IP4 Interactive Presentations

Date: Thursday, March 27, 2014
Time: 10:00 - 10:30
Location / Room: Conference Level, foyer

Interactive Presentations run simultaneously during a 30-minute slot. A poster associated to the IP paper is on display throughout the morning. Additionally, each IP paper is briefly introduced in a one-minute presentation in a corresponding regular session, prior to the actual Interactive Presentation. At the end of each afternoon Interactive Presentations session the award 'Best IP of the Day' is given.

<table>
<thead>
<tr>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP4-1</td>
<td>A MULTIPLE FAULT INJECTION METHODOLOGY BASED ON CONE PARTITIONING TOWARDS RTL MODELING OF LASER ATTACKS</td>
<td>Athanasios Papadimitriou, David Hely, Vincent Beroulle, Paolo Maistri and Regis Leveugle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LCIS Laboratory - Grenoble INP, FR; TIMA Laboratory / CNRS, FR; TIMA Laboratory / Grenoble INP, FR</td>
</tr>
</tbody>
</table>
| | | Abstract:
| | | Laser attacks, especially on circuits manufactured with recent deep submicron semiconductor technologies, pose a threat to secure integrated circuits due to the multiplicity of errors induced by a single attack. An efficient way to neutralize such effects is to design appropriate countermeasures, according to the circuit implementation and characteristics. Therefore tools which allow the early evaluation of security implementations are necessary. Our efforts involve the development of an RTL fault injection approach more representative of laser attacks than random multi-bit fault injections and the utilization and evolution of state of the art emulation techniques to reduce the duration of the fault injection campaigns. This will ultimately lead to the design and validation of new countermeasures against laser attacks, on ASICs implementing cryptographic algorithms. |
| IP4-2 | ENERGY EFFICIENT DATA FLOW TRANSFORMATION FOR GIVENS ROTATION BASED QR DECOMPOSITION | Namita Sharma, Preeti Ranjan Panda, Min Li, Prashant Agrawal and Francky Catthoor |
| | | IIT Delhi, IN; IMEC, BE |
| | | Abstract:
| | | QR Decomposition (QRD) is a typical matrix decomposition algorithm that shares many common features with other algorithms such as LU and Cholesky decomposition. The principle can be realized in a large number of valid processing sequences that differ significantly in the number of memory accesses and computations, and hence, the overall implementation energy. With modern low power embedded processors evolving towards register files with wide memory interfaces and vector functional units (VFs), the data flow in matrix decomposition algorithms needs to be carefully devised to achieve energy efficient implementation. In this paper, we present an efficient data flow transformation strategy for the Givens Rotation based QRD that optimizes data memory accesses. We also explore different possible implementations for QRD of multiple matrices using the SIMD feature of the processor. With the proposed data flow transformation, a reduction of up to 36% is achieved in the overall energy over conventional QRD sequences. |
| IP4-3 | MODE-CONTROLLED DATAFLOW BASED MODELING & ANALYSIS OF A 4G-LTE RECEIVER | Hrishikesh Salunkhe, Orlando Moreira and Kees van Berkel |
| | | PHD Candidate, NL; Senior DSP Systems Engineer, NL; Prof. Dr., NL |
| | | Abstract:
| | | Today's smartphones and tablets contain multiple cellular modes to support 2G/3G/4G standards, including Long Term Evolution (LTE). They run on complex multi-processor hardware platforms and have to meet hard real-time constraints. Dataflow modeling can be used to design an LTE receiver. Static dataflow allows a rich set of analysis techniques, but is too restrictive to model the dynamic behavior in many realistic applications, including LTE receivers. Dynamic dataflow allows modeling of many realistic applications, but does not support rigorous temporal analysis. Mode-Controlled Dataflow (MCDF) is a restricted form of dynamic dataflow, and allows the same analysis techniques as static dataflow, in principle. We prove that MCDF is sufficiently expressive to handle the dynamic behavior of a realistic LTE receiver, by systematically and stepwise developing a complete MCDF model for an LTE receiver. |
| IP4-4 | MODEL-BASED ACTOR MULTIPLEXING WITH APPLICATION TO COMPLEX COMMUNICATION PROTOCOLS | Christian Zebelein, Christian Haubelt, Joachim Falk, Tobias Schwarzer and Jürgen Teich |
| | | University of Rostock, DE; University of Erlangen-Nuremberg, DE |
| | | Abstract:
| | | We propose a dynamic scheduling approach for the concurrent execution of logical actor instances on a single synthesized actor instance. Based on a formal dataflow model of computation, the proposed approach can be applied to a wide range of applications in a model-based design flow. As case-study, we evaluate a bus-cycle-accurate SystemC RTL model based on an InfraBand network adapter in a PCI Express system. |
| IP4-5 | A NOVEL MODEL FOR SYSTEM-LEVEL DECISION MAKING WITH COMBINED ASP AND SMT SOLVING | Alexander Bleuer, Jens Gladsgau and Christian Haubelt |
| | | Robert Bosch GmbH, DE; University of Rostock, DE |
| | | Abstract:
| | | In this paper, we present a novel model for system-level decision making for hard real-time many-core architectures in automotive systems. The proposed application model includes shared data entities that need to be bound to memories during decision making. As a key enabler to our approach, we explicitly separate computation and shared memory communication over a network-on-chip (NoC). To deal with contention on a NoC, we model the necessary basis to implement a time-triggered schedule that guarantees freedom of interference. We compute fundamental design decisions, namely (a) spatial binding, (b) multi-hop routing, and (c) time-triggered scheduling, by a novel coupling of answer set programming (ASP) with satisfiability modulo theories (SMT) solvers. First results of an automotive case study demonstrate the applicability of our method for complex real-world applications. |
DESERT: SPEEDING-UP DESIGN SPACE EXPLORATION BY USING PREDICTIVE SIMULATION SCHEDULING

