Abstract— An energy-efficient distributed Scratchpad Video Memory Architecture (dSVM) for the next-generation parallel High Efficiency Video Coding is presented. Our dSVM combines private and overlapping (shared) Scratchpad Memories (SPMs) to support data reuse within and across different cores concurrently executing multiple parallel HEVC threads. We developed a statistical method to size and design the organization of the SPMs along with a supporting memory reading policy for energy efficiency. The key is to leverage the HEVC and video content knowledge. Furthermore, we integrate an adaptive power management policy for SPMs to manage the power states of different memory parts at run time depending upon the varying video content properties. Our experimental results illustrate that our dSVM architecture reduces the overall memory energy consumption by up to 51%-61% compared to parallelized state-of-the-art solutions [11]. The dSVM external memory energy savings increase with an increasing number of parallel HEVC threads and size of search window. Moreover, our SPM power management reacts to the current video properties and achieves up to 54% on-chip leakage energy savings.

Keywords—Video Memory, Scratchpad Memory, HEVC, Application-Specific Optimizations, Energy Efficiency, Adaptivity.

I. INTRODUCTION

To bridge the increasing gaps between the processor and memory scaling/speed in many-cores era with memory-intensive applications, specialization of memory architectures has become one of most important design issues. Multiple cores simultaneously accessing the same memory infrastructure incur high energy consumption and contention. Meanwhile, embedded multi-/many-core processors are subjected to stringent energy constraints. These issues intriccate when executing memory-intensive applications like video coding, image matching, etc.

The High Efficiency Video Coding (HEVC) is the next-generation video coding standard [1] that provides double compression compared to its predecessor H.264/AVC. However, this comes at the cost of >40% more computation effort compared to the H.264 encoder as shown by our experimental analysis in Fig. 1a. This increased complexity is due to the novel Coding Tree Unit (CTU) structure [2] and a plethora of new prediction modes that result in an increased mode decision space [3]. Moreover, these new coding features lead to >2x more memory accesses compared to H.264/AVC due to more intensive reference frames storage and transmission (as in Fig. 1b). A large amount of off-/on-chip memory accesses and large-sized on-chip memories lead to high energy consumption in HEVC encoders. To achieve high performance, HEVC encoders can be parallelized on multi-/many-core processing platforms. However, this may lead to further increase in the energy consumption and memory pressure due to multiple encoding cores requiring the same data from the memory infrastructure, posing new challenges for the embedded multimedia systems.

A large body of research explored efficient cache organizations and on-chip memory architectures for general purpose multi-/many-core processors [18]. To overcome/alleviate the hardware overhead of caches, Scratch-Pad Memories (SPMs) evolved for energy-constrained embedded systems [19]. Instead of providing hardware support for mapping data/code from off-chip to on-chip memory, SPM allows designer/compiler to perform content management saving up to 30% of energy compared to complete caches under certain operating scenarios [19]. The challenge is to efficiently utilize the SPMs.

Considering the above-discussed memory issues of HEVC, general-purpose techniques for SPM management [20]-[22] may not be energy efficient. Recent trends demonstrated benefits of application-specific SPMs management for low-power H.264 video encoding for single core or ASIC-based systems [4]-[7]. However, these works lack support for many-cores which are more memory restrictive and do not address memory contention in private vs. shared memories for cores synchronization. Moreover, these works do not account for the novel coding model of the advanced HEVC that can be leveraged to achieve even higher energy savings as we will motivate in Section I.B.

In summary, there is a strong need for application-specific memory design targeting energy-efficient high efficiency video encoding on embedded multi-/many-core platforms. Our goal is to leverage the application-specific characteristics of the emerging HEVC standard to increase the potential of energy savings.

Before moving further, we will present basics of HEVC to the level of details necessary to understand our novel contribution.

