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Performance Impact of Instruction Set Architecture 
Extensions for Dynamic Task Scheduling Units

Introduction

A heterogeneous MPSoC is controlled by a
dynamic task scheduling unit called CoreManager
(CM). The instruction set architecture of this unit
has been extended to improve performance for
dynamic data dependency checking, task
scheduling, processing element (PE) allocation
and data transfer management [1].

Approach

The MPSoC depicted in Fig. 1 consists of 22
cores and three global memory ports (M). The
data plane is composed of 20 PEs. Altogether ten
digital signal processors (DSP) and ten general
purpose (GP) cores are integrated. The
CoreManager controls the data plane dynamically,
according to the current system status. The
heterogeneous nature of the system as well as the
integrated local memories are considered. Its
performance is improved by an application-specific
instruction set, e.g., single instruction multiple data
operations (SIMD). An application processor hosts
the operating system and executes the sequential
part of an application. All modules are connected
by a 5x5 Network-on-Chip (NoC). Each module
has a dedicated router, connected to its neighbors
by point-to-point data links. The routers are
responsible for packet scheduling and arbitration.
XY routing is applied. All modules as well as the
NoC are integrated in a cycle-accurate Tensilica
XTSC simulation environment. Further tools have
been newly developed for visualization of task
executions and data transfers (TaskVisualizer [2]),
as well as system status observation
(DebugVisualizer [1]).

Basic components and data flow (Fig. 2)

Results

In Fig. 3, the processing time of the task scheduling
is shown. The number of tasks in the ready list are
varied between 1 and 32. Three different
CoreManager approaches are analyzed and
compared. The CoreManager with extended
instruction set (CM-EIS) outperforms the RISC-based
implementations (CM-LX4 and CM-VLIW) by nearly
two orders of magnitude in the case of 32 tasks.
Further results can be found in [1], [3], [4] and [5]. It
is faster than an ARM9-based implementation
presented in [2] and [6]. Furthermore, the
CoreManager CM-EIS was integrated in a TSMC 65
nm LP-CMOS prototype [7].
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Fig. 1. Hardware system model.

Fig. 2. CoreManager behavior

1-4 Task description transfer
5 Dynamic dependency check
6-7 Task scheduling
8 PE allocation
9 Memory allocation
10 PE start up code
11 DMA transfer
12-13 Task execution
14-16 Task clean up
17 Successor tasks

Fig. 3. Dynamic  task scheduling 
processing time
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