
A Fast and Effective Lookahead and Fractional Search
Based Scheduling Algorithm for High-Level Synthesis

Shantanu Dutt and Ouwen Shi

University of Illinois at Chicago
Email: {dutt, oshi2}@uic.edu

Abstract – We present a latency-constrained iterative list

scheduling type algorithm, FALLS, to minimize the total number
of functional units (FUs) allocated, and thus the total area, in
high-level synthesis designs. The algorithm incorporates a novel
lookahead technique to selectively schedule available operations
by allocating the needed FUs earlier or reserving available FUs
for scheduling more timing-urgent operations later, such that no
additional FU is needed and higher FU utilization is obtained.
Further, a fractional search framework is developed to iteratively
estimate the number of FUs of each function type required in the
final design based on the current scheduling solution and FU
utilization, and reiterate the lookahead-based list scheduling with
the new FU allocation estimate to further increase FU utilization.
Extensive experiments conducted over several DFGs and a wide
range of latency constraints demonstrate that FALLS is much
more effective than other approximate state-of-the-art algorithms
in both number of FUs and total FU area, and has a much smaller
runtime. Results also show that FALLS has only an average 5.5%
optimality gap compared to an optimal integer linear
programming (ILP) formulation, but is 278k times faster.
FALLS also performs much better in architectural (FU +
mux/demux + register) area, interconnect congestion and number
of interconnects than approximate algorithms, and is at most
4.0% worse in them than the ILP method.

I. INTRODUCTION
High-level synthesis (HLS) tools schedule operations in the

design specification to clock cycles (cc’s), bind and allocate
the operations to functional units (FUs) to optimize an
objective function subject to various design constraints.
Latency-constrained scheduling to minimize the total number
of FUs allocated in a synthesized design has been an objective
of interest for decades, as it has a strong correlation to area and
leakage power optimization.

There are many operation scheduling works focusing on FU
minimization [1-12]. The integer linear programing (ILP)
formulation proposed in [1] [2] provides optimal scheduling
solutions for FU minimization, but it is impractical for large
designs due to the exponential runtime complexity.
Force-directed scheduling (FDS) presented in [3] [4] schedules
operations iteratively by choosing the scheduling option that
best balances the operation execution distribution across all
cc’s using the concept of minimum “force”, and thereby
minimizes the number of FUs required. The sub-optimality of
FDS stems from its greedy and sequential scheduling option
selection and lack of lookahead. In addition, the high runtime
complexity of O(n3), where n is the number of operations,
motivates several refinements [5] [6] that reduce the
complexity to O(n2). A versatile technique called SDC
proposed in [7] models the scheduling problem as a linear
programming formulation. Though it can solve different types
of HLS problems, only timing problems like latency

minimization can be solved exactly, and only these results are
presented. Stochastic methods for FU minimization have also
been widely studied. A simulated annealing (SA) approach is
proposed in [8] and its move set guarantees that the complete
solution space can be explored. In [9], an ant-colony based
algorithm ACO is developed to gradually approach a good
solution by iteratively and probabilistically generating
scheduling solutions based on which the scheduling
probabilities are updated. In [10], the scheduling order of
operations is determined by a genetic algorithm. The above
stochastic methods [8] [9] [10] require high runtime for
achieving good quality solution, which prevents them from
being effective for large problem sizes.

List scheduling (LS) is a classical scheduling algorithm for
latency-constrained FU minimization. It schedules operations
in as early cc’s as possible if FUs are available, while greedily
avoiding allocating new FUs unless it is mandatory for
satisfying the latency constraint. Though the solution of LS is
far from optimal as discussed later, its complexity of O(n log
n) is very scalable. Therefore, several works like [10] [11] [12]
that use LS or LS-type algorithms as an internal sub-routine to
achieve good optimization quality. Lookahead in LS has been
studied in scheduling problems in non-HLS fields [13] [14].
Early lookahead in instruction scheduling like [13] helps LS
with a bad “precedence function” (different from the one we
will discuss) to avoid failed scheduling by tentatively
scheduling some or all unscheduled operations. Recent works
like [14] in heterogeneous computing use a lookahead
approach to exhaustively evaluate all candidate resources that
can execute the scheduled operation, and chooses the resource
that is most likely to lead to the smallest estimated latency.
These lookahead techniques are not applicable to FU or area
minimization in HLS.

In this paper, we propose a novel FrActional search and
Lookahead based List Scheduling (FALLS) algorithm. We
construct a fractional search framework, an estimate based
extension of binary search, to gradually approach a good
scheduling solution by pre-allocating an appropriate number of
FUs at the beginning of a scheduling iteration. Internally, a
scheduler with a novel and more streamlined lookahead
technique than in past work is used to schedule non-0-slack
operations for higher utilization, and thus minimized allocation,
of FUs. Moreover, our algorithm maintains a complexity
comparable to that of LS, and thus scales well for large HLS
designs, which is also shown in our experiments.

