Automated Rectification Methodologies to Functional State-Space Unreachability

Ryan Berryhill1, Andreas Veneris1,2

Abstract—In the modern design cycle, significant manual resources are dedicated to fix a design when verification shows that a state is not reachable. Today there is little automation to aid an engineer in understanding why a state is not reachable and how to correct it. This paper presents a novel methodology that automates this task. In detail, a process that involves intertwined steps of state approximation, reachability analysis and traditional debugging is developed to identify design locations where fixes can be applied so the target state becomes reachable. An initial formulation identifies such error locations that, when corrected, can make the target state reachable directly from the existing reachable set of states. This is later extended for the cases where more than one state transition is required to reach an unreachable state from the existing reachable set. Empirical results on industrial level designs show a performance which is an order of magnitude faster than the state-of-the-art confirming the practicality of the proposed automated methodology.

I. INTRODUCTION

Functional verification has grown to be the major bottleneck in modern hardware design taking more than 70% of the overall design effort [1]. Debugging, the task of localizing the error source, accounts for a hefty 60% of the verification cycle [2]. Most verification and debugging tasks have been automated or semi-automated. Despite these advances, once static or dynamic verification shows that a state is not reachable, identifying the root cause of the failure remains a predominantly manual effort with little automation available.

Traditionally, when verification detects an error such as an observation signal value mismatch, a scoreboard discrepancy, or a firing assertion, an error trace (counter-example) is returned that demonstrates that failure. This error trace is later used by a debugging tool [3–6] to identify the root cause of the problem so the engineer can fix it. On the other hand, when verification fails because a state is not reachable, an error is clearly detected but no such error trace exists, in the traditional definition of the term, to guide automated debugging. As a result, correcting the root cause for an unreachable state today remains a largely manual process that consumes significant resources and engineering effort. In the context of coverage analysis, the work in [7] discusses the problem of unreachable code. While unreachable code may be a symptom of an unreachable state(s) and vice versa, in practice they often manifest themselves separately. Therefore, automated techniques to aid the engineer in fixing a design when a state is shown to be unreachable are of paramount importance to reduce the verification burden and improve the design cycle.

Towards this direction, we present an automated methodology to identify suspect locations where fixes can be implemented so that a design reaches a target unreachable state. Initially, the methodology tackles unreachable states that can be reached within one cycle (i.e., transition) from the existing reachable set of states. This is done by utilizing formal techniques to compute an over-approximation of the reachable states for a specific operational design cycle. This over-approximation essentially provides a set of constraints for that particular cycle that is debugged by modifying the input set of a traditional Boolean satisfiability (SAT) debugger. Due to the inherent nature of the state-space approximation, spurious solutions may be present. These solutions are identified and discarded in an effort to refine the input constraint model and increase the accuracy of the approximation. In practice, the accuracy of the approximation increases rapidly and spurious solutions occur infrequently. These intertwined steps of state-space approximation and debugging are repeated increasing the number of cycles from the initial set of states until a solution is found, that is, a design location where a fix can be performed so the target state becomes reachable.

This automated methodology is later extended to tackle cases where multiple transitions are required from the reachable set of states to reach the target unreachable state. Furthermore, as the solution space may grow significantly larger with more iterations, the algorithms are enhanced with a set of techniques that provide a configurable tradeoff between run-time and resolution.

Experiments on sequential designs with injected design errors confirm the performance and validity of the approach. Furthermore, results demonstrate that the approximations used in the algorithm improve in accuracy very rapidly, making spurious solutions infrequent and inexpensive to detect. The initial technique provides an average speedup of 2x when compared to the current state-of-the-art debugging technique. An additional optimization is presented that achieves an impressive 26x speedup.

The remainder of this paper is organized as follows. Background on reachability analysis and automated debugging is presented in Section II. Section III describes the initial approach. Section IV presents an extension to the initial approach. Section V describes a performance optimization. Section VI presents experimental results, and finally, Section VII concludes the paper.

II. PRELIMINARIES

A. Notation

The following notation is used throughout this paper. Given a sequential circuit C, the set of primary input, primary output, and state elements (flip flops) of C are denoted by $X = \{x_1, x_2, ..., x_M\}$, $Y = \{y_1, y_2, ..., y_M\}$, and $S = \{s_1, s_2, ..., s_N\}$, respectively. In an iterative logic array (ILA) [8] representation of the circuit, superscripts distinguish between clock cycles where $S^i = s_1, s_2, ..., s_N$ represents the values of the actual state elements in cycle i. Similar notation is used for the primary input and output. We let the set of initial states for C be $I(S)$.

