UB05 Session 5

Date: Wednesday, March 29, 2017
Time: 10:00 - 12:00
Location / Room: Booth 1, Exhibition Area

<table>
<thead>
<tr>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
| UB05.1 | NOXIM-XT: A BIT-ACCURATE POWER ESTIMATION SIMULATOR FOR NOCS (Paper/SoftConf ID: 11340) | Pierre Bomel, Université de Bretagne Sud, FR
André Rossi1, Johann Laurent2 and Erwan Moreac2
1LERIA, Université d'Angers, Angers, France, FR; 2Lab-STICC, Université de Bretagne Sud, Lorient, FR |

Abstract
We have developed an enhanced version of Noxim (Noxim-XT) to estimate the energy consumption of a NoC in a SOC. Noxim-XT is used in a two-step methodology. First, applications are mapped on a SoC and their traffics are extracted by simulation with MPSOCBench. Second, Noxim-XT tests various hardware configurations of the NoC, and for each configuration, the application's traffic is re-injected and replayed, an accurate performance and power breakdown is provided, and the user can choose different data coding strategies. With the help of Noxim XT, each configuration is bit-accurately estimated in terms of energy consumption. After simulation, a spatial mapping of the energy consumption is provided and highlights the hot-spots. Moreover, the new coding strategies allow significant energy saving. Noxim XT simulations and a FPGA-based prototype of a new coding strategy will be demonstrated at the U-booth to illustrate these works.

More information ...

UB05.2 | RIMEDIO: WHEELCHAIR MOUNTED ROBOTIC ARM DEMONSTRATOR FOR PEOPLE WITH MOTOR SKILLS IMPAIRMENTS (Paper/SoftConf ID: 11341) | Alessandro Palla, University of Pisa, IT
Gabriele Meoni and Luca Fanucci, University of Pisa, IT |

Abstract
People with reduced mobility experience many issues in the interaction with the indoor and outdoor environment because of their disability. For those users even the simplest action might be a hard/impossible task to perform without the assistance of an external aid. We propose a simple and lightweight wheelchair mounted robotic arm with the focus on the human-machine interface that has to be simple and accessible for users with different kinds of disabilities. The robotic arm is equipped with a 5 MP camera, force and proximity sensors and a 6 axis Inertial Measurement Unit on the end-effector that can be controlled using an app running on a tablet. When the user selects the object to reach (for instance a button) on the tablet screen, the arm autonomously carries out the task, using the camera image and the sensors measurements for autonomous navigation. The demonstrator consists in the robotic arm prototype, the Android tablet and a personal computer for arm setup and configuration.

More information ...

UB05.3 | NNDNN: NEURAL NETWORKS DESIGNING NEURAL NETWORKS (Paper/SoftConf ID: 11370) | Brett Meyer, McGill University, US
Warren Gross, Sean Smithson, Ossama Ahmed and Guang Yang, McGill University, US |

Abstract
Modern artificial neural networks currently achieve state-of-the-art results in various difficult problems, including image classification and speech recognition. However, both the performance and computational complexity of such models are heavily dependent on the design of characteristic hyper-parameters (e.g., numbers of hidden layers or nodes per layer) which are often manually optimized. With neural networks penetrating low-power mobile and embedded areas, the need now arises to optimize not only for performance, but also for implementation cost. In our work, we present a multi-objective design space exploration method leveraging machine learning based
response surface modelling to reduce the number of solutions trained and evaluated. Experimental results are presented for several image recognition datasets, demonstrating the evolution of the approximated Pareto-optimal hyper-parameters and corresponding GPU code; all while exploring only a small fraction of the design space.

More information ...
The unceasing shrinking process of CMOS technology is leading to its physical limits, impacting several aspects, such as performances, power consumption and many others. Alternative solutions are under investigation in order to overcome CMOS limitations. Among them, the memristor is one of promising technologies. Several works have been proposed so far, describing how to synthesize boolean logic functions on memristors-based crossbar architecture. However, depending on the synthesis parameters, different architectures can be obtained. In this demo, we show a Design Space Exploration (DSE) that we use to select the best crossbar configuration on the basis of workload dependent and independent parameters, such as area, time and power consumption. The main advantage is that it does not require any simulation and thus it avoid any runtime overheads. The demo aims to show the tool prototype on a selected set of benchmarks which will be synthesized on a memristor-based crossbar circuit.