The rest of the paper is organized as follows. We formulate
the FU minimization scheduling problem and review the
classical list scheduling in Section II. Our FALLS algorithm is
discussed in greater detail in Section III. Experimental results
comparing FALLS to state-of-the-art algorithms are presented

31978-3-9819263-0-9/DATE18/ c©2018 EDAA

in Section IV, and we conclude in Section V.
II. BACKGROUND

 Problem Formulation
We consider the following well-known Minimum-Resources

Latency-Constrained Scheduling (MR-LCS) problem. Given:
1. An unscheduled data-flow graph (DFG) G (V, E), where V is

the set of operations and E is the set of arcs representing
data dependencies between the operations.

2. A legal upper-bound latency constraint Lc in number of cc’s
that is no smaller than the critical path delay.

3. An FU library R that includes one FU design for each
function type (FT) that appears in the operations in V.
For any two operations u, v V and a data dependency arc

(u, v) E, if u and v are scheduled in cc’s tu and tv, respectively,
the dependency constraint is:

where du 1 is the delay of u in number of cc’s.

Our objective is to schedule each operation in V to a certain
cc such that the cost, the total number of allocated FUs, which
is strongly correlated to area as shown by empirical results, is
minimized such that the achieved latency L Lc and all
dependency constraints are satisfied.

 Review of List Scheduling
Here we briefly discuss the classical latency-constrained list

scheduling (LS) algorithm for the MR-LCS problem. In each
cc, LS always schedules the most timing-urgent operations to
available FUs. Starting with a minimum FU allocation, a new
FU is only allocated when there is an available operation that
needs to be scheduled immediately to satisfy the latency
constraint, but there is no allocated FU of that FT currently
available due to being busy executing other operations. By
only allocating new FUs when it is mandatory, LS was
expected to come close to minimizing the number of allocated
FUs in the final scheduling solution. However, LS fails due to
the low FU utilization mentioned later.

The pseudo code of LS is presented in Fig. 1. Initially, only
one FU per FT is allocated. The as late as possible (ALAP)
time tL, the latest cc where an operation can be scheduled to
satisfy the Lc, is computed for each operation. Let pred(u) and
succ(u) denotes the set of predecessors and successors of
operation u, respectively. The symmetric as soon as possible
time tS and the ALAP time tL are recursively defined as:

where if pred(u) = Ø, and if succ(u) =
Ø. Then in each cc t in chronological order, for each FT k, an
available unscheduled operation set Ut, k V, which includes all
unscheduled operations of FT k whose predecessors have all
finished execution, is determined. The slack su of each
operation u in Ut, k is then computed as:

If su = 0, u is 0-slack and must be scheduled in cc t, i.e., one
additional FU needs to be allocated if all FUs of FT k are busy
executing other operations. The other operations in Ut, k are
non-0-slack. If there are still available FUs after all 0-slack
operations are scheduled, the non-0-slack operations are
scheduled in cc t in slack-increasing order and bound to the
available FUs. This slack-based scheduling process iterates for

each cc t until all operations are scheduled. The time
complexity of LS is Θ(n log n), since each sorting or searching
operations in a balanced binary search tree based on ALAP
times (equivalent to slack) takes Θ(log n) time, and the total
number of searches is equal to the total number of available
operations across all cc’s, which is Θ(n).

Fig. 1. The pseudo code of the classical list scheduling algorithm.

We term the FU allocation vector r (one element per FT)
before any operation is scheduled as pre-allocation; it is only
one FU per FT in LS; Similarly, the FU allocation vector r
after all operations are scheduled is termed as post-allocation.
In practice, the number of FUs in post-allocation is
significantly more than that in pre-allocation in the solutions of
LS, indicating many FUs are allocated in intermediate cc’s.
This results in the FUs allocated in later cc’s being sparsely
utilized. Due to the insufficient FU utilization, excessive FUs
are likely to be allocated in the solutions of LS.

III. OUR FALLS ALGORITHM
We present our FALLS algorithm in this section. FALLS

schedules in chronological order of cc’s and utilizes slack to
determine the timing-urgency of available unscheduled
operations, which are the beneficial aspects of the classical LS
algorithm. However, to rectify the drawback of LS, we have
made significant extensions as follows:
 We schedule non-0-slack operations following a novel

lookahead technique that allocates new FUs earlier than they
would be in LS or reserves available FUs in the current cc for
scheduling future 0-slack operations, such that the average FU
utilization is increased.
 An estimate based extension of binary search, which we call

fractional search, is proposed to incrementally estimate the
number of FUs required for the design and finally accurately
pre-allocate FUs at the last scheduling iteration to further
increase FU utilization.
 We use FU utilization rate as a general guideline to

dynamically adjust pre-allocation, pre-allocation expansion
technique for conservatively pre-allocating more FUs to
increase FU utilization and pre-allocation pruning technique
for eliminating redundant FUs.