The transition relation of C is denoted as $T(S^0, S^{i+1}, X^i, Y^i)$. It evaluates to 1 if and only if given current state S^i, applying X^i to the primary input of C it yields next state S^{i+1} and primary output Y^i. We say that a state is k-reachable if there is a sequence of Boolean values that can be applied to the primary input to cause the circuit to reach the state in k or fewer cycles. If there is a value of k for which a state is k-reachable, then we also say that the state is reachable. This paper denotes the set of k-reachable states as R_k. Finally, we let S be the target unreachable state.

B. Background

In the context of this work, reachability analysis refers to the process of approximating the set of k-reachable states for a given value of k. Calculating the set R_k is intractable, but efficient algorithms exist to over-approximate it [9], [10]. In particular, this work does not introduce new techniques related to reachability analysis. It deals exclusively with the problem of how to fix an erroneous design when a verification tool shows that a particular state is unreachable in

1University of Toronto, ECE Department, Toronto, ON MSS 3G4 (ryan, veneris)@eecg.toronto.edu

2University of Toronto, CS Department, Toronto, ON MSS 3G4
violates its specification. To tackle this problem, it utilizes three
by-product aspects of the work in [9], namely reachability analysis,
reachability checking, and approximation strengthening. Due to their
relevance in this paper, we describe them in greater detail.

The work in [9] performs reachability analysis directed towards
proving a given safety property. This is accomplished by constructing
a sequence of sets $F = \{F_0, F_1, F_2, \ldots, F_k\}$ where $F_0 = I(S)$ and
each F_i is an over-approximation of the set of i-reachable states (i.e.
$R_i \subseteq F_i$). Each set F_i can be represented by a propositional formula
over the state elements of the circuit [9]. In this paper, given some
state S', we define function $F_i(S') = 1$ iff state S' is in the set F_i.
Given a state and a cycle i, reachability checking determines if the
state is in the set R_i. Finally, strengthening improves the accuracy
of F_i by returning a smaller over-approximation that excludes some
states that can be proven not to be i-reachable. Given a particular
state that is not i-reachable, strengthening returns clauses that can
be conjoined to F_i to reduce its size [9]. The improved approximation
excludes the given state, and may also exclude additional states
proven not to be i-reachable.

The work presented here also iteratively utilizes the SAT-based
automated debugging framework from [3]. In detail, [3] identifies
suspect locations that when corrected, fix the erroneous behavior
exposed by a counter-example. Let X^i denote the primary input
values from the counter-example in cycle i and allow Y^i to denote
the reference primary input logic values in cycle i, as defined earlier.
Let $B = \{b_1, \ldots, b_{|B|}\}$ denote the RTL blocks in the circuit, where
the output of block b_j in cycle i is b_j^i. An enhanced transition relation,
$T_{en}(S^i, S^{i+1}, X^i, Y^i, e)$ is constructed with added error-select lines
$e = [e_1, \ldots, e_{|B|}]$. If $e_i = 0$, the behavior of b_i is unchanged, while
setting $e_i = 1$ replaces b_i^i with a free variable w_i^j for all values of j.
Additional input and output constraints are then derived from the
counter-example to set the primary input to the values from the
counter-example and to force the primary output to the reference logic
values for cycle i, respectively. Further, constraint $I(S^i)$ ensures that the
circuit begins at a particular initial state. Finally, the number of
simultaneously-active error-select lines is limited to a user-specified
value N with a cardinality constraint Φ_N.

As such, for a k-cycle counter-example, the problem encoding is:

$$D = I(S^0) \land \bigwedge_{i=0}^{k} \left(T_{en}(S^i, S^{i+1}, X^i, Y^i, e) \right) \land \Phi_N \quad (1)$$

Where X^i represents the primary input values from cycle i of the
counter-example and Y^i is set to the reference primary output values
for cycle i. Each satisfying assignment of Eq. 1 corresponds to an
N-tuple of suspect locations that can be corrected to fix the erroneous
behavior of the counter-example.

