NoC-Enabled Multicore Architectures for Stochastic Analysis of Biomolecular Reactions

Turbo Majumder1, Xian Li2, Paul Bogdan3, Partha Pande1
1 Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
2 School of EECS, Washington State University, PO BOX 642752, Pullman, WA, 99164-2572 USA
3 Department of Electrical Engineering, University of Southern California, 3740 McClintock Avenue, Los Angeles, CA 90089-2560
1 turbo@ee.iitd.ac.in 2 xli1@eecs.wsu.edu 3 pbogdan@usc.edu 4 pande@eecs.wsu.edu

ABSTRACT
Recent medical challenges such as cancer, drug-resistant microbes or diabetes crucially affect human health. To tackle these, modern medicine must analyze molecular interactions and rely on powerful computational platforms for the design and performance evaluation of medical therapies. Towards this end, we propose a Network-on-Chip (NoC)-based multicore platform enabling the efficient analysis of stochastic molecular interactions among biological entities. Our in-depth analysis of the stochastic interactions among biological components and the characterization of their computational and communication requirements allows us to design a high-performance NoC architecture sustaining a throughput of over 1.36E5 events/ms, while consuming only 15 mJ per 1E5 stochastic events. Our proposed NoC-based multicore can offer a throughput improvement of 23% over a regular mesh-based NoC, while consuming 20% less energy.

Keywords
Network-on-Chip, multicore, cyber-physical system, personalized medicine, gene therapy, stochastic simulation.

1. INTRODUCTION
There is a growing recognition of the importance of molecular markers and their behavior as disease precursors. Consequently, there is a growing interest in developing computational platforms that can assist disease diagnosis, drug development, measure drug efficacy, and monitor patient treatment. In addition, there are also urgent needs for computational platforms that can perform vast amounts of bio-chemical stochastic simulation efficiently in order to understand the cellular biological processes. Of note, bio-chemical stochastic simulation refers to running a Monte-Carlo type of investigation in which a set of chemical species interact in space and time by following probabilistic rules. It requires a significant number of interactive simulations, which can take a long time via software implementations. In addition, spatio-temporal interactions introduce dependencies that prevent one from simply executing independent runs in parallel.

Towards this end, in this paper, we propose a highly optimized NoC architecture for multi-scale spatio-temporal stochastic simulation and analysis of biological processes (e.g., gene regulation, biochemical cascades, cell-cell interactions). We begin by developing a mathematical framework for bio-chemical stochastic reactions, which accounts for the spatial and temporal interactions. This represents a major improvement compared to traditional Gillespie stochastic simulation algorithm [5][6]. More precisely, we tessellate the 3D space into small regions that contain specific types and number of bio-chemical reactants and investigate how the physico-chemical interactions (molecule generation, molecular diffusion, molecular absorption) dictate the communication and computation workloads. Then, we optimize both the processing elements and the communication infrastructure in order to provide the highest application throughput. In summary, the salient contributions of this paper are as follows:

A. We propose a non-trivial enhancement to the traditional Gillespie stochastic simulation algorithm by incorporating spatial information in order to account for the heterogeneity of biological systems, which generates a complex communication pattern.

B. We profile our algorithm and determine the characteristics of computation and communication workloads. In particular, we identify local and long-range communication spawned from this model, which we encapsulate in the form of a weighted dependency graph (WDG).

C. We develop an optimization algorithm for NoC design based on the above, which proceeds as follows: (i) We analyze the WDG and perform a clustering of the vertices representing reaction channels in order to balance computation and communication workload. (ii) We propose an algorithm for deploying on-chip wireless links for long-range communication dictated by the spatial interactions between bio-chemical reaction systems.

D. We demonstrate the validity and merits of our approach by considering a pertinent use-case, namely gene therapy. We demonstrate significant improvements in performance metrics (e.g., computation throughput, energy consumption) over traditional mesh-based NoC implementations.