A general view of FALLS is given first: the pseudo code is
presented in Fig. 2. The internal scheduler of FALLS,
Lookahead, is based on LS but improved by our lookahead
technique. Nesting the enhanced scheduler (in line 4 and 9),

Algorithm LS (DFG G (V, E), latency constraint Lc, FU library R)
1. r = (1,1, ..., 1), t = 1 //pre-allocate one FU per FT
2. Compute the ALAP times tL for Lc
3. While there are unscheduled operations Do
4. For each FT k Do
5. Determine the available unscheduled operation set Ut, k
6. Compute slack su for all u Ut, k by (4)
7. Schedule 0-slack operations in Ut, k to t, allocate new FUs
 if needed, update rk if new FUs are allocated
8. Schedule non-0-slack operations in Ut, k to t in slack-
 increasing order and bind them to remaining available FUs
9. End For
10. t = t + 1
11. End while
12. Return the scheduling solution

32 Design, Automation And Test in Europe (DATE 2018)

fractional search iteratively determines a more accurate
pre-allocation by the pre-allocation expansion (line 5) and
pruning (line 6 to line 16) technique, which are based on the
pre-allocation and post-allocation of the previous iteration (call
to Algorithm Lookahead). The final solution is latest solution
after the last iteration where there is no improvement to the
current solution after FU expansion and pruning techniques.

Fig. 2. Pseudo code of the FALLS algorithm.

Fig. 3. Illustration of the advantage of reserving FUs for later use in the

lookahead scheduling of FALLS. “opi” denotes operation i. FU allocation
results are shown below solutions. (a) An unscheduled DFG; (b) The solution

of LS; (c) The solution of lookahead scheduling.

Fig. 4. Illustration of the benefit of early allocation of new FUs in the

lookahead scheduling of FALLS. FU allocation results are shown below
solutions. (a) An unscheduled DFG; (b) The solution of LS; (c) The solution of

lookahead scheduling.

 Lookahead Scheduling
The lookahead technique makes better scheduling decisions

than LS for non-0-slack operations. In the current scheduling
cc t, it detects operations that are currently unavailable and will
become 0-slack in some near-future cc’s. To allow these
operations to be executed on currently available FUs when
they are available and 0-slack, some available FUs are reserved
for this purpose in the current cc t. Moreover, it aggressively
allocates new FUs in cc t to schedule certain non-0-slack
operations under the condition that if the operations are not
scheduled in cc t, the same number of new FUs are still needed
to be allocated for scheduling them in later cc’s. By preventing
allocating avoidable new FUs in later cc’s and allocating new
FUs earlier that are unavoidable later, the average FU
utilization is increased and hence the number of FUs needed is
minimized.

The advantage of reserving FUs for later use is illustrated by
the example in Fig. 3. The DFG in Fig. 3(a) has only two FTs:
addition with a 1-cc delay and multiplication with a 2-cc delay;
Lc is 5 cc’s. In Fig. 3(b), LS schedules op5 (slack = 3) in cc 1,
since it is the only available multiplication operation in cc 1
and there is an available multiplier. The overlapping of
execution time of op2 and op5 results in a new multiplier being
allocated in cc 2. On the other hand, in cc 1, our lookahead
scheduling detects that op2 will become 0-slack in cc 2 and
hence reserves the multiplier for scheduling op2 in cc 2 to
avoid the new multiplier being allocated, as in Fig. 3(c). As the
scheduling proceeds, op5 eventually becomes 0-slack in cc 4,
and the multiplier being busy in cc’s 2-3 becomes available for
op5. Therefore, by reserving the multiplier in cc 1 and
scheduling op5 later, one multiplier is saved.

The other aspect of the lookahead scheduling, aggressive
early new FU allocation, is illustrated by the example in Fig. 4
with the same set of FTs and Lc as in Fig. 3. The scheduling
quality here solely depends on the allocation of adders. In Fig.
4(b), after op4 is scheduled in cc 1, LS schedules op5 in cc 3,
since op5 is non-0-slack in cc 2 and there is no available
multiplier then. Although a new multiplier must be allocated
no matter where op5 is scheduled, LS fails to detect this
situation due to the limited information provided by slack
alone. This forces op6 to be scheduled in cc 5, where op3 is
concurrently scheduled. This leads to a new adder to be
allocated. Different from LS, our lookahead scheduling
realizes that a new multiplier is unavoidable for scheduling
op5, hence allocates it when op5 is first available in cc 2 and

