g., corners) in the images, the 

special points (e.g. maxima) are good choices of curve features. 
Therefore, the initial step of the feature extraction is to 
adaptively find the predefined special points on a curve.  

Suppose  is the curve describing the mapping 
relationship between the measurement output  and the input , 
and the inputs swept from  to  constitute : 

   (1)
where  is the number of points tested on the curve. For a 
measured curve, the following points are selected as the special 
points and extracted as features: 

  

   

  

         

       (2)
where . Among these point sets,  and  are sets of 
endpoints and extreme points, which are obviously special on a 
curve.  contains the points where  changes faster or slower 
in the neighborhood. In ,  is the curvature of a curve, 
which measures how fast a curve is changing direction, thus  
contains points where the curve turns faster in the neighborhood. 
The union of these point sets constructs the initial feature set. 

In most cases, the first and second derivatives used above 
exist and can be estimated by the numerical differentiation, since 
nearly all measured curves have physical meanings. In rare cases 
where the derivatives are not applicable, the union of  and  
can be extracted as the initial feature set. 
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Fig. 3. Examples of feature points. 

After the initial feature set is obtained, it is further improved 
by several modifications, including removing the redundant 
feature points and supplementing additional ones. Suppose the 
curve length between two adjacent feature points is  and the 
entire curve length is , the ratio    controls the 
remove and addition by comparison with the lower and upper 
threshold parameters : 1) for any , the corres-
ponding two feature points are merged to one (the middle point); 
2) for any , an extra data point in the middle of them is 
added into the feature set. The  and  influence the number 
of final feature points. The optimal values can be determined by 
the parameter setting method described in Section III-D.  

The feature points extracted by the feature extraction method 
for one physically measured 40nm transistor I-V curve are 
plotted as an example in Fig. 3. 

2) Sampling on the Device Under Test (DUT) 
As discussed in Section II, high similarity exists among 

different curves during variation testing, thus it is reasonable to 
assume that the feature points on unmeasured curves are close 
to those on the measured ones. Therefore, by calculating the 
means of corresponding test inputs of the extracted feature 
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points on already measured curves, the test inputs for sampling 
on the unknown curves can be estimated as: 

(3)

where  is the i-th element in ,  is the test input of the i-
th feature point on the j-th measured curve, and  and m are the 
number of measured curves and extracted feature points. 

For the unmeasured devices, suppose the mapping relation-
ship between the measurement output  and the input  is 

. After testing the device according to the sampling inputs 
in , the sampling output set  is then obtained as 

  (4)

B. Regression Modeling 
One key task in the proposed framework is to accurately 

predict the unknown data based on the obtained sample points 
and it can be formulated as a regression problem to minimize 

, where  and  are the predicted and real output 
at the input . Traditional regression methods solve this 
problem by building a hypothesis function  using the 
sample points ( ) to model . However, by these 
methods, the similarity between curves discussed in Section II 
cannot be utilized and lots of sample points are required to 
ensure high-accuracy prediction. 

For that, novel regression modeling techniques are proposed, 
which is a key contribution of this work. In contrast to modeling 
the relationship between  and , the proposed methods predict 
the output  directly through the sample outputs  in (4) and 
the outputs of already measured curves denoted as 

 (5)

where  is the j-th measured curve and  is the number of 
points tested on the curves. Two different strategies for 
modeling are proposed and will be described as follows. 

1) Vertical Regression Model (VRM) 
Intuitively, since the measured  curves and the 

unmeasured one have the same underlying pattern, the outputs 
 and at the same input  will be very 

similar. To utilize this property, the first modeling form is 
proposed as 

 . (6)

To build this model, from the point view of machine learning, 
at the training stage, the design matrix  (model inputs) and 
the response vector  (model outputs) are constructed as 

(7)

where the outputs of  measured curves at one sampling input 
 in (3) constitute one row of , and the corresponding 

sampling output of the curve to be predicted constitutes one row 
of . When the model is obtained, the unknown curve data can 
be predicted by the corresponding data on the measured curves.  

For better understanding, Fig. 4(1) shows a simple example 
of curve prediction problem, in which the data assignment for 

training and prediction is indicated. As shown, the unknown data 
on  is predicted by the vertical corresponding points. 

 
Fig. 4. Data assignment for training and predicting in (1) VRM and (2) HRM. 

A variant of Gaussian process regression (GPR) method, the 
blind GPR [12], is adopted to train this regression model. In 
contrast to the standard GPR, where the mean of the GP is 
assumed as zero, in blind GPR, the mean is modeled by linear 
combination of the given basis functions and the best combi-
nation would be efficiently determined by Bayesian method. By 
this technique, the mean can capture the general trend of the data 
and the standard GPR can predict the residuals, so as to improve 
the prediction accuracy. This method is very suitable for our 
problem, since the variations can be approximately interpreted 
as the combination of the systematic variation (general trend) 
and random variation (the residual). Besides, the assumption of 
Gaussian process is reasonable for variations. 