A. Overview of HEVC Coding Tools and Related Memory Issues

To facilitate parallelization with minimal quality loss, the standardization committee (JCT-VC) introduced the novel concept of Tiles2 in HEVC, which is different from slices that are used for video streaming [17]. Tiles divide one video frame into rectangular regions that can be coded independent of each other, thus increasing the thread level parallelism [15][16]. Fig. 2 presents an example of 4-Tile partitioning. Each Tile is assigned to a specific core without any data dependency with another Tile processing.

The inter-frame prediction with Motion Estimation (ME) is the most complex processing step in the HEVC encoder as it corresponds to >80% of the computation time and energy consumption of HEVC encoders. ME searches the best match of a block from the current frame in a set of so-called reference frames3. The search is performed in a restricted search window. The reference frames are typically stored in the external/off-chip memory while the search windows are stored in on-chip memories. Due to the memory management for fetching the search window samples from the off-chip and increased leakage energy for keeping them in the on-chip memory, the ME becomes the most

1 Examples: IBM Cell Processor [23], ARM10E [24], TI TMS370CXTX [25], etc.
2 These are video Tiles, i.e. different from hardware tiles in many-core processors.
3 These are previously coded and reconstructed frames.
memory-intensive processing block [4]-[7]. As a result, 70%-90% of the ME energy is spent in the off-chip and on-chip memories (leakage and dynamic) [4]-[7]. Furthermore, multiple Tiles amplify the memory pressure since more data must be fetched/stored during the same time instant.

Goals and Motivational Analysis

The main goal of our work is to leverage the application-specific knowledge of the emerging HEVC standard (i.e., its new coding tools) and video content properties to develop an energy-efficient SPM-based on-chip video memory. The key is (1) to analyze and exploit the memory access behavior in the video Tiles-based processing; and (2) the overlapping reference samples that define the shared access patterns for different cores processing different Tiles. The samples near to the tile boundaries in the reference frame must be fetched/stored by multiple cores, leading to external memory contention, redundant memory access and extra on-chip storage (causing energy wastage). An example in Fig. 4a depicts the overlapping accesses performed for more than one tile processing core (gray and black regions).

In the following, we highlight important memory related issues during the Tile-based HEVC processing with the help of our experimental case study and expose the potential of application-specific optimization with the help of several observations.

Analysis-1: Overlapping Regions

The overlapping regions tend to grow for an increased number of Tiles (assuming 1 Tile per core). The overlap size trend is plotted for growing number of Tiles in the Fig. 4b. In the worst case, the overlap reaches 50% in a 16-core HEVC encoder. As larger is the overlapping area, more cores must concurrently access the same reference data from the external memory without any data reuse. Therefore, it may be beneficial to design dedicated SPMs for the overlapping regions to avoid external memory retransmission of the Tiles shared reference data, saving off-chip memory energy.

Analysis-2: Heterogeneous Overlapping

Although the ME is performed within a search window, the search algorithm may not require all the samples. For instance, the TZ search algorithm in the HEVC software [14] does not necessarily explores the entire search window analysis [6]. Moreover, adaptive ME algorithms feature changing centering of the search window depending upon the already coded neighboring CUs. As a result, the Tiles overlap shape may substantially vary according to the video content as shown in Fig. 5. Furthermore, the samples inside the overlapping regions have different access intensities. It shows that, not all parts of the on-chip video memory (storing the overlapping samples) will be accessed for every CU depending on the video content. Even for the accessed sectors, the access distribution is different depending on the video content characteristics. Therefore, the key is to leverage the overlapping memory access knowledge to predict the unused or less-frequently used memory sectors for adaptive power management of the SPMs.

