
cucumber-verilog: Behavior Driven Development for
Circuit Design and Verification

Melanie Diepenbeck1 Mathias Soeken1,2 Ulrich Kühne1 Rolf Drechsler1,2
1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{diepenbeck, msoeken, ulrichk, drechsle}@informatik.uni-bremen.de

Abstract—When designing hardware one usually applies a top-down
approach in which starting from a natural language specification a design
is implemented and afterwards tested and verified for correctness. In
contrast, software development is pushed towards agile techniques such
as Test Driven Development (TDD, [1]), where tests play a central role
in driving the implementation. Behavior Driven Development (BDD, [2])
extends TDD by using natural language style scenarios to describe
the tests. Essentially, in both techniques testing and implementation is
interleaved: first, test cases are written, and second, the implementation
is extended to satisfy them.

Since nowadays 70% of the the effort to design hardware systems is
spent on test and verification, these phases should receive more attention
and be applied in early design phases. We present a BDD tool tailored
for the Verilog hardware description language which enables a new flow
for hardware design, test, and verification. BDD acceptence tests are
readily given by means of the natural language specification. Assigning
test code to their sentences yields a testbench which serves as a starting
point for the implementation. In the same time, the natural language
scenarios form a test documentation that is easily accessible also to non-
experts. Furthermore, our tool allows for the generalization of test cases
to properties suitable for formal verification. As properties are typically
more difficult to formalize than test cases, our approach facilitates the
access to formal verification.

In our demonstration, we will show how to implement hardware
designs using our BDD tool and how properties are generalized from
test cases which can then be verified by a model checker automatically.

Our tool implements a new flow for circuit design and verifica-
tion. The flow consists of two main ideas, presented in [3], (1) a
customized BDD flow that is suitable for circuit design and (2) gen-
erated properties that can be used for formal verification which are
generalized from written test code. The main stages of our flow are
depicted in Fig. 1.

Stage 1: Acceptance Tests

In Stage 1, the features of the hardware (or hardware components)
are described by acceptance tests in natural language using the
Given-When-Then sentence structure. Each Given-When-Then sen-
tence is called a step. Although this stage does not differ from the
conventional BDD flow, it is the most obvious difference between
a conventional circuit design flow and our proposed flow. These
acceptance tests can now be used to create a circuit design using
the hardware description language Verilog.

Stage 2: BDD for Circuit Design

The actual implementation of the system takes place in Stage 2.
In an agile manner, the step definitions, the testbench, and the
implementation are developed iteratively. A step definition contains
fragments of test code that describe the behavior of a single step
or operation in a scenario. A testbench that drives the design under
test is generated automatically and is filled with the essential test
code fragments that belong to a specific acceptance test. During the
BDD process each addition or modification immediately causes the
test cases to be executed with the objective to make the acceptance

BDD for Circuit Design

Acceptance tests

fo
r

ea
ch

se
nt

ence Testbench

Step definition

Implementation

Given some constraint
When an event e occurs
Then ensure some result r(e)

Generated properties

Scenario

Structural semantics
of the property

Semantics of the
atomic steps verify

1

2

3

Fig. 1. Proposed Flow

tests pass. If the execution fails, code is either missing or faulty
and additional iterations are necessary. In the beginning all tests
will fail, and the designer needs to add first implementation details
such as interfaces and input/output definitions. In the entailing
interactive design process, more and more behavior is added to the
implementation, driven by the acceptance tests, until eventualy all
tests are passing.

Stage 3: Generalization of Test Code

Once all acceptance tests have passed, an implementation is avail-
able which fulfills all requirements that have initially been specified.
However, due to their simulative nature the acceptance tests do not
guarantee a bug-free design, since they cannot exhaustively cover all
possible inputs and states of a larger circuit. As a result, only a subset
of all possible test patterns is applied and bugs may be missed.

In order to improve the design quality, acceptance tests are gener-
alized by automatically generating formal properties in the Property
Specification Language (PSL, [4]). The given scenarios can then
be verified thoroughly using existing state-of-the art algorithms for
formal verification.

To obtain the PSL properties, the verification intent of a scenario,
given by the Given-When-Then sentence structure is mapped to an im-
plication property. The statements of the antecedent and consequent
are created using the test code of the step definitions and the symbolic
relations (italic arguments in Step 1 of Fig. 1) of the acceptance tests.

REFERENCES

[1] K. Beck, Test Driven Development. By Example. Amsterdam: Addison-
Wesley Longman, Nov. 2003.

[2] M. Wynne and A. Hellesøy, The Cucumber Book: Behaviour-Driven
Development for Testers and Developers. The Pragmatic Bookshelf,
Jan. 2012.

[3] M. Diepenbeck, M. Soeken, D. Grosse, and R. Drechsler, “Behavior
driven development for circuit design and verification,” in Int’l Workshop
on High Level Design Validation and Test Workshop (HLDVT), Nov 2012.

[4] Accellera Property Specification Language Reference Manual, version
1.1, http://www.pslsugar.org, 2005.