2) Horizontal Regression Model (HRM) 
From another perspective on the sample points and curves, 

intuitively, if the curve pattern has been learned from the already 
measured curves and the critical points (sample points) on the 
unknown curve are given, it is not hard to predict the entire curve. 
Based on this idea, the second modeling form is proposed as 

 (8)
where  is the estimation of the test output at the input that does 
not belong to the sampling input set, namely  is the estimation 
of , where  and . 

As shown in (8), this is a multivariate regression modeling 
problem. At the training stage, the design matrix  and the 
corresponding response vector  are constructed as: 

(9)

where , ,  and 
. After this model is built, by using the sample 

points on an unknown curve, the entire curve can be predicted. 
The data assignment for training and predicting is depicted in 
Fig. 4(2) for the same curve prediction problem shown in Fig. 
4(1). In contrast to the vertical modeling, the unknown data on 

 is predicted by the horizontal sample points. 
The columns of both  and  are different points on the 

same curve, thus they are probably correlated with each other. 
The partial least squares regression (PLSR) method [13] is used 
to solve this kind of multivariate regression problems. PLSR is 
a technique that combines the ordinary least squares regression 
with the idea of principal components analysis and canonical 
correlation analysis. It is designed to confront the situation that 
there are a set of dependent variables to be predicted from many 
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probably correlated independent variables. Therefore, PLSR is 
very suitable for solving our problem. 

3) Summary 
In summary, both VRM and HRM are capable of learning 

the underlying data pattern to predict the unknown data. They 
are in different ways and complementary to each other.  

As shown in (7), in VRM training, the number of measured 
curves determines the dimension of the regression problem, and 
the number of samples determines the size of the training data 
set. Commonly, to solve a machine learning problem, lower 
dimension and larger training data set are more desirable. 
Therefore, VRM is more suitable for the situation that the 
complexity of the curve is high so that more sample points are 
needed, whereas the variations are relatively low so that a 
smaller number of measured curves are required. For HRM, as 
shown in (9), the  is the transpose of the counterpart  in 
VRM, thus the situation is just the opposite. Therefore, HRM is 
preferred when the curves are relatively simple and the 
variations are relatively high. 

Since each method owns its advantages and can better deal 
with the problems in different situations, in our framework, they 
are combined so as to cover most possible situations. For an 
unknown curve prediction task, both models are built and two 
different candidate results are generated. The better one is then 
adaptively selected by the verification process (Section III-D). 
C. Feature Matching 

In the regression methods discussed above, the data points 
with the same measurement inputs are regarded as the corres-
ponding points for model training and data prediction. However, 
because of variations, these points may not be perfectly matched. 
It is much better when they are matched with each other. For 
instance, intuitively, the better choices of data used to predict the 
minimum of an unknown curve are those that are also minimums 
of the known curves. From the perspective of our regression 
modeling methods, better matching will lead to lower problem 
dimension, and hence lower training data size and higher 
generalization ability [14].  

 

Motivated by locating the best matched data points on 
different curves so as to assist the regression modeling, we 
borrow the idea of cross-covariance to develop the feature 
matching method. Cross-covariance is used to measure the 
similarity between one sequence and shifted copies of another 
sequence [15]. In our problems, the outputs on the curves can be 
regarded as sequences and similarity can be used to evaluate the 
degree of matching. At the beginning, however, for the unknown 
curves, only the sampling feature points are known, thus a new 
sequence with the same length of the curve is created. In the 
sequence the feature points are at their corresponding positions 
and other positions are set to zeros to eliminate their influences. 

Suppose the elements from the j-th measured curve in (5) 
constitute the sequence , and the 
elements in (4) constitutes the sequence , 
where  when  and  when . Then the 
cross-covariance is calculated as: 

 (10)

where  is the number of shift elements. After  is calculated, 
the best shifted value for matching can be determined as: 

 (11)
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Fig. 5. Example of feature matching. 

The new shifted sequence is then obtained as 
, which will be used to construct 

the matrices for regression and prediction. As  might 
overflow when , the length of  would be shorter than 

. Since the shifts are usually not large, this problem can be 
easily solved by the traditional extrapolation methods [16]. An 
example of feature matching of real measured I-V curves from 
40nm transistors is plotted in Fig. 5. As shown, the shifted curve 
exhibit much better matching to the curve to be predicted. 
D. Verification and Framework Parameter Setting 

The verification process aims to check the quality of the data, 
for both the measured and predicted data, and it is used for the 
following purposes: 1) to detect and screen the data measured 
from devices with defects; 2) to select the best predicted data 
generated by multiple models and algorithms; 3) to judge 
whether to use the predicted data or to remeasure all of the data. 

