
A State Transition Model Description Language stmc and Its Tools
— an Extension of the C Programming Language for Developing Driver Software and Firmware with Models —

Nobuhiko Ogura†, Ikuta Tanigawa‡, Takuya Todoroki†, Kenji Arai†, and Harumi Watanabe‡
†Tokyo City University, ‡Tokai University

ABSTRACT

We present a state transition model description programming
language. It can be translated to pure standard C programs
without any OS or handwritten frameworks, hence it is suit for
developing low level driver software and firmware, unlike many
other automatic software generation tools from software
models that usually focuses on higher level models. We show
the language and translator to executable software and visual
diagram generator, and analysis tools, with embedded software
examples.

OVERVIEW
As a consequence of increasing scale and complexity of

embedded softwares, developing techniques with models
attract much attention. A large number of studies (DSL
approach, MDA, MBD, MBSE, Software factory, etc.) are made
to establish model level software design method with
appropriate model expression and also with less gap between
its models and implementations.

To introduce such techniques to existing developing, we have
met following problems:

(i) Developers must be trained on model writing tools, and

(for some of them) also have to study legitimate action
language, which frequently has different syntax from
programming language.

(ii) Model handling mechanism must be adapted to each

target or tool. For example, (a) tool integration, and (b)
customized startup or model handling framework
(sometimes assume some OS) must be prepared, for
each target.

These prevent model techniques from spreading for various

area of software. Especially, in handling state transition model,
the latter (ii-b) makes it difficult to use these techniques in low
level (near to hardware) or device driver software.

We propose, a model description language stmc, which has
developer friendly notation and is easy to use with existing
toolchains. To resolve the above problems, the language is
designed by extending the C programing language to handle
state transition models in embedded software.

FEATURE
Stmc source programs are translated into the C

programming language and compiled to be downloaded and
executed. The language and its translator has the following
feature:

 FRIENDLY to Existing Toolchain

The translator of stmc outputs the standard C program
(ISO/ANSI-C known as C90/C89), and most existing
embedded toolchain accept them without any modification.

 FRIENDLY to Legacy Code

As shown in Figure 1, stmc is realized by slight extension of
the C programming language, and accept most existing C
source codes and header files. For embedded developing
environments with nonstandard or implementation-dependent
extensions, additional options, such as lazy include mechanism,
are available.

 FRIENDLY to Programming People

In the stmc language, actions and guard conditions of state

transition machines are denoted by the C language syntax, and
knowledge of different action language does not required. In
addition, state transition machine definitions are placed with C
language functions and variables declarations. This enables
small step migration, and makes introducing model
development easier.

FUNCTIONALITY / TOOLS
Following tools support development embedded software with

stmc.

 Code Generation

By the stmc translator, stmc source programs are translated
into the C programming language. It has been applied for
targets: Renesas Electronics M16C, R8C, Spansion FM3,
STMicroelectronics STM32F10X, Atmel AT91SAM7S256,
Microchip PIC16 series, Cypress PSoC1 Series, and x86
Windows.

 Visualize

Stmc source code can be also translated to model diagram
images in PDF, PostScript, png, etc. (as shown in Figure 2.)
The model diagrams can be drawn with identifier and exact
action codes, and diagrams with description string (not exact
code) can be generated.

Diagrams can be colored by description string patterns, and
some element can be extracted/excluded by the string patterns.
A potential application of this mechanism is distinction of
normal/exceptional transition in diagrams. That is an major
issue in embedded software.

 Analyze

We have a tool which computes cyclomatic complexity of
transition and actions. Another tool presents event
occurrence dependency. These make static analyses of the
stmc source codes (models). For using dynamic information,
stmc model level debugging environments for CortexM3 with
GNU gdb are planned.

file ::= external_definition | file external_definition

external_definition ::= function_definition | declaration
 | stm_declaration | stm_definition

(‘file’ is the start symbol. Extended part is shown in italic.)

Figure 1: Part of the extended stmc grammar.

Figure 2: Part of a generated diagram from stmc source code
of I2C communication firmware in R8C processor.