C. Our Novel Contributions

We propose an energy efficient distributed Scratchpad video memory architecture (dSVM) for the next-generation High-Efficiency Video Coding (HEVC) exploiting the video Tiles based parallel processing on multi/many-core processors. It employs:

- **A Distributed Scratchpad Video Memory Architecture (Section III) that integrates several private and overlapping (shared) SPMs to support intra-Tile and inter-Tiles data reuse, respectively, among various cores. We develop a scheme that leverages the offline statistical analysis of HEVC and video content to size and design the organization of SPMs. A reading policy is designed for energy-efficient data fetching.**

- **Adaptive Power Management of dSVM (Section IV) that takes into account the size and the shape of the predicted overlapping area to select appropriate sleep states for different regions of private and overlapping SPMs.**

We evaluate the energy efficiency of our dSVM architecture for various recommended test video sequences for different number of Tiles. To the best of authors’ knowledge, this is the first work towards energy-efficient on-chip memory hierarchy for the emerging Tile-based parallel HEVC encoders.
II. MEMORY MODELS AND NOTATIONS

Every data transmission from/to memory is based on a fixed basic access unit (BU), which corresponds to a BU Exec, BU SRC picture block. When external memory communication is required, then several BUs are accessed in one burst operation to increase the energy efficiency.

On-Chip SRAM Organization Model: We adopt a bank-based partitioning Scratchpad memory (SPM) model to allow for parallel data accesses; see Fig. 6. Each SPM is composed of N_b number of banks. To facilitate parallel reading, different rows of a BU are stored in parallel in the banks. A bank B_i is composed of N_b sectors of size S_e. Each sector has N_e number of lines of size S_l.

Different sectors of the SPM can be individually power-gated using a multiple sleep-state transistor model supporting four power states [12]: $S_0=OFF$, $S_1,S_2=Data$ Retentive and $S_3=ON$, where $E_{act}(S_0)<E_{act}(S_1)<E_{act}(S_2)<E_{act}(S_3)$. Still, each state has also increasing associated wake-up energies ($E_{WE}(S_0)<E_{WE}(S_1)<E_{WE}(S_2)<E_{WE}(S_3)=0$).

III. ARCHITECTURE OF OUR DISTRIBUTED SCRATCHPAD VIDEO MEMORY

Off-Chip DDR DRAM Model: For energy estimation of the off-chip memory, we adopt the DDR (Dual Data Rate) DRAM model depicted in [9]-[10]. The total power is derived by the composition of six components: (1) page activation energy (E_{act}), (2) write energy (E_{ww}), (3) read energy (E_{rr}), (4) I/O pins energy (E_{pd}), (5) refresh energy (E_{ref}), and (6) standby energy (E_{stby}). In the experimental analysis, we assume that the memory will always operate in the active state and the standby energy will be equivalent to the E_{act}/$.stby$ component.

A. SPM Access Management Unit: Reading Policy and External Memory Arbitering

Our SPM access management unit implements the memory reading policy (see flowchart of Fig. 8) that takes advantage from the tiles overlap to increase the data-reuse of the reference frames samples. If a core i requests data from the SPM memory organization, as the first step, the SPM access management unit checks along with the overlap prediction if the requested data potentially belongs to one tiles overlapping region. Assuming that the data is inside an overlap related to the tiles intersection T, the corresponding cores-shared $OvSPM_i$ is then accessed. In this case, the inter-Tiles data reuse is exploited, since all tiles that share the tile boundary T may request the same data. For non-overlapping regions, the PrivSPM is accessed, leading to intra-Tile data reuse. Note that for each core data request, either the shared ($OvSPM_i$) or the private (PrivSPM_i) memory is accessed. In the case of a hit, the data is simply forwarded to core i. In case of a miss, the data must be fetched from the external memory and forwarded to the core i. For improved energy efficiency, the SPM access management unit requests a burst of samples from the DRAM memory, which reduces the DRAM page activation energy and amortizes the initial latency for memory random access [7]. Furthermore, the corresponding SPM is filled with the fetched data. To handle parallel accesses to the $OvSPM$, we employ a priority based scheduling.