The verification methods can be classified into two 
categories: self-check and cross-check. The former one is to 
check whether the curve traits (e.g., the range of the data value 
and the continuity of both the original curves and the first 
derivatives) are normal. The cross-check is to check the simi-
larity between the curve and the already known curves. The 
similarity is evaluated by Pearson correlation coefficient [11] 
and the criterion of similarity is adaptively set according to the 
initial measured data. By these strict checks, the reliability and 
accuracy of the outputs can be greatly guaranteed.  

To set the framework parameter such as the lower and upper 
thresholds in the feature extraction, the leave-one-out cross-
validation [14] is adopted. Suppose there are  measured curves. 
We assume one of them is unknown and to be predicted by the 
other  ones. The predicted result is evaluated by the 
relative errors between the measured curve and the predicted one. 
E. Summary 

Algorithm 1 summarizes the major steps of the framework: 
1. Start from  already measured curves.  
2. Extract the feature points and calculate the sampling input set 

by the methods described in Section III-A. 
3. For an unmeasured device to be tested, measure it according 

to  in (3) to obtain the sampling outputs  in (4). 
4. By the feature matching methods (10) (11), find the data on 

each measured curve that best matches the unmeasured data. 
5. Formulate the modeling problem and construct the matrices 

based on both forms of VRM (6) (7) and HRM (8) (9). 
6. Build the VR and HR models by GPR and PLSR methods. 
7. Predict the entire curve by the built models. 
8. Evaluate the predicted curve data and select the best one as 

the output based on the verification in Section III-D. If no 
predicted result is selected, the curve is physically measured. 

9. Stop when all devices are tested, otherwise, go to Step 3. 
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IV. EXPERMENTAL EXAMPLES 
In this section, we demonstrate the efficacy of the proposed 

framework by applying it to the 28nm CMOS transistor varia-
tion testing. To evaluate the generalization ability, all significant 
I-V properties of transistors with 16 different sizes on 300 dies 
will be tested. All the transistors are firstly tested by the 
traditional physical measurements and then they are re-tested 
based on our proposed framework. 

A. Configurations 
For a 28nm transistor, the standard test requirements are 

summarized in Table 1, where each row corresponds to one 
property for which several curves will be tested. 

Table 1. Test Requirements 
PID (V) (V) (V) (V) Test 

1 0 -0.2:0.01:0.9 0.05 0:-0.18:-0.9
2 0 -0.2:0.01:0.9 0.9 0:-0.18:-0.9
3 0 0.18:0.18:0.9 0:0.01:0.9 0 
4 0 0.18:0.18:0.9 0:0.01:0.9 -1.05
5 0 -0.2:0.01:0.9 0.3:0.3:0.9 0 
6 0 -0.2:0.01:0.9 0:0.45:0.9 0  
7 0 -0.2:0.01:0.9 0:0.45:0.9 0 
In the traditional physical measurements, all the required 

data points will be tested. To the best of our knowledge, in the 
middle of physical testing, there are no methods to adaptively 
adjust the measurement steps. Therefore, by the traditional 
physical testing, there will be totally 3241 data points on 31 I-V 
curves to be tested for one transistor on one die. 

The numerical experiments are performed on a computer 
with 2.4GHz CPU and 8 GB memory.  

B. Experimental Results of Variation Data Prediction 
After the tests are completed, both the accuracy and speed-

up performance of the propose framework are evaluated. To 
assess the accuracy, the relative error of a curve is given by: 

  (12)

where  and  are the measured value by the physical testing 
and the predicted value by our framework at the same measure-
ment input  and n is the number of points on the curve. 
Commonly, when the measurement value (current) is close to 
zero, only their orders of magnitude are concerned, thus when 

<1e-13, the original values of  and are substituted by their 
logarithm values to avoid generating unreasonably high errors.  

Based on equation (12), the relative errors of all I-V curves 
are calculated. There are 148.8k curves in total and the average 
relative error is 0.11%. All the errors are summarized in the 
histogram shown in Fig. 7. As shown, most curves exhibit 
relative errors less than 0.5%. 
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Fig. 7. Histogram of relative error of all measured curves. 

To analyze the speed-up performance, the average number 
of tested samples and average testing time for each property of 
a single transistor are calculated and summarized in Table 2. As 
shown, benefited from the reduced number of sampling (real 
tested points), our framework achieves about 14x time speed-up 
compared to the traditional physical measurements. In the 
proposed framework, since the sampling numbers for different 
curves are adaptively adjusted, the average value is not an 
integer. The computational time is also counted in calculating 
the overall testing time, but compared to the entire spent time, it 
only takes a very small portion (about 3% on average). 