The remainder of this paper is organized as follows: Section 2 briefly reviews the research work in the field of NoC optimization for biomedical applications, and compares and contrasts related computational approaches for studying biomolecular reaction systems with our approach. Section 3 outlines the design of NoC architecture for bio-chemical stochastic analysis and describes the gene therapy problem, which will be used to evaluate performance of the proposed NoC design. Section 4 summarizes our experimental and validation results. Finally, Section 5 concludes the paper and outlines some future work.

2. RELATED WORK
NoCs have emerged as communication backbones to enable a high degree of integration in multicore SoCs [2][9]. In spite of all the advantages, the existing method of implementing a NoC with planar metal interconnects is deficient due to high latency and significant power consumption arising out of multi-hop links used in data exchanges. NoCs have been shown to perform better by inserting long-range wired links following the principles of small-world graphs [10]. NoC-enabled multicore have been shown to be very beneficial for many computation-intensive bio-informatics applications, delivering orders of magnitude speedup and lower energy consumption [3][4], even compared with other popular acceleration platforms, such as GPUs and large FPGAs. A
comprehensive survey [14] of various wireless NoC architectures and their design principles shows the possibilities of creating novel architectures enabled by on-chip wireless links.

Many of the biological processes we aim to control exhibit a highly dynamic spatio-temporal variation and heterogeneous structure imposing new constraints on the design methodologies [1]. A very relevant application in this domain pertains to the development of the gene therapy for HIV-1 [11], which has to tackle the dynamic variation in parameters of the biological interactions when searching for the best configuration and amount of engineered cells. Consequently, we explore the computation kernel that studies the interactions between cells and virions and enables the design of a gene therapy for HIV-1 infection, and consider it as a use-case to design and evaluate the potentials of a NoC-based multicore platform.

3. NOC DESIGN FOR BIOMICROLOGICAL REACTIONS

3.1 Modeling Stochastic Reactions

Reagents in biomolecular reactions, typically cells or protein macromolecules, interact with one another through stochastic processes that change the concentration of each reactant in the system. Since reactants are discrete molecules (or cells), the number of reactant molecules (or cells) completely describes the state of the system at any point in time. The dynamics of biomolecular reactions (say A, B, C) can be expressed through the mathematical formalism of stochastic simulations as follows:

\[A + B \rightarrow \kappa B + C \]
\[B \rightarrow m C \]
\[C \rightarrow \phi \]

A, B and C in the above reactions denote the number of biomolecular entities corresponding to reactants A, B and C respectively; k, m and n are the reaction rates. It has been shown that Gillespie’s Stochastic Simulation Algorithm (GSSA) [5][6] is a very efficient method for modeling such coupled reactions. In the following, we exemplify our approach by considering as a use-case a set of reactions representing personalized gene therapy using protected T cells for treating HIV-1 infection, an application that is of great interest and significance to the research community.

3.2 Example: Biomolecular Reaction System Modeling HIV-1 Gene Therapy

Gene therapy, a promising alternative to the conventional highly active antiretroviral therapy (HAART) approach for treating HIV-1 infection, consists of infusion of engineered genes (i.e., gene based inhibitors [11]) into so-called protected cells (PC) with the goal of disrupting the viral spread within the body system. The design of a successful clinically relevant personalized gene therapy requires a comprehensive understanding of the interactions between the various biomolecular entities, which necessitates numerous stochastic simulations for exploring the functionality and efficacy of a particular strategy.

Consequently, we consider the well-known computational model describing the dynamics of the HIV’s resistance to gene-modified cells [1][8][12] for in vivo infusion. This computational model consists of five biomolecular entities: (1) CD4+ T unprotected cells (U) denoting cells that are not genetically modified and naturally belong to the patient through homeostatic self-proliferation; (2) CD4+ T protected cells (P) referring to gene modified cells that are infused into the patient’s body; (3) infected unprotected T cells (I_U); (4) infected protected T cells (I_P); and (5) free virions (V) that spread the viral infection throughout the T cell population. Following the conventions from Equation (1), the dynamics of these 5 entities can be described as follows:

