
A Demonstration for Focusing on Separation of Debugging Concerns

 based on Dynamic Program Rewriting Tool: Piggy’s Weaver

Ikuta Tanigawa

Tokai University

Nobuhiko Ogura

Tokyo City University

Midori Sugaya

Shibaura Institute

of Technology

Harumi Watanabe

Tokai University

Abstract

 Dynamic program rewriting is needed to continuous work and reduces costs of maintenance. We propose a dynamic rewriting tool “Piggy’s

Weaver” for C# program. The tool attaches and detaches pieces of code to program at any points on each concern. Especially these attachments

are focused on debugging concern. In the demonstration, we will apply the tool to a cloud and embedded system "Piggy Net" which is a

cooperating charity pot with SNS and was awarded 2nd prize on D2C2012 by Microsoft Japan.

\

 1. Introduction
 Prototyping methods on embedded software are useful in initial stage of development process for evaluating algorithms of system behavior by

trial and error. The period for the development process is desired to be short as possible. Whenever rewriting programs, we need to restart the

system. For restarting, we must stop system, upload software, and occasionally link network. We meet often opportunities of rewriting programs.

Therefore, the cost for rewriting is not small. Moreover, the resuming system is impossible to behave as same states before stopping, since

embedded software receives influence from various and complicated environments. To overcome these restarting problems, we develop a tool for

dynamic program rewriting at runtime. The name is Piggy’s Weaver.

2. Piggy’s Weaver

 Piggy’s Weaver can be rewritten program for corresponding crosscutting concerns. The tool consists of a development terminal and a target

system. On the development terminal, programmer writes (1) base program (2) crosscutting program description and (3) weaving program

description. Base program can be attached marks as point-cuts with C# annotation. Each mark is related to cross cutting concerns, such as

debugging processes or exceptions of communication. Cross-cutting program descriptions are inserted to marking points on base program.

Weaving program description is mapped marks on base program into cross-cutting program descriptions. In the following, the process from base

program to execution and rewriting program dynamically at runtime are shown.

3. An Example of Program

 An example of 3 pair of programs (1) base program, (2) cross-cutting program

description and (3) weaving program description, for Piggy’s Weaver is shown in the

following figure.

4. Demonstration and Evaluation
 On the demonstration, we will modify cross cutting

program pieces at runtime by Piggy’s Weaver. The

target system is called Piggy Net which is

cooperating charity pot with SNS. To evaluate

Piggy’s weaver tool, we will show you that SNS

connection is continuing after modifying programs.

Tweet
to SNS Animation

Menu

Inserting
Coins

Process from base program to execution Process of rewriting program dynamically at runtime

Library to provide
weaving functions
(monitoring a woven
program, weaving
programs, etc.).

Compiler for
woven programs
written by text
format.

Development terminal Target system

A destination
base program

(1) A Base
program

Analyzing
marks

Compiling
C# programs

A transformed
base program

A library for
monitoring
program

An assembly of
woven program
compiler

Uploading
files

A destination
base program

A library for
monitoring
program

An assembly of
woven program
compiler

Executing
C# program

Development terminal Target system

(2) Cross
cutting
programs

(3) Weaving
program
description

Interpretation of
weaving information

Woven
programs
(text format)

Places for
weaving
programs

Serial
communication

A Serial
data

A destination
base program

Monitoring a
woven program

Woven
programs
(text format)

Places for
weaving
programs

Compiling
woven programs

Weaving
Woven
programs

A rewritten
program

Putting a mark
"Communication"
on the method

Putting a mark
“Sensor" on the
method Base class for

implementing cross
cutting programs

Declaration of mark to
combine "Sensor" and
"Communication"

Attaching "Log Process"
into tail of every method
with mark "target Mark"

Method called by
target method

(1) A Base program

(2) Cross cutting programs

(3) Weaving program description

