
Demonstrator:

Bridging Matlab/Simulink and ESL Design

via Automatic Code Generation

Liyuan Zhang, Michael Glaß, and Jürgen Teich

Hardware/Software-Co-Design, Department of Computer Science

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Email: {liyuan.zhang, glass, teich}@cs.fau.de

Motivation Matlab/Simulink is today’s de-facto standard for model-based design in domains such
as control engineering and signal processing. Commercial tools are available to generate embedded
C or HDL code directly from a Simulink model. However, Simulink models are purely functional
models and, hence, designers cannot seamlessly consider the architecture that a Simulink model is
later implemented on. In particular, it is not possible to explore the different architectural alter-
natives and investigate the arising interactions and side-effects directly within Simulink. To benefit
from Matlab/Simulink’s algorithm exploration capabilities and overcome the outlined drawbacks, we
introduce a model transformation framework that converts a Simulink model to an executable specifi-
cation, written in an actor-oriented modeling language. This specification then serves as the input of
an established Electronic System Level (ESL) design flow, enabling Design Space Exploration (DSE)
and automatic code generation for both hardware and software.

Demonstrator This demonstration shows how to automatically transform Simulink models to an
established ESL design flow by means of a code generator. Based on the generated code, we present
a co-simulation approach [1] that combines complex environmental models from Matlab/Simulink
with the auto-generated model of a controller. We use an Anti-lock Braking System (ABS) as an
example where we investigate the impact of different controller implementations in the automotive
E/E architecture.

Code Generation To bridge Simulink and ESL design flows, we developed an ESL Code Generator
to perform model transformation, see [2]. The idea is that for any given Simulink models such as
a controller in a control system, the designer can simply invoke our Code Generator to create the
ESL model automatically. In our design flow, we use SystemC as a programming language with an
extension of actors with a specific Model of Computation (MoC). We guarantee the preservation of
the semantics of the generated model by (a) applying a specific 1-to-1 mapping from Simulink basic
blocks to an actor library and (b) considering different transformations to capture single-rate and
multi-rate Simulink models. After the model transformation is finished, this auto-generated SystemC
model serves as the input of a well-established ESL design flow that enables DSE.

Model Validation Besides the Code Generator this demonstrate also shows a validation technique
that considers the functional correctness by comparing the original Simulink model with the generated
SystemC model. The main idea behind this technique is (1) to co-simulate the auto-generated model
along with the the original model and (2) to reuse the environment model and the test bench that
are originally created in Simulink also for the auto-generated model. Furthermore, the performance
of the model can also be measured during co-simulation.

Case Study An ABS model is transformed from Simulink to SystemC by invoking our Code Genera-
tor. Then, by applying our validation technique, the correctness and the accuracy of the auto-generated
model is examined. Lastly, to evaluate the performance of the model, application-depended quality of
control is measured, such as the braking distance on an icy road.

References

[1] M. Glaß, J. Teich, and L. Zhang, “A Co-simulation Approach for System-Level Analysis of Embedded Control
Systems,” in Proceedings Int. Conf. on Embedded Computer Systems: Architectures, Modeling, and Simulation (IC-
SAMOS 2012), Samos, Greece, jul 2012.

[2] L. Zhang, M. Glaß, J. Teich, and N. Ballmann, “Bridging Algorithm and ESL Design: Matlab/Simulink Model
Transformation and Validation,” in Proceedings of Forum on specification and Design Languages (FDL 2013), 2013.