\[\phi \rightarrow U, \quad U \rightarrow \phi, \quad U + V \rightarrow I_U, \quad I_U \rightarrow \phi, \quad U \rightarrow \phi, \]
\[P \rightarrow d, \quad U + P \rightarrow U, \quad U + P \rightarrow P, \]
\[r \rightarrow \frac{h+U+P}{h+U+P} \]
\[P + V \rightarrow I_P, \quad I_P \rightarrow \phi, \quad I_U \rightarrow V, \quad I_V \rightarrow V, \quad V \rightarrow \phi \]

where \(\lambda \) is the thymus-rate of self-proliferation of U cells, \(d \) is the death rate, \(k \) and \(\phi \) are the rates at which the virus infects an unprotected (U) and a protected (P) cell, respectively, \(\delta \) is the death rate of both infected unprotected and protected cells, \(r \) and \(h \) are the Michaelis-Menten coefficients, \(\rho \) is the rate at which either infected unprotected cells or infected protected cells generate virions, and \(c \) is the death rate of the virions.

Each kind of biomolecular entity, i.e., U, P, I_U, I_P and V, has an initial concentration (or cell count), which varies over the course of time based on the Equation (2). We model the stochastic dynamics of the gene therapy based HIV treatment using GSSA first reaction method [5][6], based on which we decompose Equation (2) into a set of 11 “reaction channels” denoted by C_j (j=1...11) having propensities \(P_j \) as follows (given in the format C_j).

\[C1: \lambda \quad C2: rU/(h+U+P) \quad C3: dU \quad C4: kUV \]
\[C5: rP/(h+U+P) \quad C6: dP \quad C7: kPV \quad C8: \delta_U \]
\[C9: \delta_P \quad C10: \rho (I_U + I_P) \quad C11: cV \]

3.3 Modeling Migration of Biological Entities

Each set of reaction channels described in Equation (2) represents the interaction among biomolecular entities within a specific reaction volume. A biophysical system is intrinsically heterogeneous and dynamic, implying that biological entities move (or migrate) in space over time as a result of interactions. We model this by the following approach.

A. We tessellate a biophysical system into a number of small regions, each of which independently carries out a system of reactions obeying Equation (2) and updates propensities (update step, Equation (3)).

B. Each such region R also interacts with neighboring regions (short-range communication) with one hop in 3D space and non-neighboring regions (long-range communication) with 2 to 4 hops in 3D space in the system to exchange a number of biological entities based on specific probabilistic rules. At the end of this step (which we call migration step), the number of cells of each biological entity in any region will get updated, leading to propensities (Equation (3)) being re-evaluated.

Hence, the biophysical system presents a case of several concurrent update steps (within different regions) and coupled migration steps (across regions). Both steps involve extensive computation and communication. In the actual system, each region has a fluid boundary. However, in our abstraction, we model these regions as cubes in three-dimensional space. Each cubic region has six neighbors in this model, and it exchanges
cells/molecules with them following a certain probability. We denote this kind of migration as *neighborhood communication*. However, there will be some exchange beyond the six immediate neighbors of each cubic region, albeit with progressively lower probabilities depending on the distance between the regions. We denote this kind of migration as *non-neighborhood communication*. It is to be noted that migration is a slower phenomenon compared to the update step. As such, in our model, the migration step occurs after every k update steps, or T/k denotes the migration step. For example, the migration step is $0.1T$ if it occurs after every 10 update steps.

3.4 Design of NoC-Based Multicore

3.4.1 Interaction among reaction channels

The interaction among the channels with propensities defined in Equation (3) can be modeled based on the dependency graph inferred from Equation (2). According to the GSSA first reaction method, each reaction channel computes a putative time r_j of its own given by the following:

$$ r_j = -\log(r)/P_j $$

For every iteration, we denote the minimum value of r_j as r_j^* and the corresponding channel as C_j^*, which updates all its dependent neighbors in the dependency graph for that iteration. The data contained in these updates represent the new propensity values calculated in C_j^*.

Pursuant to this discretized stochastic model of biomolecular reaction system with HIV-1 in the presence of gene therapy as a use-case, we create a (directed) dependency graph with 11 vertices corresponding to 11 reaction channels represented in adjacency list format in Table 1 where vertex j represents reaction channel C_j. Each vertex in this graph computes the new propensity function (Equation (3)) in every iteration. The edges of this graph represent the cumulative data exchange communication occurring from C_j^*, for all j.