Speakers: Giovanni Mariani, Gianluca Palermo, Vittorio Zaccaria and Cristina Silvano, Politecnico di Milano, IT

Abstract

Design Space Exploration (DSE) is the problem to find the best architecture configuration in a platform based design problem. To accurately evaluate a configuration, computational expensive simulations are required. A common approach to reduce DSE execution time is to use analytic performance prediction models to approximate some of the required simulations, thus to prune the design space by removing bad configuration candidates. In this paper we will demonstrate that state of the art analytic techniques to speedup the DSE process are not capable to fully exploit the potentialities of a parallel simulation environment. We will demonstrate that, when different simulations can be run in parallel, predicting simulation time to better schedule the simulations on the parallel simulation environment is a more profitable approach with a speedup of more than 2x when compared to state of the art approaches.

COMIK: A PREDICTABLE AND CYCLE-ACCURATELY COMPOSABLE REAL-TIME MICROKERNEL

Speakers: Andrew Nelson¹, Ashkan Beyranvand Nejad¹, Anca Molnos², Martín Koedam³ and Kees Goossens³

ITDelft, NL; ¹ICREA Leti, FR; ²ITU Eindhoven, NL

Abstract

The functionality of embedded systems is ever increasing. This has lead to mixed time-critically systems, where applications with a variety of real-time requirements co-exist on the same platform and share resources. Due to inter-application interference, verifying the real-time requirements of such systems is generally non trivial. In this paper, we present the CoMK microkernel that provides temporally predictable and composable processor virtualisation. CoMK’s virtual processors are cycle-accurately composable, i.e. their timing cannot affect the timing of co-existing virtual processors by even a single cycle. Real-time applications executing on dedicated virtual processors can therefore be verified and executed in isolation, simplifying the verification of mixed time-critically systems. We demonstrate these properties through experimentation on an FPGA prototyped hardware platform.