Algorithm FALLS (DFG G(V, E), Lc, FU library R)
1. soln.rpre = (1,1, ..., 1) //pre-allocate one FU per FT
2. Compute the ALAP times tL for Lc
3. Repeat //fractional search begins
4. soln = Lookahead (tL, soln.rpre)
5. For each FT k where soln. > soln. , increase soln.
 by (10) (is the k’th element of vector rpre/post)
6. For each FT k where soln. soln. Do
7. Get by major pruning (Sec. III-D) of soln.
8. Temporarily update soln.rpre with
9. Get a new solution = Lookahead (tL, soln.rpre)
10. If the cost of the new solution is improved Do
11. Linear search the range [,] to determine
 a better , where is the previous largest
 unsuccessful soln. that was tried Else
12. Binary search the range (, soln.] to determine
 a better
13. End If
14. Update soln.rpre with the best or
15. End For
16. Until no improvement in soln.rpost
17. Return the latest scheduling solution
Algorithm Lookahead (ALAP times tL, pre-allocation vector rpre)
1. rpost = rpre, t = 1
2. Unschedule all operations if they are scheduled
3. While there are unscheduled operations Do
4. For each FT k Do
5. Determine the available unscheduled operation set Ut, k
6. Compute slack su for all u Ut, k by (4)
7. Schedule 0-slack operations in Ut, k to t, allocate new FUs
 if needed, update if an FU is used for the first time
8. Apply the lookahead technique (Sec. III-A) to schedule
 non-0-slack operations in Ut, k to t, allocate new FUs if
 needed and update if an FU is used for the first time
9. End For
10. t = t + 1
11. End while
12. Return rpre, rpost and the scheduling solution as soln

+

×

+

+

×

op1

op2

op3

op4

op5

(a)

+

+

+

×
1

2

3

4

5

×

cc 1

cc 2

cc 3

cc 4

cc 5
(b) +: 1; ×: 2

+

×

+

+

1

2

3

4 ×

5

cc 1

cc 2

cc 3

cc 4

cc 5
(c) +: 1; ×: 1

×

+

×

op1

op2

op3

op5

(a)

1

2

3

4cc 1

cc 2

cc 3

cc 4

cc 5

(b) +: 2; ×: 2

cc 1

cc 2

cc 3

cc 4

cc 5

(c) +: 1; ×: 2

×
+

+
op4

op6

×

+

× ×

+

+

5

6

4

×

+

×

+

×

+

5

6

1

2

3

Design, Automation And Test in Europe (DATE 2018) 33

schedules op5 there. Such scheduling decision makes no
change in multiplier allocation, but reduces the number of
adders by one: op6 can be scheduled one cc earlier and hence
avoid being executed concurrently with op3.

Now we formulate our lookahead technique as follows. In
any cc t during the scheduling process, after scheduling 0-slack
operations of FT k, we explore the cc’s in the cc range R(t) = [t
+ 1, t + dk – 1] of FT k, where dk is the delay of FT k and dk >
1. We explore this cc range because this is the maximum range
for which any executing operation of FT k scheduled in a cc t
will finish its execution in some cc in this range, and we will
thus know exactly how many FT k FUs will be available in
these cc’s. This information, along with which operations will
become 0-slack in these cc’s, is needed to determine FU
reservation and early new FU allocation in cc t. For cc i [t, t
+ dk – 1], we define: a(i) to be the number of FUs that will be
busy in i – 1 and become available in i; z(i) to be the total
number of 0-slack operations in i; z’(i) to be the number of
0-slack operations in i that are available in cc t < i. Therefore,
z(i) – z’(i) is the number of 0-slack operations in i that are
unavailable in t. Each of these parameters in the cc range can
be determined in cc t. With these parameters, we can
recursively compute Avail(i), the number of available FUs in
cc i after scheduling z(i) – z'(i) operations in cc i, as:

At the recursion boundary of cc t, Avail(t) is the number of
available FUs after scheduling all 0-slack operations in t.
Based on Avail(i), we can determine new(i), the number of new
FUs needed in i for scheduling the z'(i) 0-slack operations of i,
as:

This needs to be followed by an update of Avail(i) in order to
compute Avail(i + 1) by Eq. 5: Avail(i) = 0 if new(i) > 0,
otherwise Avail(i) = Avail(i) – z'(i). As is hopefully clear from
the formulation, new FUs are only allocated for scheduling z’(i)
0-slack operations when there are not enough available FUs
after scheduling the z(i) – z’(i) 0-slack operations. The updated
Avail(i) that accounts for scheduling z’(i) operations becomes
the number of available FUs in i after scheduling all its z(i)
0-slack operations.