The dependency graph of the reaction channels could provide the broad topological framework for inter-core data exchange. However, due to random numbers being generated at every step of the discretized reaction model, and the concomitant dependence of the update step described above, the traffic pattern subtends a unique topology in every step (basically, a subset of the dependency graph centered around C_j^*). We carried out an extensive range of simulations with a variety of input conditions to cover a wide spectrum of reaction trajectories.

Table 1. Adjacency list representation of dependency graph

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Adjacency list</th>
<th>Vertex</th>
<th>Adjacency list</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{2, 3, 4, 5}</td>
<td>7</td>
<td>{2, 5, 6, 9, 10}</td>
</tr>
<tr>
<td>2</td>
<td>{3, 4, 5}</td>
<td>8</td>
<td>(10)</td>
</tr>
<tr>
<td>3</td>
<td>(2, 4, 5)</td>
<td>9</td>
<td>(10)</td>
</tr>
<tr>
<td>4</td>
<td>(2, 3, 5, 8, 10)</td>
<td>10</td>
<td>(4, 7, 11)</td>
</tr>
<tr>
<td>5</td>
<td>{2, 6, 7}</td>
<td>11</td>
<td>(4, 7)</td>
</tr>
<tr>
<td>6</td>
<td>{2, 5, 7}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Computation load in each node of a region during one update step and a migration step

<table>
<thead>
<tr>
<th>Node</th>
<th>ADD</th>
<th>MUL</th>
<th>DIV</th>
<th>RANDOM NUMBER</th>
<th>LOG</th>
<th>COMPARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U0(1,2,4)</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>U1(3,5,6,7)</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>U2(8,9,10,11)</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>M</td>
<td>30</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

We construct an undirected weighted dependency graph (WDG) out of the large number of reaction simulations mentioned above (and further in Section 4.1). We achieve this by assigning edge weights to the directed graph in Table 1 based on the characterized communication volume over a wide range of reaction scenarios. The weights here correspond to the amount and frequency of data exchange that occurred for the adjacencies over the simulation period. We carry out topology inference from this WDG using a Minimum Spanning Tree approach based on Kruskal’s algorithm [7]. The inferred topology is shown in Fig. 1.

3.4.2 Clustering of reaction channels

As explained earlier, there is extensive computation and communication during the update step in each of the regions, as well as during the migration step. This on-chip communication bandwidth requirement can be met only through a NoC. While the straightforward interaction between reaction channels presents an interesting case for mapping to a NoC, each reaction channel involves a rather small amount of computation to warrant an entire processing element. As such, we need to cluster the reaction channels (i.e. the tasks of propensity computation) into a few nodes. The nature of the dependency graph and the MST derived from it (cf. Section 3.4.1 and Fig. 1) and an analysis of the amount of computation (see Table 2) in each of the reaction channels led to clustering of the reaction channels within one region into three nodes ($U0$, $U1$ and $U2$) following Algorithm 1 shown below. The result is shown in Fig. 1. The time complexity of this algorithm is $O(V \log V)$ where V is the number of vertices in the MST.

Algorithm 1

Initiate the MST with adjacency list structure TreeAL
Store all edges in a structure array TreeE
Store all nodes in the array ClusterR
Calculate the connection value for each edge stored in TreeE and store the value in TreeE
Find the edge Ex with maximum connection value in TreeE
While (true)
Set the vertex on one side of the Ex with more connected edges to vertex MoV
Set the vertex on one side of the Ex with less connected edges to vertex MoV
If the sum of number of nodes in TarV and MoV <= LimitN
Move all nodes in vertex MoV to TarV in array ClusterR
Mark Vertex MoV with invalid sign
For each neighboring vertex NV connected to MoV
Modify the edge between NV and MoV, set MoV to TarV
Recalculate the connection value
Find the new edge Ex with maximum connection value in TreeE
Else Break
End While
Output all vertex in ClusterR without invalid mark.