An Example: Fig. 9 illustrates an example for our memory reading policy in three different cases for a 2-core encoding system.
The Probability Density Function (PDF) of the motion delta metric is then calculated (CUs from the two Tile boundary sides (Tile boundary, the algorithm obtains the used ME spatial predictors presented in Fig. 11. For each frame of the video and for each defined video correlated parameter used for determining the overlap size range of distributions, while low motion videos like BasketballDrive depict statistics of the tiles overlap varying the search window size. On average, the overlap linearly increases with the increase in the search range. The more or less concentrated distribution around the average size hints towards the video motion properties. Different regions near the tile boundaries have different motion characteristic, which leads to more or less memory access overlaps.

B. Design of Scratchpad Video Memories

A key challenge is to determine an appropriate size and organization of different SPMs (PrivSPMs and OvSPMs) to optimize for leakage and dynamic energy. We propose an application-guided methodology that exploits the statistical analysis of memory access behavior Tile-parallelized HEVC in order to increase the energy efficiency of our dSVM architecture.

Our methodology leverages the Tiles overlap behavior that depends on the search window size and the video motion properties. Adaptive ME algorithms change the center of their search windows by using spatial predictors (i.e., motion vectors of previously-coded CUs). Moreover, low motion CUs will lead to less search window usage. Hence, the optimal overlapping memory size for each video sequence follows a statistical distribution of the near-boundaries ME motion predictors. Fig. 10a depicts statistics of the tiles overlap varying the search window size. On average, the overlap linearly increases with the increase in the search range. The more or less concentrated distribution around the average size hints towards the video motion properties. Different regions near the tile boundaries have different motion characteristic, which leads to more or less memory access overlaps.

Fig. 10 (a) Overlapping statistics for increasing search window size for the “BasketballDrive” test video sequence; (b) motion delta distribution for several test video sequences.

To statistically define the motion property near a specific tile boundary of a given video, we define the \(\Delta_{\text{Motion}} \) (motion delta) metric as being the video correlated parameter used for determining the overlap size, as presented in Fig. 11. For each frame of the video and for each defined Tile boundary, the algorithm obtains the used ME spatial predictors (lines 7-8). The difference of the predictors used by the near-boundary CUs from the two Tile boundary sides (SideA and SideB) is then calculated (lines 12-17). This difference will represent the access search range of SideA CUs in the SideB reference frame region, and vice-versa. The Probability Density Function (PDF) of the motion delta metric is then calculated (line 20), where \(\mu_{\Delta} \) and \(\sigma_{\Delta} \) are the statistical average and standard deviation, respectively, of the motion delta parameters extracted from the video. The PDFs for HD1080p test sequences are plotted in Fig. 10b. We can note diverse behaviors depending on the input video: high motion videos like BasketballDrive and Kimono present more spread distributions, while low motion videos like Cactus and BasketballDrive have more concentrated distributions. Using the motion parameter and the search window dimension, we define the Tiles overlap sizing formula for the overlap thickness (\(Ov_{\text{thickness}} \)) and length (\(Ov_{\text{length}} \)) in Eq. (1)-(2), respectively. The signal of the motion delta represents the video motion direction near the target tiles boundary. Negative values mean that we have opposite motion directions, which decreases the overlap size, while positive motion delta values increases the range of the overlap.