After all cc’s in the cc range R(t) are explored, we can
determine S(t), the maximum number of available non-0-slack
operations to be scheduled in cc t by:

where

Surplus(i) is thus the number of available FUs in cc i after
scheduling z(j) – z'(j) 0-slack operations in each cc j in [t + 1,
i] without allocating any new FUs in any of these cc's; it can
thus be negative. Equation (7) incorporates both aspects of the
lookahead technique that are illustrated in Figs. 3 and 4. The
first term with Surplus(i) allows use of only

of the available FUs in cc t for
available non-0 slack operations in it and reserves the rest for
later use in R(t). The second term with new(i) is for early
allocation and use of the appropriate number of new FUs in cc
t. The idea of Surplus(i) is that if it is positive, and for the sake

of argument we ignore other Surplus(j) values, then we can
schedule at most min(Surplus(i), z'(i)) available non-0-slack
operations in cc t of the z'(i) 0-slack operations of cc i, on the
already available FUs in t (after its 0-slack operations are
scheduled), without incurring any extra new FU in R(t)
compared to scheduling these operations in cc i. However, for
this to be true for all cc's in R(t), we can only schedule

 (if it is positive) available non-0-slack
operations in cc t (in slack increasing order—these are the
operations that become 0-slack earliest among all the z'(i)
operations in R(t)) without allocating any extra new FUs in
R(t). If any more are scheduled in cc t, then the minimum
positive Surplus point r in R(t) will become negative, meaning
that extra new FU(s) will be needed to schedule some of the
z(r) – z’(r) 0-slack operations in cc r.

Thus, accounting for both the minimum Surplus(i) and early
allocation of new FUs in cc t, we schedule S(t) available non-0
slack operations in slack increasing order in cc t.

 Fractional Search
Our fractional search framework contains two

sub-techniques: pre-allocation expansion and pre-allocation
pruning. Both techniques rely on an indicator of FU utilization,
utilization rate, to determine the number of FUs to be adjusted
in the pre-allocation. The utilization rate (ur) of an FU is the
fraction of cc’s in which the FU is busy executing operations
over the entire scheduling latency. For the p’th FU of FT k with
nk,p operations bound to it, its utilization rate urk, p is:

where dk is the delay of FT k and L is the achieved latency of
the current scheduling solution. Intuitively, FUs allocated in
earlier cc’s have a greater potential to have high utilization
rates compared to those allocated in later cc’s.

We first illustrate fractional search in Fig. 5. For any FT k of
a solution, we determine the new pre-allocation by the
pre-allocation and post-allocation of the previous iteration. If
the former is smaller than the later, we expand the
pre-allocation by adding the sum of utilization rates of new
FUs (an optimistic estimate) to it. Otherwise, we attempt to
prune pre-allocated FUs by a utilization rate based major
pruning followed by minor binary or linear pruning steps to
gradually approach the accurate pre-allocation. Unlike binary
search, which iteratively eliminates half of the search space,
fractional search makes the new estimate based on utilization
rate to more efficiently locate the target value. Fractional
search terminates when the latest round of prunings for each
FT that satisfies the pruning condition, no further solution
improvement can be obtained.

 Pre-allocation Expansion Technique
Given a solution of an iteration, for any FT k, if its

pre-allocation is smaller than its post-allocation ,
the pre-allocation expansion technique is applied. The number
of FUs to be increased in the pre-allocation of FT k is:

where FU_new(k) is the set of new FUs of FT k allocated in
the current scheduling iteration. The pre-allocation expansion
is performed in a conservative way in which it only allocates
the minimum number of FUs which can handle all operations

34 Design, Automation And Test in Europe (DATE 2018)

Fig. 5. Graphical illustration of a single iteration of fractional search for a FT.

bound to the new FUs with an ideal utilization rate of 100%.
This allows fractional search to gradually approach the
minimum number of required FUs.

 Pre-allocation Pruning Technique
Given a solution of an iteration, for any FT k, if its

pre-allocation is not smaller than its post-allocation ,
the pre-allocation pruning technique is applied. The pruning is
performed when , since the unutilized

pre-allocated FUs that have no operations bound to
should obviously be pruned. Further, when , it is
potentially beneficial to prune some of the utilized
pre-allocated FUs, since these over-allocated FUs may be used
to over-schedule less timing-urgent non-0-slack operations that
have slacks greater or equal to the delay, making the FUs
sparsely utilized in later cc’s. This pruning includes a major
pruning followed by minor prunings that are either based on
binary or linear search.

Besides pruning the unused FUs, if any, the idea of major
pruning is to adaptively increase the utilization rates of the
most under-utilized FUs. Let the maximum and minimum
utilization rate among all the used FUs in the current solution
be urmax and urmin, respectively. We can evenly partition the
range [urmin, urmax] into (2; = 4 in our experiments)
partitions. The most under-utilized FUs are in the 1st partition,
which is the range . We
attempt to increase the utilization rates of these FUs to the
adjacent partition with a higher average utilization rate range
uur2 so that fewer FUs are in the pre-allocation and this is
expected to translate to fewer FUs in the post-allocation by
reducing over scheduling. To execute the same number of
operations that were bound to the most under-utilized FUs
whose utilization rates are in urr1 with fewer but fully-utilized
FUs whose utilization rates are in urr2, the least number of FUs
required m is determined as:

where FU(k, urr1) is the set of FUs of FT k whose utilization
rates are in uur1 and is the average utilization
rate of FUs whose utilization rates are in uur2. The number of
pruned FU is thus .