We conclude this section with a brute-force automated approach
to debug a design for an unreachable state. As to the best of our
knowledge there is no prior work for us to compare, we will later
contrast this approach with the methodology developed in this paper.
Such a brute-force approach can use the state-of-the-art methodology
from [3] to generate a debugging problem aimed at correcting a
design error that causes an unreachable state. It creates an ILA of i
cycles which is later constrained using the initial set of states and by
placing the target unreachable state S as a final state constraint. In
essence, this approach annotates Eq. 1 as follows:

$$B(i, S) = I(S^0) \land \bigwedge_{j=0}^{i} T_{en}(S^j, S^{j+1}, X^j, Y^j, e)$$

\land \left(S^{i+1} = S \right) \land \Phi_N \quad (2)$$

By solving the constraint satisfaction problem in Eq. 2 for increasing
values of $i \leq k$, the method essentially searches for error locations
where fixes can be performed to make the target state $(i+1)$-
reachable. By construction, the method is exhaustive, that is, it
will return all solutions to the problem. On the other hand, as the
state-space explodes with increasing values of i, its performance
may deteriorate as the SAT solver gradually explores a much larger
solution space. This fact motivates for the development of novel
methodologies tailored to the problem of state unreachability.

III. Uni-Cycle Unreachability

This section presents an algorithm to localize bugs that cause a
design to have unreachable states. Given an erroneous circuit C and
an unreachable target state S, the algorithm finds suspect locations
that can be changed to make S reachable with one transition from
some already-reachable state.

The algorithm consists of a sequence of iterations, each of which
models and debugs a single state transition from an already-reachable
state to S. As calculating the exact reachable set of states is
an intractable problem, at each step of the algorithm an over-
approximation is utilized to model the potential set of reachable
states. Spurious solutions that arise from the use of an approximation
are detected and discarded. For simplicity, the initial formulation
presented in this section only identifies error locations for which the
target can be made reachable directly from an already-reachable state.
The next section extends the method to handle the cases where other
unreachable states must be reached prior to reaching the target state.

Specifically, the i-th iteration searches for solutions that may make
the target state M-reachable. Each iteration consists of two steps:
reachability analysis and debugging. Reachability analysis calculates
an initial approximation F_i of the set of i-reachable states using
the reachability analysis procedure of [9], described in Section II-B,
where S is used as the safety property to prove. For the purposes
of this formulation, reachability analysis can be treated as a “black
box,” and so the remainder of this section focuses on debugging.

The debugging step constructs a SAT-based debugging instance,
with the goal of finding suspect locations that can be changed to
allow for a state transition from a state in R_i to the target state S.
Towards this end, the instance utilizes a single copy of the transition
relation constrained by set F_i at its input and the target state S at its
output. Intuitively, the current set of states for the debugging instance
is constrained using F_i while the next state is constrained to S. The
primary input and output variables are left unconstrained, allowing
the SAT solver to find solutions for any input assignment. As such,
the resulting debugging instance can be expressed as follows:

$$U(i, S) = F_i(S^i) \land T_{en}(S^i, S^{i+1}, X^i, Y^i, e) \land \left(S^{i+1} = S \right) \land \Phi_N \quad (3)$$

Note that solutions to Eq. 3 merely indicate locations where a change
may be applied to make the target state reachable. The engineer
must make an informed decision as to how to implement these
changes while maintaining the required functionality. As is the case
for traditional debugging based on a set of counter-examples [3], a
full verification step is required to confirm the correctness of the
modified design.

It is instructive to compare the proposed formulation to the brute-
force approach. Towards this end, Fig. 1 illustrates the models
represented by Eq. 2 and Eq. 3. In solving the ILA behind $B(i, S)$,
the SAT solver is given the freedom to set values for all the primary

Fig. 1. Model of (a) $B(i, S)$ (b) $U(i, S)$
input variables and the error-select lines. By construction, the state elements (shown as slices between copies of the transition relation in Fig. 2) can be changed to make the target state reachable in one cycle from a reachable state. Therefore, a solution found by the SAT solver, line 6 attempts to prove it is non-spurious. Finally, lines 9-11 apply the strengthening procedure if the current state of the solution is found not to be i-reachable.