1. \(\text{determineMotionDelta(Video. V): TilePartitioning(TP):} \)
2. \(\text{List}_v = [] \)
3. \(\text{For all Frame } E \in V \)
4. \(\text{For all } Tile_{\text{edge}} E \in TP \)
5. \(= \text{PredMap}[Tile_{\text{edge}}] = [] \)
6. \(\text{For all } CU \in Tile_{\text{edge}} \)
7. \(\text{CU.performMotionEstimation}(); \)
8. \(\text{PredMap}[Tile_{\text{edge}}].insert(CU \text{.getUsedPredictor}()); \)
9. \(\text{End For} \)
10. \(\text{For all } Tile_{\text{boundary}} E \in TP \)
11. \(\text{if } \text{let } \text{SideA and SideB the two tile boundary sides} \)
12. \(\text{For all } CU_{\text{sideA}}, CU_{\text{sideB}} \in Tile_{\text{boundary}} \)
13. \(\text{PredA = PredMap}[Tile_{\text{sideA}}][CU_{\text{sideA}}][Coord_{\text{sideA}}]; \)
14. \(\text{PredB = PredMap}[Tile_{\text{sideB}}][CU_{\text{sideB}}][Coord_{\text{sideB}}]; \)
15. \(\Delta_{\text{Value}} = \text{PredA - PredB}; \)
16. \(\text{List}_v, \text{append}(|\Delta_{\text{Value}}|); \)
17. \(\text{End For} \)
18. \(\text{End For} \)
19. \(\text{End For} \)
20. \(\text{H} = \text{norm_dist} \{ \text{List}_v \} \)
21. \(\text{return } \text{H} \)

Fig. 11 Motion knowledge extraction for overlapping SPM sizing

\[Ov_{\text{thickness}}(\text{TileBoundary}_{\text{side}}) = 2 \times SW + \Delta_{\text{Motion}} \]
\[Ov_{\text{Length}}(\text{TileBoundary}_{\text{side}}) = \begin{cases} \frac{H_{\text{frame}}}{W_{\text{frame}}} & \text{if vertical} \\ \frac{W_{\text{frame}}}{H_{\text{frame}}} & \text{if horizontal} \end{cases} \]

Based on statistical evaluations and the memory organization model defined in the Section II, we determine the physical sizing for SPMs in our dSVM; see Eq. (3)-(7). For the overlapping data, each Tile boundary will lead to a specific OvSPM design. Our sizing formulation is based on the definition of the BU size (\(BU_{\text{size}} \)), which is the smaller unit that can be accessed. For instance, a \(BU_{\text{size}} \) equals to 16 means that the smaller data transmission unit is one 16x16 reference block. The BU size is a design decision for efficient power management depending on the adopted search window dimension. One BU in the overlap is mapped to a specific memory line (composed of \(OvSPM_{BU} \) bytes) along the OvSPM48 memory banks. Each OvSPM sector groups specific rows of the BUs along the overlap thickness (\(OvSPM_{\text{size}} \)). One entire line of BUs is completely stored into a group of same positioned sectors along the OvSPM48 memory blocks. In total, each OvSPM has \(OvSPM_{48} \) to store the complete overlapping data.

\[N_{OvSPM} = N_{\text{TilesBoundaries}} \]
\[OvSPM_{BU} = BU_{\text{size}} \]
\[OvSPM_{BU} = BU_{\text{size}} \]
\[OvSPM_{BU} = OvSPM_{BU} \times [Ov_{\text{thickness}}/BU_{\text{size}}] \times L \]
\[OvSPM_{BU} = OvSPM_{BU} \times [Ov_{\text{length}}/BU_{\text{size}}] \]

The PrivSPM stores the search window sample sizes, as expressed in Eq. (8)-(12). The data organization is similar to that presented for the OvSPMs except that the PrivSPM must store core-private search window instead of Tile overlaps.

\[N_{\text{PrivSPM}} = N_{\text{Tiles}} \]
\[\text{PrivSPM}_{BU} = BU_{\text{size}} \]
\[\text{PrivSPM}_{BU} = BU_{\text{size}} \]
\[\text{PrivSPM}_{BU} = [BW/BU_{\text{size}}] \times L \]
\[\text{PrivSPM}_{BU} = \text{PrivSPM}_{BU} \times [SW_{V}/BU_{\text{size}}] \]