The migration step also involves exchange of cells across regions, and we dedicate one node per region to undertake the computation involved for this step. This node, \(M \), communicates with all other nodes in the same region, and the corresponding node in other (neighboring and non-neighboring) regions.

\[P_d(x,y) = N_A * e^{-Dis^3} \]

where \(P_d(x,y) \) is the probability of migration from a region centered at \(x \) to a non-neighboring region centered at \(y \) (in 3-D space) separated by a Manhattan distance \(Dis^3 \), and \(N_A \) is the number of molecules/cells of reactant \(A \).

3.4.4 Design of NoC architecture

In the following, we describe the proposed NoC design. Specifically, this constitutes the computation cores and the on-chip interconnection network.

3.4.4.1 Computation core and interconnection fabric

Each node, i.e., \(U_0, U_1, U_2 \) and \(M \), is mapped to a computation core in the multicore platform. Hence, the total number of cores required is four times the number of regions modeled. Our model envisages a 4×4×4 subset of regions (independent reaction volumes) in 3-D space. Hence the multicore platform we design contains 256 cores catering to these 64 regions. The mapping of the regions to the cores is shown in Fig. 3. Computation loads in \(U_x \) nodes are roughly balanced but that in \(M \) node is much higher. However, the migration step usually takes place after a few update steps. Hence, the effect is not pronounced unless the migration frequency is high enough (cf. Section 4).

The placement of cores within one region is shown in Fig. 2, and the mapping and placement of regions is done in a tiled fashion as shown in Fig. 3. For nodes belonging to different regions, connectivity is required among the nodes of type \(M \) in each region (tile). Fig. 3 also shows the connectivity between tiles representing neighboring and next-to-neighbor regions, through direct wired links and pass-transistor-enabled bypass links [13].

For non-neighboring communication, we follow the communication intensity given by Equation (5) and carry out extensive simulations to determine the interaction probabilities across 64 regions. The plot shown in Fig. 4 depicts the intensity of non-neighborhood (i.e. beyond next-to-neighbor) communication that results from the use-case application. The peaks in Fig. 4 represent the highest intensity of long-range communication.

3.4.4.2 Wireless long-range links

The interconnect topology in Fig. 3 is not equipped to support this long-range communication (cf. Fig. 4) without incurring a significant latency and energy penalty through multi-hop wired paths (cf. Section 4 for details). To overcome this challenge, we choose to implement these long-range links using wireless channels [14]. Implementing long-range links using different wireless technologies have been shown to deliver significant savings in latency and energy consumption [14][15][16]. In [14], it is demonstrated that it is possible to create three non-overlapping channels with on-chip mm-wave wireless links working in the 10-100 GHz range. Three different channels can be...
designed with 3dB bandwidths of 16 GHz and center frequencies of 31, 57.5 and 120 GHz respectively, and each channel supports a data rate of 16 Gbps over a communication range of 20 mm. We add three wireless links corresponding to the three highest peaks in Fig. 4 to satisfy the most intensive long-range communication requirements.

3.4.5 On-chip communication
Within a region, nodes U_0, U_1 and U_2 communicate among themselves during the update step. The new propensities at the end of this step are also communicated to node M. During the migration step, node M in each region communicates with the same node in each of its neighbors (and next-to-neighbors) the number of cells/molecules of each reactant in that region that migrate across the region boundary. This data exchange is bidirectional and takes place through wired links. Data exchange between (M nodes of) non-neighboring regions takes place through wired and wireless links. The wireless links (cf. Fig. 4) not only directly cater to the most intensive long-range communication, but they also act as shortcuts for (less intensive) long-range traffic between other source-destination region pairs.

There is a marked improvement in latency and energy consumption of the NoC after the introduction of these wireless links, as we present in detail in the next section.

4. EXPERIMENTAL RESULTS
In this section, we present the detailed methodology for evaluating our proposed design and the obtained results.