As illustrated in Fig. 5, after major pruning, there are a
series of minor prunings using either linear or binary search. If
major pruning leads to a lower-cost solution, we perform linear
search to further prune the number of FUs of FT k by the
smallest granularity of one and re-schedule, and iterate until no
better solution is found. On the other hand, if the new solution
is worse than the previous one, we perform binary search in
the range of the current pre-allocation and the previous

pre-allocation until the best lower-cost solution is found or no
lower-cost solution can be found.

 Time Complexity
The time complexity of the lookahead technique is Ο(n log

n + ndmax), where dmax is the maximum delay among all FTs.
The n log n term comes from LS’s time complexity, and the
ndmax term from the fact that an FU executing an operation of
FT k with delay dk cc’s, will be accessed dk times to determine
a(i) and related parameters for lookahead processing. Further,
if nk is the number of operations of FT k and there are q FTs,
fractional search will determine at most O(log nk) new
pre-allocations (and thus calls to lookahead scheduling) for FT
k, and thus it overall makes O(q log n) ~ O(log n) (q being a
small constant compared to n) calls to lookahead scheduling.
Thus, the total time complexity of FALLS is Ο(n log2 n + (n
log n)dmax) = Ο(max(n log2 n, (n log n)dmax) ~ Ο(n log2 n) if
dmax is a small constant.

IV. EXPERIMENTAL RESULTS
We implemented FALLS in C++. Experiments were

conducted on a machine with Core i7-4710HQ (3.5GHz)
and16GB RAM. First, we make a direct comparison between

TABLE I: COMPARISON BETWEEN ACO AND FALLS

TABLE II
AVERAGE NUMBER OF FUS AND AREA RESULTS. AREA UNIT = 102

T. “*” MEANS A SET OF EXPERIMENTS RAN OUT OF MEMORY

nFU +, * nFU +, * nFU +, * nFU +, *
1.0 11 5, 6 11 6, 5 0.0% 47 25, 22 46 22, 24 2.1%
1.1 10 4, 6 10 6, 4 0.0% 42 23, 19 42 18, 24 0.0%
1.2 9 4, 5 9 5, 4 0.0% 36 20, 16 34 14, 20 5.6%
1.3 8 3, 5 8 5, 3 0.0% 34 19, 15 30 12, 18 11.8%
1.4 8 3, 5 7 4, 3 12.5% 30 17, 13 26 11, 15 13.3%
1.5 7 3, 4 7 4, 3 0.0% 28 16, 12 25 10, 15 10.7%
1.6 7 3, 4 6 4, 2 14.3% 26 15, 11 22 9, 13 15.4%
1.7 7 3, 4 6 4, 2 14.3% 25 14, 11 21 9, 12 16.0%
1.8 7 3, 4 5 3, 2 28.6% 23 13, 10 20 9, 11 13.0%
1.9 6 3, 3 5 3, 2 16.7% 23 13, 10 19 8, 11 17.4%
2.0 6 3, 3 5 3, 2 16.7% 22 13, 9 18 7, 11 18.2%
Avg 7.8 3.4, 4.5 7.2 4.3, 2.9 8.1% 30.5 17.1, 13.5 27.5 11.7, 15.8 9.8%

FU %
Improv

L c

Factor

idctcol (114, 164) invert (333, 354)
ACO FALLS FU %

Improv
ACO FALLS

nFU Area nFU Area nFU Area nFU Area nFU Area
1 hal 11 6.1 382.5 5.5 337.5 5.5 337.5 5.5 337.5 5.5 337.5
2 horner 18 6.5 355.8 5.7 309.9 5.3 315.0 5.1 300.0 5.1 300.0
3 arf 28 9.4 588.5 5.9 331.7 5.9 331.7 4.6 269.2 4.6 276.3
4 motion 32 20.9 1251.4 13.2 746.8 13.9 795.1 12.2 718.3 12.3 700.7
5 ewf 34 4.4 175.7 4.4 189.9 4.3 175.3 3.2 134.9 3.3 135.3
6 h2v2 51 10.3 356.2 7.2 293.9 7.4 228.9 6.3 218.8 6.5 233.8
7 feedback 53 21.5 1133.0 14.0 739.1 14.2 728.7 11.3 590.4 11.3 590.4
8 collapse 56 29.7 1595.7 13.5 800.1 13.7 764.7 11.4 684.3 11.6 692.0
9 write 106 70.4 2048.3 14.5 569.0 15.9 557.3 11.2 438.6 11.9 483.0