IV. ADAPTIVE POWER MANAGEMENT OF SPMS

In case where the overlap size is reduced when low motion is captured around the tiles boundary, we propose an adaptive power
management scheme for the \textit{OvSPM} in our dSVM architecture to reduce its leakage energy. Furthermore, PrivSPMs are less accessed when CUs near the Tile boundaries are encoded since most memory requests are actually performed in the OvSPMs. Therefore, our scheme power-gates the PrivSPMs regions that are not accessed due to the overlap intersection.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{overlap_sizes.png}
\caption{Overlap sizing variation for several temporal distances (D factor).}
\end{figure}

To capture the impact of temporal distance for overlap size prediction, we define a term “D” as the distance between the current and reference frames. This distance directly affects our overlap prediction. More distant frames (i.e. high D values) lead to high overlap size due to more intense motion activity. Smaller overlaps can be noted when D is decreasing. Fig. 12 illustrates the overlap size for MEs with different D factors. Our power management selects an appropriate sleep state according to the motion behavior: relaxed power-gating (i.e. putting idle sectors in data retentive modes) is used when we have high motion overlaps. In case of low motion overlaps, aggressive power-gating (i.e. putting sectors in power-OFF mode) is applied to save leakage energy.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{adaptive_power.png}
\caption{Adaptive power management policy for the Overlapping SPm.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{private_power.png}
\caption{Adaptive power management policy for the Private SPm.}
\end{figure}

For memory energy evaluation, we use the CACTI 6.5 leakage/dynamic energies estimation for a 32nm SRAM-based SPm. The leakage reduction and wake-up energies were derived from the analytical model presented in [12]. The 4-Gbit Low-Power DDR2 (LPDDR2) DRAM MT42L128M16D1GU-25WT electrical specifications [8] were used to determine all external memory energy components mentioned in Section II. As a design decision for combined coarse- and fine-grained SPm management, considering the most widely used video resolutions and search window sizes (as listed above), we adopt $W_{SPM}=16$.

To evaluate the savings of our dSVM architecture, we select two other comparison partners: (a) SPms with Level C-based data reuse for each core, and (b) our dSVM with only the PrivSPMs and no shared OvSPMs. The energy evaluations consider the first 30 consecutive frames of each test video sequence.

B. Energy Savings

Table 1 presents the overall energy evaluation with a breakdown of off-chip and on-chip memory energy consumption.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\hline
\textbf{Scenario 1: 4-Tile Window} & & & & & \\
Our PrivSPM Only & 144 & 16 & 469 & 485 & 21\% \\
Our dSVM & 614 & 33 & 351 & 384 & - \\
\hline
\textbf{Scenario 2: 8-Tile Window} & & & & & \\
Our PrivSPM Only & 288 & 33 & 462 & 494 & 51\% \\
Our dSVM & 1098 & 63 & 179 & 242 & - \\
\hline
\end{tabular}
\caption{Overall Energy Consumption Evaluation}
\end{table}

Tab. 1 shows that our complete dSVM architecture provides the best energy efficiency for the two tested scenarios. Considering the accumulated size of SPm blocks (private plus overlapping), the dSVM architecture presents the highest memory usage. However, our adaptive power management is able to significantly reduce the leakage consumption and accordingly adapting the power states to the predicted

$$(S0)$$ is assigned to the PowerMap$_{off}$, corresponding position; otherwise, the ON state is assigned ($S3$). In CTU processing level (line 7), our power management checks for the non-accessed OvSPMs positions that areinside the overlap prediction to put them in data retentive states (lines 8-9). $$S2$$ state is assigned for positions potentially accessed by more than two Tiles, while $$S1$$ state is used for overlap positions shared for only two Tiles. The overlap usage for the current ME is updated at every CTU processing (line 11) and saved to be used for future overlap predictions (line 13).