Theorem 1 In iteration i, the algorithm finds exactly the set of all solutions that make the target state \(S \) reachable in one cycle from an i-reachable state.

Proof: The debugging instance of Eq. 3 uses \(F_i \) as its current state set. Throughout the iteration, \(F_i \) is updated, but \(R_i \subseteq F_i \) always holds. Therefore, the current state set of the debugging instance always includes all states in \(R_i \), implying that the algorithm finds every solution that reaches the target state and has a current state in \(R_i \). Furthermore, solutions with a current state that is not in \(R_i \) are rejected, implying that all solutions found have a current state in \(R_i \). This implies that it finds exactly the set of all solutions that allow for a state transition from a state in \(R_i \) to the target state \(S \).

Theorem 1 proves that the algorithm works when \(S \) can be reached with one transition from a state that is i-reachable. However, the target state may not be the only erroneously unreachable state. It may be the case that it can be reached through a sequence of states that are all erroneously unreachable. The following section extends the algorithm to find solutions in these cases.

IV. Multi-Cycle Unreachability

To obtain solutions that reach the target state \(S \) in more than one cycle from an already-reachable state, the approach presented here models a sequence of state transitions that originates from a reachable state and ultimately transitions to \(S \). To do this, the corresponding debugging instance is expressed as follows:

\[
M(i, n, S) = F_i(S^i) \land \bigwedge_{j=1}^{i-n-1} T_{\alpha_k}(S^i, S^{i+j}, X^j, Y^j, v) \land (S^{i+n} \not= S) \land \Phi_N
\]

The parameter \(i \) represents the number of clock cycles modeled by the approximation \(F_i \), while \(n \) represents the window size, that is, the number of state transitions the algorithm is allowed to “look forward” for unreachable states so that it reaches \(S \). Rather than finding solutions that make the target state \((i+1)\)-reachable, \(M(i, n, S) \) can return solutions that make the target state \((i+n)\)-reachable. As was
the case for Eq. 3, a solution to $M(i,n,S)$ of cardinality N consists of N active error-select lines and a current state in the set F_i.

One may observe that the brute-force approach and the single-cycle approach are merely orthogonal special cases of Eq. 4. A window size of one makes this approach equivalent to the uni-cycle approach, that is, $M(i,1,S) = U(i, S)$. Conversely, using a window of $k + 1$ cycles and constraining the current state to the initial states of the circuit makes this approach equivalent to the brute-force approach as $M(0,i + 1,S) = B(i, S)$. Again, Fig. 3 illustrates the model of $M(i,n,S)$ to demonstrate features shared with Eq. 2 and Eq. 3.

Due to the use of approximation, some solutions to $M(i,n,S)$ may not be solutions to the unreachability problem. That is, solutions to $M(i,n,S)$ exist that are not solutions to $B(j, S)$ for any $j < i + n$. Therefore, a means of rejecting these spurious solutions is needed. Intuitively, a solution for which the current state is i-reachable is non-spurious by the same argument used in the previous section. Therefore, the extended algorithm uses the same mechanism used in Algorithm 1 to reject spurious solutions, that is when a solution is found, the current state is checked for i-reachability. If it is found not to be i-reachable, it is discarded and used to improve the approximation F_i. Otherwise the solution is added to the final set.

Pseudo code for the procedure is shown in Algorithm 2. In addition to the procedures used in Algorithm 1, it assumes the existence of a procedure MULTI_CYCLEDEBUGGING_INSTANCE, which generates the propositional formula of Eq. 4. In the algorithm, line 5 calculates the initial approximation of the reachable set. In iterations prior to iteration n this is simply F_0 (i.e. the initial states). In later iterations, it is an approximation of the $(i + n + 1)$-reachable set. Lines 7-15 essentially perform an iteration of Algorithm 1 using the n-cycle debugging instance of Eq. 4 in place of the single-cycle debugging instance of Eq. 3. Note that in iterations $0 \leq i < n$ the algorithm models only $(i+1) \leq n$ clock cycles, allowing it to still find solutions that make the target state $(i+1)$-reachable in these iterations. Further, the current state set is restricted to the set of initial states, essentially making it equivalent to the brute-force approach.

The following theorem shows the algorithm correctly returns all solutions. We omit its proof which is similar to that of Theorem 1.