UTILIZATION-AWARE LOAD BALANCING FOR THE ENERGY EFFICIENT OPERATION ON THE BIG.LITTLE PROCESSOR

Speakers: Myungsun Kim¹, Kibeom Kim², James Geraci¹ and Seongsoo Heng²

¹Samsung Electronics, KR; ²SAMSUNG Electronics, KR; ³Seoul National University, KR

Abstract

ARM’s big.LITTLE architecture introduces the opportunity to optimize power consumption by selecting the core type most suitable for a level of processing demand. To take advantage of this new axis of optimization, we introduce the processor utilization factor into the Linux kernel’s load balancing algorithm after carefully analyzing the power management mechanism of the big.LITTLE processor’s part of Linux and deriving its state diagram representation. Our mechanism improves the Linux kernel’s ability to assign tasks to cores in an energy efficient manner without having to make it directly aware of the available core types. Our experiments with a real test bed show that our algorithm improves energy consumption over the standard Linux scheduler up to 11.35% with almost no corresponding reduction in performance.

HEVC-DTM: APPLICATION-DRIVEN DYNAMIC THERMAL MANAGEMENT FOR HIGH EFFICIENCY VIDEO CODING

Speakers: Daniel Palomino¹, Muhammad Shafique², Hussam Amrouch¹, Altamiro Susin¹ and Jörg Henkel¹

¹Karlsruhe Institute of Technology (KIT), BR; ²Kafsuie Institute of Technology (KIT), DE; ³Federal University of Rio Grande do Sul, BR

Abstract

This paper presents an application-driven algorithm for Dynamic Thermal Management (DTM) for the High Efficiency Video Coding (HEVC). For efficient design of such a DTM policy, we perform an offline thermal analysis of an HEVC encoder and demonstrate the impact of different video sequences and different coding configurations on the processor temperature. Our thermal analysis is leveraged to develop an efficient application-driven DTM policy that performs temperature-aware coding along with an application-driven control of DTM knobs (e.g., frequency scaling) in order to meet the temperature constraints while still providing high video quality (i.e. PSNR loss < 0.01dB). For accurate thermal analysis and evaluation, we deploy an infrared camera-based thermal measurement setup that, on the contrary to state-of-the-art setups, does not require adding any extra layer on top of the measured chip, thus allowing the camera to accurately capture the infrared emissions from the die.

IMPROVING EFFICIENCY OF EXTENSIBLE PROCESSORS BY USING APPROXIMATE CUSTOM INSTRUCTIONS

Speakers: Mehdi Kamal¹, Amin Ghasem Azari¹, Ali Atzak-Kusha¹ and Massoud Pedram²

¹University of Tehran, IR; ²University of Southern California, US

Abstract

In this paper, we propose to move the conventional extensible processor design flow to the approximate computing domain to gain more speedup. In this domain, the instruction set architecture (ISA) design flow selects both exact and approximate custom instructions (CIs). The proposed approach could be used for the applications where imprecise results may be tolerated. In the CI identification phase of the flow, the CIs which do not satisfy the maximum propagation delay but can provide approximate results also may be included in the CI candidate set. Next, in the selection phase, we propose a merit function which selects CIs with higher cycle savings and small error rates. The efficacy of the proposed approximate design phase is investigated using the case studies of the discrete cosine transform (DCT) and inverse DCT (IDCT) of the MPEG2 application. Also, the impact of the process variation on the imprecision of the results is investigated.