The adaptive power management policy for the PrivSPMs is depicted in Fig. 14. At the beginning of a CTU processing, it checks for intersected positions between the core-private search window and any predicted overlap. For each intersection, it power-gates the corresponding PrivSPM positions (line 5 in Fig. 14). Note, both OvSPM and PrivSPM management work in parallel in our dSVM system.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The experimental analysis is based on the recommended HEVC common test conditions [13] using the HEVC test model (HM 11.0) [14]. We execute the experiments for 4-Tile and 8-Tile scenarios (each Tile executes on a dedicated core) for five search window dimensions: 64x64, 96x96, 128x128, 192x192, and 256x256. Six test video sequences with different properties were evaluated: BasketBallDrive (BDrive), BQTerrace, Cactus and Kimono (HD1080p: 1920x1080), PeopleOnStreet (People) and NebulaFeastful (Nebula) (2K: 2500x1600). Other encoder specifications are: GOP=8, CABAC, FRate, Random access configuration, and TZ Search algorithm.

For memory energy evaluation, we use the CACTI 6.5 leakage/dynamic energies estimation for a 32nm SRAM-based SPm. The leakage reduction and wake-up energies were derived from the analytical model presented in [12]. The 4-Gbit Low-Power DDR2 (LPDDR2) DRAM MT42L128M16D1GU-25WT electrical specifications [8] were used to determine all external memory energy components mentioned in Section II. As a design decision for combined coarse- and fine-grained SPm management, considering the most widely used video resolutions and search window sizes (as listed above), we adopt $W_{SPM}=16$.

To evaluate the savings of our dSVM architecture, we select two other comparison partners: (a) SPms with Level C-based data reuse for each core, and (b) our dSVM with only the PrivSPMs and no shared OvSPMs. The energy evaluations consider the first 30 consecutive frames of each test video sequence.
overlap size and shape. Therefore, the dSVM architecture can reduce the on-chip energy consumption being competitive with the related non-shared memories approaches. Furthermore, this slight on-chip energy overhead is amortized by significant savings in the external memory transfers that leads to overall savings of 21%-36% compared to Level C and our PrivSPM Only solution (scenario 1), respectively. In the scenario 2, our energy savings even increase to 51%-61% compared to Level C and our PrivSPM Only solution, respectively. Note that our dSVM architecture provides increasing overall savings when more Tiles (i.e. parallel HEVC threads) are used (2x higher savings, on average). Extrapolating our results for more than 8 video Tiles (as more inter-Tiles data reuse potential can be exploited), our dSVM can achieve even higher memory energy savings.

Extrapolating our results for more than 8 video Til es (as more inter-

VI. CONCLUSION

This work presented a distributed Scratchpad Video Memory Architecture for the next-generation parallel High Efficiency Video Coding. It exploits intra- and inter- video Tile level data reuse jointly through private and shared SPMS of different cores executing parallel HEVC threads. The SPM design is based on application-specific knowledge of HEVC and statistical analysis of memory access behavior w.r.t. the video content properties. To further reduce the leakage energy, we integrated an adaptive power management policy for SPMS that exploit the prediction of the overlapping accesses from different cores and their relationship to the video content properties. Our dSVM architecture provides up to 61% reduction in the overall memory energy and 54% in the leakage energy compared to state-of-the-art. Our proposed contribution enables energy-efficient multimedia systems supporting multiple threads of the next-generation HEVC encoder.

ACKNOWLEDGMENTS

This work was partly supported by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre "Invasive Computing (SFB/TR 89); http://invasic.de and partly supported by DAAD and CAPES as part of the PROBRAL project "VideoArch" - Power-Efficient Techniques for 3D-Multimedia".

REFERENCES

On-Chip Memory Energy Savings: Fig. 16 depicts the on-chip leakage energy savings of our dSVM architecture due to our adaptive power management policy. On average, our policy reduces the leakage energy by 54% and 52%, considering 4-Tile and 8-Tile scenarios. Part of the savings is related to the PrivSPMs energy management, which captures the intersections of the search window positions with the any predicted overlap. Regarding the OverSPMs, our scheme can significantly reduce the leakage energy for low motion ME, where the overlap tends to be small.