Theorem 2 The solution set of $M(i,n,S)$ is exactly the set of all solutions that make the target state S reachable n cycles after an i-reachable state.

Algorithm 2 **MULTI_CYCLE_UNREACHABILITY**(C, S, k)

1. $solutions = \emptyset$
2. for i in 0, 1, ..., k do
3. $n' = \min(n, i + 1)$
4. $t = i - n' + 1$
5. $F_i = \text{REACHABILITY_ANALYSIS}(i)$
6. $M = \text{MULTI_CYCLEDEBUGGINGINSTANCE}(C, S, F_i, n')$
7. while $(\text{Solution} = \text{SAT}(M)) \neq \text{UNSAT}$ do
8. if REACHABILITY_CHECK(Solution, F_i) then
9. $solutions = solutions \cup \{\text{Solution}\}$
10. else
11. $\text{NewClauses} = \text{STRENGTHEN}(F_i, \text{Solution})$
12. $F_i = F_i \land \text{NewClauses}$
13. $M = M \land \text{NewClauses}$
14. end if
15. end while
16. end for
17. return $solutions$

Algorithm 2 is a modification to Algorithm 1, but can also be applied to Algorithm 2.

Given iteration limit k, Algorithm 1 must solve $k + 1$ debugging instances. Each iteration finds a new over-approximation enlarging the set of current states to be considered. This implies that each iteration has the potential to find a larger set of solutions than previous iterations. The proposed modification simply skips the first k iterations and starts by executing the final iteration directly. It computes F_0, F_1, ..., F_k using the reachability analysis procedure from [9] without strengthening any of the intermediate approximations. It then proceeds to solve $U(k, S)$, rejecting potentially spurious solutions and strengthening the approximations as done in Algorithm 1.

While this approach returns the same solution set as the original algorithm, it may sacrifice resolution. In particular, a solution that Algorithm 1 finds in iteration i but not in any earlier iterations can make the target state reachable in a minimum of $i + 1$ cycles. The modified approach will find the same solution, but it will not indicate the minimum number of cycles in which the solution can reach the target state. The benefit of course is that the algorithm solves only one problem instance when compared to the $k + 1$ incremental instances of the original algorithm. Hence, this modification presents a tradeoff between run-time and resolution.

Further, as the optimized approach does not strengthen the intermediate approximations, reachability analysis may compute inaccurate approximations. This can produce more spurious solutions and increase the run-time of the reachability checking procedure of [9], making it more expensive to identify potentially spurious solutions. Nevertheless, empirical results presented in the next section demonstrate that strengthening tends to rapidly improve the accuracy of the approximations removing such spurious solutions quickly. As a result, the modified algorithm exhibits a run-time performance which is an order of magnitude better than that of the original approach.

VI. EXPERIMENTAL RESULTS

All empirical results presented in this section are run on a single core of an i5-3570K 3.4 GHz workstation with 16GB of RAM using a timeout of 14400 seconds. The presented algorithms are implemented using a state-of-the-art SAT-based debugger [3] with a Verilog frontend and MiniSat v2.2.0 [12] as the underlying SAT solver. Reachability analysis/checking and strengthening are based on the implementation of property directed reachability [13] within ABC release 1.01 [14]. Five designs from OpenCores [15] and one commercial design from an industrial partner are utilized as benchmarks. Each problem instance is created by injecting a design error such as complementing conditions in if-statements, introducing incorrect state transitions, changing operators in expressions, etc. These are typical design errors observed in industry. Each design error is chosen such that it makes at least one state unreachable.

V. PERFORMANCE OPTIMIZATION

In this section we discuss a performance-driven enhancement for the methodologies presented earlier. The enhancement is presented as
Table I shows comprehensive results. All experiments are constrained with error cardinality $N = 1$. The first column contains the name of the problem instance, while the second shows the number of cycles for which solutions are pursued. The next two columns show the run-time and number of solutions found using the brute-force approach. The next three columns show the run-time, number of solutions found, and speedup (relative to brute-force) using the uni-cycle approach. The following nine columns show similar data for the optimized uni-cycle approach, the unoptimized multi-cycle approach and the optimized multi-cycle approach, respectively.