PROBABLISTIC STANDARD CELL MODELING CONSIDERING NON-GAUSIAN PARAMETERS AND CORRELATIONS

Speakers: André Lange¹, Christoph Sohmann¹, Roland Jancke¹, Joachim Haase¹, Ingolf Lorenz² and Ulf Schlichtmann³

¹Fraunhofer Institute for Integrated Circuits (IIS), Design Automation Division (EAS), DE; ²GLOBALFOUNDRIES Inc., DE; ³Technische Universität München, DE

Abstract

Variability continues to pose challenges to integrated circuit design. With statistical static timing analysis and high-yield estimation methods, solutions to particular problems exist, but they do not allow a common view on performance variability including potentially correlated and non-Gaussian parameter distributions. In this paper, we present a probabilistic approach for variability modeling as an alternative: model parameters are treated as multi-dimensional random variables. Such a fully multivariate statistical description formally accounts for correlations and non-Gaussian random components. Statistical characterization and model application are introduced for standard cells and gate-level digital circuits. Example analyses of circuits in a 28 nm industrial technology illustrate the capabilities of our modeling approach.

DYNAMIC CONSTRUCTION OF CIRCUITS FOR REACTIVE TRAFFIC IN HOMOGENEOUS CMPS

Speakers: Marta Orlín-Oblón¹, Darío Suárez-Gracia Suárez-Gracia¹, María Villanueva-Gaudó¹, Cruz Izú¹ and Víctor Viñals-Yúfera¹

¹University of Zaragoza, ES; ²University of Adelaide, AU

Abstract

Networks on Chip (NoC) have a large impact on system performance, area and energy. Considering the characteristics of the memory subsystem while designing the NoC helps identify improvement opportunities and build more efficient designs. Leveraging the frequent request-reply pattern, our proposal dynamically builds the reply path in advance, is able to share circuits between messages, and even removes some implicit replies, significantly reducing NoC latency. A careful implementation of this circuit reservation mechanism achieves an average 17% reduction in router energy consumption, 8% smaller router area and a 2% system performance increase, compared with its baseline counterpart.
IP4-13 IMPROVING HAMILTONIAN-BASED ROUTING METHODS FOR ON-CHIP NETWORKS: A TURN MODEL APPROACH

Speakers: Poona Bahrebar and Dirk Stroobandt, Ghent University, BE

Abstract

The overall performance of Multi-Processor System-on-Chip (MPSoC) platforms depends highly on the efficient communication among their cores in the Network-on-Chip (NoC). Routing algorithms are responsible for the on-chip communication and traffic distribution through the network. Hence, designing efficient and high-performance routing algorithms is of significant importance. In this paper, a deadlock-free and highly adaptive path-based routing method is proposed without using virtual channels. This method strives to exploit the maximum number of minimal paths between any source and destination pair. The simulation results in terms of performance and power consumption demonstrate that the proposed method significantly outperforms the other adaptive and non-adaptive schemes. This efficiency is achieved by reducing the number of hotspots and smoothly distributing the traffic across the network.

IP4-14 EDA TOOLS TRUST EVALUATION THROUGH SECURITY PROPERTY PROOFS

Speaker: Yier Jin, The University of Central Florida, US

Abstract

The security concerns of EDA tools have long been ignored because IC designers and integrators only focus on their functionality and performance. This lack of trusted EDA tools hampers hardware security researchers’ efforts to design trusted integrated circuits. To address this concern, a novel EDA tools trust evaluation framework has been proposed to ensure the trustworthiness of EDA tools through its functional operation, rather than scrutinizing the software code. As a result, the newly proposed framework lowers the evaluation cost and is a better fit for hardware security researchers. To support the EDA tools evaluation framework, a new gate-level information assurance scheme is developed for security property checking on any gate-level netlist. Helped by the gate-level scheme, we expand the territory of proof-carrying based IP protection from RT-level designs to gate-level netlist, so that most of the commercially trading third-party IP cores are under the protection of proof-carrying based security properties. Using a sample AES encryption core, we successfully prove the trustworthiness of Synopsys Design Compiler in generating a synthesized netlist.