10 interpolate 108 41.8 2019.5 24.9 1256.4 27.9 1517.8 19.7 1055.9 20.2 1062.5
11 matmul 109 37.4 2188.5 20.4 1153.0 21.2 1224.6 15.5 931.5 16.3 956.9
12 idctcol 114 43.1 1826.9 22.3 990.8 15.8 738.0 10.8 497.0 12.1 533.2
13 jpeg 134 36.7 1617.8 25.9 1140.8 22.0 1108.8 14.6 703.3 15.4 704.9
14 smooth 197 75.9 3961.1 30.5 1737.6 31.6 1761.2 24.1 1403.2 26.2 1465.3
15 invert 333 100.2 5963.5 56.7 3328.9 55.9 3484.5 35.6 2216.7 39.5 2374.5
16 rand-1300 1300 520.7 59841.2 100.3 14271.1 115.7 16200.1 * * 94.5 13961.7

92.3 34.3 1697.6 17.6 928.4 17.4 937.9 12.7 700.0 13.4 723.1
60.8% 57.4% 23.8% 22.1% 22.6% 22.9% -5.5% -3.3% 0.0% 0.0%

167.8 64.7 5331.6 22.8 1762.3 23.5 1891.8 * * 18.5 1550.5
71.4% 70.9% 18.9% 12.0% 21.3% 18.0% * * 0.0% 0.0%

DFG 1-15 Avg
FALLS % Improv.

DFG 1-16 Avg
FALLS % Improv.

LS FDS SA ILP FALLSDFG # of
ops

Pre-allocation Pruning Region (if no new FU allocated) | Pre-allocation Expansion Region (otherwise)

of FUs of the
current FT

Lower Bound: # of FUs
assuming 100% ur

Previous pre-
allocation

New pre-allocation
after major pruning

…

1st linear search step
1st binary search step

Major pruning

Linear search region if major pruning successful.
Terminates when no better solution is found

Binary search region if major pruning unsuccessful.
Standard binary search termination

Upper Bound: previous
post-allocation

FU expansion

New pre-allocation
after FU expansion

Design, Automation And Test in Europe (DATE 2018) 35

FALLS and ant colony optimization (ACO) in [9]. The trivial
FU library in [9] has only two FTs of FUs: multiplier (d = 2
cc’s) for multiplication and division, ALU (d = 1 cc), denoted
for simplicity by “+”, for the remaining FTs. For each DFG,
the Lc is set to be a factor, called Lc factor, of the critical path
delay. Perhaps due to the stochastic nature of ACO, it is hard to
obtain consistent good results for all DFGs. Thus, to make a
fair comparison, in Table I we compare FALLS to ACO results
in [9] for two large DFGs which are the only ones for which
FU allocation results with specified Lc’s are presented in [9].
Across various Lc’s, FALLS allocates an average of 8.1% and
9.8% fewer FUs for the two DFGs than ACO.

In Table II, we compare FALLS to LS, FDS [3] [4],
SA [9] and ILP [1] [2] (implemented in CPLEX) for 15 DFG
benchmarks from [15] and one randomly generated DFG
rand-1300, to show its efficacy in FU minimization and the
indirectly minimized total area. For this, we constructed a
16-bit non-trivial FU library that has eight FTs:
adder/subtractor (d = 4 cc’s), multiplier (d = 10 cc’s), divider
(d = 24 cc’s), arithmetic and logical shift register (d = 1 cc),
memory read and write (d = 1 cc), and logical AND (d = 1 cc).
The delay and area of the FU designs from [16] are
theoretically derived based on the number of gate inputs along
the critical path and the total number T of transistors,
respectively. Each number of FU (nFU) and area result in
Table II is the average for a DFG for 11 Lc’s with Lc factors in
the range [1, 2] with a granularity of 0.1. The results show that
FALLS reduces the total number of FUs by an average of
18.9% to 71.4% compared to LS, FDS and SA, and has similar
area reductions. It also shows that FALLS has only a 5.5%
optimality gap in the number of FUs and merely a 3.3%
greater area compared to the optimal ILP method. We also
performed the experiments with the trivial library used by [9]:
FALLS’ FU and area improvements range from 11.9% to
51.6% compared to the approximate algorithms while being
only 1.2% worse than ILP. Mistakes made by the competing
approximate algorithms are less costly in area in the trivial
library as the area difference in the two types of FUs is much
smaller than among FU types in the more complex library of
Table II. This results in some shrinking of the % differences
between the results of these techniques and FALLS compared
to those for the complex library.
 Further, though the following are not part of our
optimization objective, we also determined the architectural
area = the sum of the areas of FUs, mux’s/demux’s and
registers, by using the left-edge algorithm [17] to bind
operations to FUs (and thereby determine mux and demux
sizes needed) and allocate registers post-binding. The results
(not given per DFG in tables due to space constraints) show
that FALLS has 32.4% to 60.8% average architectural area
reduction compared to the competing approximate algorithms.
Further, the average maximum congestion (max in + out
degree of an FU) of FALLS is 3.5% to 14.7% smaller than
these algorithms, and its average number of interconnects is
9.6% to 37.2% fewer. Also, FALLS has at most 4.0% more of
the above architectural area and interconnect metrics compared
to ILP. Similar results were obtained with the trivial library.
These results show that a good FU minimization algorithm like
FALLS is indirectly beneficial to other important architectural
metrics.