Note that the optimized and unoptimized approaches always find the same solutions. However, over the entire set of experiments, the optimized uni-cycle approach provides a speedup of 21.2x when compared to the uni-cycle approach. At $k = 10$, the speedup is only 6.1x, demonstrating that the optimization is more effective for larger values of k. Similarly, optimizing the multi-cycle approach gives a 29.6x speedup, reduced to 7.9x at $k = 10$.

Fig. 4 plots the number of solutions found by each approach using $k = 10$. The uni-cycle approach returns on the average 37% of the complete solution set of the brute-force approach, while the multi-cycle approach with $n = 5$ finds an average of 91%. The algorithm finds a particularly useful subset of the complete solution set, that is the subset of all solutions that require reaching n or fewer non-k-reachable states in order to reach a target state. It is expected that some of the unreachable states may be intended to remain invalid by the specification. That is, the design being debugged is expected to satisfy some invariant properties required by the specification. Therefore, limiting the solution set using the window size n is a desirable feature, as it may exclude solutions that are likely to violate these invariants. Modifying our formulation to automatically exclude solutions that violate specification invariants is a target of future work.

This suggests that correcting the design error will result in reaching a target state through a sequence of unreachable states. Fig. 5 plots the number of solutions found for wb and $divider$ using different window sizes. It can be seen that wb has 244 more solutions at $n = 5$ than at $n = 4$. This suggests that correcting the design error will result in reaching a sequence of unreachable states prior to reaching the target state. Conversely, $divider$ exhibits steady and constant growth in the number of solutions with increasing n and then it plateaus. This is because the design error occurs in a pipelined portion of the design.

Increasing the window size essentially allows the algorithm to find error locations in earlier pipeline stages.

Fig. 6 shows the run-time of the brute-force and uni-cycle approaches against k for the design spi. It can be seen that with increasing k, the brute-force approach appears to exhibit exponential run-time growth. Conversely, the presented approach appears to

TABLE I

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Brute-Force</th>
<th>Uni-Cycle</th>
<th>Optimized Uni-Cycle</th>
<th>Multi-Cycle</th>
<th>Optimized Multi-Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>k</td>
<td>time (s)</td>
<td>#solutions</td>
<td>time (s)</td>
<td>time (s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wb</td>
<td>10</td>
<td>206 246</td>
<td>29 2 7.1x</td>
<td>3.7 2 55.3x</td>
<td>211 246 1.0x</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>4020 246</td>
<td>70 2 57.1x</td>
<td>3.7 2 1078.0x</td>
<td>510 246 1.9x</td>
</tr>
<tr>
<td>wb</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>3.8 2 8.9x</td>
<td>1012 246 -</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>3.8 2 -</td>
<td>2024 246 -</td>
</tr>
<tr>
<td>wb</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>4.1 2 -</td>
<td>4056 246 -</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1008 8</td>
<td>0.2x</td>
<td>190 8 0.5x</td>
<td>743 8 0.1x</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>305 8</td>
<td>0.4x</td>
<td>665 8 0.5x</td>
<td>2223 8 0.1x</td>
</tr>
<tr>
<td>$mrisc$</td>
<td>50</td>
<td>1069 8</td>
<td>0.5x</td>
<td>1095 8 1.0x</td>
<td>5606 8 0.2x</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>13699 8</td>
<td>1.3x</td>
<td>1394 8 9.8x</td>
<td>- 8 -</td>
</tr>
<tr>
<td>$ncore$</td>
<td>200</td>
<td>60 8</td>
<td>-</td>
<td>2171 8 -</td>
<td>- 8 -</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>69 30</td>
<td>-</td>
<td>39 21 1.8x</td>
<td>4.2 21 16.5x</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>268 30</td>
<td>-</td>
<td>95 21 2.8x</td>
<td>4.3 21 61.9x</td>
</tr>
<tr>
<td>$design$</td>
<td>50</td>
<td>809 30</td>
<td>-</td>
<td>189 21 4.3x</td>
<td>4.7 21 173.9x</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>3003 30</td>
<td>-</td>
<td>394 21 7.6x</td>
<td>4.8 21 623.5x</td>
</tr>
<tr>
<td>$design$</td>
<td>25</td>
<td>148 30</td>
<td>-</td>
<td>877 21 5.5x</td>
<td>5.5 21 -</td>
</tr>
<tr>
<td>wb</td>
<td>10</td>
<td>160 28</td>
<td>-</td>
<td>742 27 0.2x</td>
<td>122 27 1.3x</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>769 28</td>
<td>-</td>
<td>- - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>spi</td>
<td>10</td>
<td>39 52</td>
<td>-</td>
<td>35 4 1.1x</td>
<td>3.7 4 10.8x</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>117 52</td>
<td>-</td>
<td>77 4 1.5x</td>
<td>3.7 4 31.7x</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>253 52</td>
<td>-</td>
<td>146 4 1.8x</td>
<td>3.8 4 67.1x</td>
</tr>
<tr>
<td>spi</td>
<td>100</td>
<td>538 52</td>
<td>-</td>
<td>283 4 2.1x</td>
<td>3.8 4 152.9x</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1413 52</td>
<td>-</td>
<td>561 4 2.5x</td>
<td>3.9 4 365.7x</td>
</tr>
<tr>
<td>spi</td>
<td>10</td>
<td>14 22</td>
<td>-</td>
<td>14 22 1.0x</td>
<td>1.8 22 7.8x</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>64 22</td>
<td>-</td>
<td>35 22 1.8x</td>
<td>2.1 22 30.6x</td>
</tr>
<tr>
<td>spi</td>
<td>50</td>
<td>267 22</td>
<td>-</td>
<td>70 22 3.8x</td>
<td>2.7 22 99.5x</td>
</tr>
<tr>
<td>spi</td>
<td>100</td>
<td>1399 22</td>
<td>-</td>
<td>147 22 9.5x</td>
<td>3.4 22 410.4x</td>
</tr>
<tr>
<td>spi</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>334 22 -</td>
<td>3.0 22 -</td>
</tr>
</tbody>
</table>