IP4-15 ANALYSIS AND EVALUATION OF PER-FLOW DELAY BOUND FOR MULTIPLEXING MODELS

Speakers: Yanchen Long¹, Zhonghai Lu² and Xiaolong Yan³

¹Zhejiang University and KTH Royal Institute of Technology, SE; ²KTH Royal Institute of Technology, SE; ³Zhejiang University, CN

Abstract

Multiplexing models are common in resource sharing communication media such as buses, crossbars and networks. While sending packets over a multiplexing node, the packet delay bound can be computed using network calculus models. The tightness of such delay bound remains an open problem. This paper studies the multiplexing models for weighted round robin scheduling with different traffic arrival curves, and analyzes per-flow packet delay bounds with different service properties. We empirically evaluate the tightness of the delay bounds. Our results show the quality of different analysis models, and how influential each parameter is to tightness.

IP4-16 AGING-AWARE STANDARD CELL LIBRARY DESIGN

Speakers: Saman Kiamehr¹, Farshad Firouzi², Mojtaba Ebrahimi³ and Mehdi Tahoori³

¹Karlsruhe Institute of Technology (KIT), DE; ²Kafarsime Institute of Technology, DE

Abstract

Transistor aging, mostly due to Bias Temperature Instability (BTI), is one of the major unreliability sources at nano-scale technology nodes. BTI causes the circuit delay to increase and eventually leads to a decrease in the circuit lifetime. Typically, standard cells in the library are optimized according to the design time delay, however, due to the asymmetric effect of BTI, the rise and fall delays might become significantly imbalanced over the lifetime. In this paper, the BTI effect is mitigated by balancing the rise and fall delays of the standard cells at the expected lifetime. We find an optimal trade-off between the increase in the size of the library and the lifetime improvement (timing margin reduction) by non-uniform extension of the library cells for various ranges of the input signal probabilities. The simulation results reveal that our technique can prolong the circuit lifetime by around 150% with a negligible area overhead.

IP4-17 PASS-XNOR LOGIC: A NEW LOGIC STYLE FOR P-N JUNCTION BASED GRAPHENE CIRCUITS

Speakers: Valerio Tenace, Andrea Calimera, Enrico Macii and Massimo Poncino, Politecnico di Torino, IT

Abstract

In this work we introduce a new logic style for p-n junctions based digital graphene circuits: the pass-XNOR logic style. The latter enables the realization of compact, energy efficient circuits that better exploit the characteristics of graphene. We first show how a single p-n junction can be conceived as a pass-XNOR gate, i.e., a transmission gate with embedded logic functionality, the XNOR Boolean operation. Secondly, we propose a smart integration strategy in which series/parallel connections of pass-XNOR gates allow to implement AND/OR logical conjunctions, and, therefore, all possible truth tables. Experimental results conducted on a set of representative logic functions show the superior of pass-XNOR logic circuits w.r.t. standard CMOS circuits and graphene circuits that use p-n junctions for various ranges of the input signal probabilities. The simulation results reveal that our technique can prolong the circuit lifetime by around 150% with a negligible area overhead.

IP4-18 IMPROVING HAMILTONIAN-BASED ROUTING METHODS FOR ON-CHIP NETWORKS: A TURN MODEL APPROACH

Speakers: Poona Bahrebar and Dirk Stroobandt, Ghent University, BE

Abstract

The overall performance of Multi-Processor System-on-Chip (MPSoC) platforms depends highly on the efficient communication among their cores in the Network-on-Chip (NoC). Routing algorithms are responsible for the on-chip communication and traffic distribution through the network. Hence, designing efficient and high-performance routing algorithms is of significant importance. In this paper, a deadlock-free and highly adaptive path-based routing method is proposed without using virtual channels. This method strives to exploit the maximum number of minimal paths between any source and destination pair. The simulation results in terms of performance and power consumption demonstrate that the proposed method significantly outperforms the other adaptive and non-adaptive schemes. This efficiency is achieved by reducing the number of hotspots and smoothly distributing the traffic across the network.

Source URL: https://www.date-conference.com/date14/conference/session/IP4