Table 2. Testing Time Comparison 

PID Proposed Framework Traditional Phy. Meas. Ratio Samp.# Time(ms) Samp.# Time(ms)
1 68.4 460.9 666 6900.3 14.97 
2 62.1 450.3 666 6262.6 13.91 
3 26.9 142.7 455 2261 15.84 
4 28.6 234.7 455 3339.6 14.23 
5 34.3 229.7 333 2924.9 12.73 
6 22.5 463.1 333 6660 14.38 
7 24.9 505.2 333 6660 13.18 

Tot. 267.7 2486.5 3241 35008.5 14.08 
To evaluate the generalization ability, the relative error and 

the speed-up performance of the data from each property test of 
transistors with different sizes are calculated and summarized in 
Fig. 6. As shown, the performances vary with the PID and 
transistor size, since the data patterns of different properties are 
different and the variations usually have different influences on 
transistors with different sizes.  

However, as shown, the maximum error is below 0.8% and 
at least 8x speed-up can be achieved. Therefore, the proposed 
framework can deal with variation testing with various data 
patterns and different degrees of variations. 

C. Experimental Results of Statistical Extraction 
To illustrate the efficacy of the data obtained by the proposed 

framework for variation analysis and statistical modeling, 
several key parameters describing both DC and small-signal 
properties of a transistor are extracted and compared to those 
extracted from the physically measured data. The relative error 
defined by the equation similar to (12) is calculated for all 
transistors on all dies and the results are summarized in Table 3. 
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As shown, the DC parameters ,  and  show quite 
small errors, and the errors of small-signal parameters  and 

 are higher, but they are still very small (below 0.3%).  
Table 3. The Extracted Key Transistor Parameters 

Para.  ( =0.05V,
=0.9V)  

( =0.9V,
=0.9V) 

( =0.9V, 
=0.54V) 

( =0.9V, 
=0.54V) 

Error 0.02% 3e-3% 7e-4% 0.17% 0.26% 
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Fig. 8. Mean and (standard deviation) of (1)  and , (2)  
and , (3) , and (4)  at various voltage biases obtained from both 
the proposed framework and traditional measurements. The inset in (1) shows 

 of several dies extracted from . 
To exhibit more details of the key parameters, the results of 

the smallest transistor in the experiment are plotted in Fig. 8. As 
shown, the key parameters obtained from the proposed frame-
work agree well with those from the traditional measurements. 
D. Comparison and Discussion 

To compare the proposed framework with traditional data 
prediction methods, we apply the traditional methods, including 
both widely used interpolation methods (e.g. spline interpolation 
[16]) and regression methods (e.g. LASSO and GPR) to the 
same variation testing experiments in Section IV-B. For these 
methods, the sample points on the unknown curve are the same 
with those used in the proposed framework. The relative errors 
versus devices with different sizes are depicted in Fig. 9(1). 
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Fig. 9. (1) Relative error and (2) predicted curves of the traditional methods and 
the proposed framework. 

As shown, the proposed framework achieves much higher 
prediction accuracy than the traditional methods. The main 
reason is that the already measured curves cannot be utilized by 
the traditional methods as described in Section III-B. For better 
explanation, the results predicted by different methods for one 
specific curve (one -  curves from PID3) in the experiment 
are plotted in Fig. 9(2). This curve is representative of one 

significant type of I-V curves in transistor testing. As shown, 
there are six sample points on the curve and it is not trivial to 
accurately predict other points with such small set of samples. 
The spline interpolation method failed due to the Runge’s 
phenomenon. Both LASSO and GP regression methods suffer 
from under-fitting problem [14]. Therefore, six sample points 
are apparently not enough for these traditional methods.  

For one kind of curves, if possible, the prediction accuracy 
of the traditional methods can be improved by careful tuning. 
However, a tuned model would have generalization problem. 
Besides, it usually takes a long time to tune a model. On the 
contrary, since the proposed framework can learn from similar 
curves and adaptively adjust the sample points, it possesses high 
accuracy and generalization capability as shown in Fig. 6. 

V. CONCLUSION 
In this work, a novel learning-based high-accuracy data 

prediction framework is proposed to efficiently reduce the cost 
of process variation characterization in modern nanoscale IC 
technologies. The framework aims to adaptively learn the under-
lying pattern existing among general variation characterization 
data to accurately predict the unknown data with minimum 
physical measurement cost. Novel regression modeling techni-
ques with feature extraction and matching are proposed. The 
approach is applied to the variation testing for multiple 28nm 
transistors to demonstrate its efficacy. The results exhibit that 
compared to the physical measurement and other traditional data 
prediction methods, the proposed framework achieves about 14x 
time speed-up with nearly no accuracy loss (0.1% average error) 
for variation data prediction and quite small relative errors 
(under 0.3%) for statistical extraction. 
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