Finally, the runtimes for the experiments of Table II show
that FALLS is extremely fast, taking only 0.62 ms for the

smallest and 69.85 ms for the largest DFG. The runtimes of SA
and ILP are very high, preventing them from solving practical
large-size problems. Across DFGs and Lc’s, FALLS is merely
about 3 times slower than the extremely fast but extremely
sub-optimal LS, but is 68, 873 and 278k times faster than FDS,
SA and ILP, respectively. Also, for the largest DFG rand-1300,
CPLEX runs out of memory for even the smallest Lc (and thus
smallest solution space). Considering that FALLS obtains
solutions to the largest DFG with 1300 operations in a
miniscule 69.85 milliseconds, and that it has an average
optimality gap of only 5.5%, one can conclude that it has very
good runtime and solution quality scalability.

V. CONCLUSIONS
We proposed a latency-constrained iterative list scheduling

type algorithm FALLS to minimize the number of functional
units (FUs) in high-level synthesis designs. We presented a
novel lookahead technique to schedule some non-0-slack
operations earlier to increase FU utilization or to reserve some
currently available FUs for scheduling 0-slack operations in
near-future clock cycles to avoid new FU allocations in them.
Furthermore, a unique fractional search framework was
developed to iteratively estimate the number of FUs required
in the final design, and re-schedule with these initial FU
allocations to further increase FU utilization and reduce the
number of FUs. Extensive experiments demonstrated the
significant effectiveness and efficiency of FALLS for FU area
minimization, as well as for the beneficial side effects of
reducing architectural area and important interconnect metrics.

REFERENCES
[1] J.-H. Lee, Y.-C. Hsu and Y.-L. Lin, "A new integer linear programming

formulation for the scheduling problem in data path synthesis," ICCAD,
Santa Clara, CA, Nov. 1989, pp. 20-23.

[2] C.-T. Hwang, J.-H. Lee and Y.-C. Hsu, "A formal approach to the
scheduling problem in high level synthesis," TCAD, 1991.

[3] P. G. Pauline and J. P. Knight, "Force-Directed Scheduling in Automatic
Data Path Synthesis," DAC, 1987.

[4] P. Paulin and J. Knight, "Force-directed scheduling for the behavioral
synthesis of ASICs," TCAD, Jun. 1989.

[5] W. F. J. Verhaegh, E. H. L. Aarts and J. H. M. Korst, "Improved
force-directed scheduling," in EDAC, Feb. 1991, pp. 430-435.

[6] W. F. J. Verhaegh, et al., "Efficiency improvements for force-directed
scheduling," ICCAD, Santa Clara, CA, Nov. 1992, pp. 286-291.

[7] J. Cong and Z. Zhang, "An efficient and versatile scheduling algorithm
based on SDC formulation," DAC. 2006.

[8] J. A. Nestor and G. Krishnamoorthy, "SALSA: a new approach to
scheduling with timing constraints," TCAD, Aug. 1993.

[9] G. Wang, W. Gong, B. DeRenzi and R. Kastner, "Ant Colony
Optimizations for Resource- and Timing-Constrained Operation
Scheduling," TCAD, vol. 26, no. 6, pp. 1010-1029, Apr. 2007.

[10] M. J. M. Heijligers and J. A. G. Jess, "High-level synthesis scheduling
and allocation using genetic algorithms based on constructive topological
scheduling techniques," in IEEE International Conference on
Evolutionary Computation, Perth, WA, Dec. 1995, pp. 56-61.

[11] A. Sharma and R. Jain, "InSyn: integrated scheduling for DSP
applications," IEEE Transactions on Signal Processing, 1995.

[12] S. Gupta, N. Dutt, R. Gupta and A. Nicolau, "SPARK: a high-level
synthesis framework for applying parallelizing compiler
transformations," in 16th International Conference on VLSI Design, New
Delhi, India, Jan. 2003, pp. 461-466.

[13] S. J. Beaty, "List Scheduling: Alone, with Foresight, and with
Lookahead," in the First International Conference on Massively Parallel
Computing Systems, Ischia, Italy, May 1994, pp. 343-347.

[14] L. F. Bittencourt, R. Sakellariou and E. R. M. Madeira, "DAG Scheduling
Using a Lookahead Variant of the Heterogeneous Earliest Finish Time
Algorithm," in 18th Euromicro Conference on Parallel, Distributed and
Network-based Processing, Pisa, Italy, Feb. 2010, pp. 27-34.

[15] http://www.ece.ucsb.edu/EXPRESS/benchmark/.
[16] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs,

Second Edition: Oxford University Press, Oct. 2009.
[17] A. Hashimoto and J. Stevens, "Wire routing by optimizing channel

assignment withn large apertures," in 8th Design Automation Workshop,
Atlantic City, NJ, June 1971.

36 Design, Automation And Test in Europe (DATE 2018)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