More information ...

UB05.8 **MTA: MANCHESTER THERMAL ANALYZER** (Paper/SoftConf ID: 11362)

Presenter:
Scott Ladenheim, University of Manchester, GB

Authors:
Yi-Chung Chen, Vasilis Pavlidis and Milan Mihajlović, University of Manchester, GB

Abstract
The Manchester Thermal Analyzer (MTA) is a fast thermal analysis tool to compute temperature profiles of integrated circuits (ICs) in 3-D. The thermal simulations use the finite element method to discretize the heat equation in space coupled to an implicit time-integration method and are implemented with the open-source C++ library deal.II. The MTA supports higher-order elements, several time-integration methods, and fully adaptive spatiotemporal refinement. State-of-the-art preconditioned iterative methods solve the linear systems arising from the discretized equations as efficiently as possible. Using shared memory parallelization, the MTA solves systems on the order of tens of millions enabling modeling ICs at the cell-level. We present a thermal simulation of an Intel Xeon processor within a FCLGA package with heatsink to show the diverse structures of modern ICs the MTA simulates. The MTA also models other 3-D structures such as bonded tiers, TSVs, heatsinks, and heat spreaders.

More information ...

UB05.9 **SEFILE: A SECURE FILESYSTEM IN USERSPACE VIA SECUBE™** (Paper/SoftConf ID: 11373)

Presenter:
Giuseppe Airofandula, CINI, IT

Authors:
Paolo Prinetto1 and Antonio Varriale2
1CINI & Politecnico di Torino, IT; 2Blu5 Labs Ltd., IT

Abstract
The SEcube™ Open Source platform is a combination of three main cores in a single-chip design. Low-power ARM Cortex-M4 processor, a flexible and fast Field-Programmable-Gate-Array (FPGA), and an EAL5+ certified Security Controller (SmartCard) are embedded in an extremely compact package. This makes it a unique Open Source security environment where each function can be optimized, executed, and verified on its proper hardware device. In this demo, we present a Windows wrapper for a Filesystem in Userspace (FUSE) with an HDD firewall resorting to the hardware built-in capabilities, and the software libraries, of the SEcube™.

More information ...

UB05.10 **LABSMILING: A FRAMEWORK, COMPOSED OF A REMOTELY ACCESSIBLE TESTBED AND RELATED SW TOOLS, FOR ANALYSIS AND DESIGN OF LOW DATA-RATE WIRELESS PERSONAL AREA NETWORKS BASED ON IEEE 802.15.4** (Paper/SoftConf ID: 11355)

Presenter:
Marco Santic, University of L’Aquila, IT

Authors:
Luigi Pomante, Walter Tiberi, Carlo Centofanti and Lorenzo Di Giuseppe, DEWS - Università di L’Aquila, IT

Abstract
Low data-rate wireless personal area networks (LR-WPANs) are even more present in the fields of IoT, wearable devices and health monitoring. The development, deployment and test of such systems, based on IEEE 802.15.4 standard (and its derivations, e.g. 15.4e), require the exploitation of a testbed when the network is not trivial and grows in complexity. This demo shows the framework of LabSmiling: a testbed and related SW tools that connect a meaningful (but still scalable) number of physical devices (sensor nodes) located in a real environment. It offers the following services: program, reset, switch on/off single devices; connect to devices up/down links to inject or receive commands/msgs/packets in/from the network; set devices as low level packet sniffers, allowing to test/debug protocol compliances or extensions. Advanced services are: possibility of design test scenarios for the evaluation of network metrics (throughput, latencies, etc.) and custom application verification.

More information ...

12:00 End of session
12:30 Lunch Break in Garden Foyer

Keynote Lecture session 7.0 in “Garden Foyer” 1350 - 1420
Lunch Break in the Garden Foyer
On all conference days (Tuesday to Thursday), a buffet lunch will be offered in the Garden Foyer, in front of the session rooms. Kindly note that this is restricted to conference delegates possessing a lunch voucher only. When entering the lunch break area, delegates will be asked to present the corresponding lunch voucher of the day. Once the lunch area is being left, re-entrance is not allowed for the respective lunch.

Source URL: https://www.date-conference.com/date17/conference/session/UB05