Fig. 4. Number of solutions found for each approach ($k = 10$)
exhibit linear run-time growth for this design. This confirms the effectiveness of our method.

Table II shows the number of spurious solutions rejected for the designs mrisc_core and spi. The first two columns show the design and the value of \(k \) used. The next four columns show the number of spurious solutions rejected for the unoptimized uni-cycle approach, unoptimized multi-cycle approach \((n = 5)\) optimized uni-cycle approach, and optimized multi-cycle approach \((n = 5)\), respectively. As explained earlier, in theory, the algorithm may reject a non-spurious solution that also makes its unreachable current state reachable. Across all experiments this rare case never occurred.

It can be seen that earlier iterations find more spurious solutions than later ones. This suggests that the approximated reachable sets become sufficiently accurate to prevent most spurious solutions in a relatively small number of iterations. Obviously, this is dependent on the difficulty of approximating the reachable state space for individual designs, as evidenced by the wide variation in the number of spurious solutions found between designs.

Notice that after 25 iterations, the algorithm finds very few spurious solutions for spi. This suggests that the reachable set is approximated with sufficient accuracy to prevent many spurious solutions after this point. In particular, it is likely that few states require more than 25 cycles to be reached in this design. Furthermore, note the difference in spurious solutions found between spi and mrisc_core. The algorithm continues to find many spurious solutions up to iteration 200 for mrisc_core, suggesting that its reachable set is more difficult to approximate. This further explains the difference in run-time behavior observed between the two designs.

A similar pattern appears with the optimized approaches, where the run-time for mrisc_core grows substantially with increasing values of \(k \), but for spi remains near-constant. This is also explained by the nature of the reachable state sets for these designs. Since the set for spi is relatively well-approximated after 25 iterations, the optimized algorithm solves a very similar problem at \(k = 25 \) and at \(k = 100 \). However, for mrisc_core, the problem is substantially more difficult at \(k = 100 \) than at \(k = 25 \).

This is also the reason the optimized approach is able to achieve such large speedups in certain cases. After the reachable set of states stops expanding significantly, increasing \(k \) only negligibly impacts the run-time of the optimized algorithm. However, the brute-force approach always solves a much larger problem when \(k \) increases, and the speedup can therefore become substantial in these cases.

VII. Conclusion

This work presents an algorithm to localize bugs that manifest themselves as unreachable states. This is done by combining an approximated reachability analysis procedure with state-of-the-art SAT-based debugging. An optimization is also presented to improve performance. Experimental results confirm the effectiveness and practicality of the presented approach against the state-of-the-art.

REFERENCES