4.1 Intra- and inter-region communication
As discussed in Section 3.4.1, we simulated over a wide range of initial cell counts (50, 100 and 500 for each cell type, i.e., U, P, I_0, I_1 and V) and reaction parameters to determine the communication dependency graph. The reaction parameters that we experimented with are reported in Table 3 representing a realistic spectrum of infection and gene therapy treatment initiation scenarios [1]. We generated communication dependency graphs based on each scenario, and built a common subgraph (i.e. the WDG) and the subsequent MST as described in Section 3.4.1. The probability of inclusion of each edge of the inferred MST in each of the individual dependency graphs is very close to 1, indicating that there is an extremely high degree of confidence of the edges included in the final MST (cf. Fig. 1). Intra-region communication, i.e., among nodes U_0, U_1, U_2 and M of one region, follows directly from the original communication graph and the clustering result. Of note, in an ordinary mesh, communication between diagonal nodes (e.g., $M-U1$) takes 2 hops, while in our custom topology, the same takes 1 hop.

4.2 Performance Analysis
We use CMOS 65 nm technology node for our design and a system clock frequency of 1 GHz. Inter-core communication takes place with 16-bit wide flits. The wired links are adequately buffered so that the delays are less than one clock period (i.e. one hop). Energy dissipation of the network switches was obtained from the synthesized netlist by running Synopsys™ Prime Power, while the energy dissipated by wireline links was obtained through HSPICE simulations taking into consideration the length and layout of the buffered wireline links. The wireless links (including the transceiver circuitry) dissipate 1.95 pJ/bit. Wireless links can sustain a data rate of 16 Gbps over a 20 mm range of communication [14].

The key performance metrics that we evaluate are computation throughput and energy consumption. We present the results obtained on our custom-designed NoC topology with and without wireless links, and compare them with those obtained on a regular mesh.

4.2.1 Computation throughput
To measure the throughput of our design we report the number of GSSA update steps executed every 1 ms (or 1 million clock cycles). As mentioned earlier, the migration step has higher computation latency than the update step, and occurs after every few update steps. We show the sustained throughput achieved during our experiments over the run-time of the application when the migration step occurs after every 10, 5 and 2 update steps respectively in Fig. 5. As expected, the overall throughput metric shows a decline with increasing frequency of the migration step.

Table 3. Reaction parameters used in our simulations

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>0.2</td>
</tr>
<tr>
<td>r</td>
<td>20</td>
</tr>
<tr>
<td>h</td>
<td>90</td>
</tr>
<tr>
<td>d</td>
<td>0.015</td>
</tr>
<tr>
<td>k</td>
<td>0.00008</td>
</tr>
<tr>
<td>ϵ</td>
<td>0.01</td>
</tr>
<tr>
<td>δ</td>
<td>0.5</td>
</tr>
<tr>
<td>ρ</td>
<td>120</td>
</tr>
<tr>
<td>c</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 5. Sustained throughput delivered by our proposed NoC design with and without wireless links vis-à-vis pure mesh while simulating the use-case application with different migration step intervals. Each plotted point represents the number of GSSA update steps executed in 1 million clock cycles (i.e. 1 ms).

Figure 6. GSSA throughput variance normalized with respect to that on a NoC with wireless links for different migration steps.

Figure 7. Energy consumed every 10^5 GSSA update steps by our proposed NoC design with and without wireless links vis-à-vis pure mesh while simulating the use-case application with different migration intervals.

1106 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)
The highest throughput of ~1.36E5 updates/ms is obtained on our NoC with wireless links for a migration step of 0.1T. This represents more than 13% improvement over a pure mesh and a slight improvement over NoC without wireless links. This improvement goes up to 17% for migration step 0.2T and 23% for migration step 0.5T. This conclusively proves that our NoC indeed enables high intensity communication traffic, and that introduction of wireless links provides some throughput gain.

Another interesting observation is that there is some variation in throughput over the simulation time but this variation decreases with higher migration frequency. For the same migration frequency, NoC with wireless links also delivers the least throughput. For the same migration step size, there is some variation in throughput and energy consumption over conventional mesh-based NoC implementations. This represents a first step towards realization of fast, efficient multicores platforms enabling the era of mobile health and personalized medicine.

REFERENCES

