
Design Space Exploration for an industrial

Lane-Keeping-Support Case Study
Raphael Weber, Eike Thaden, Stefan Henkler

OFFIS, Germany

{raphael.weber|eike.thaden|stefan.henkler}@offis.de

Jens Höfflinger

Robert Bosch GmbH, Germany

jens.hoefflinger@de.bosch.com

Steffen Prochnow

ETAS GmbH, Germany

steffen.prochnow@etas.com

Developing embedded safety-critical systems was and remains

a challenging task. Embedded systems engineers are supposed

to design solutions that satisfy company shareholders, cus-

tomers, certification authorities, etc. With these many partly

contradicting demands it is very hard to find an optimal or

optimized solution. Under special circumstances it sometimes

is even impossible to find a viable embedded system design.

Finding solutions i. e. exploring the vast design space, can

be sped up by automating certain steps. This work presents

our previously published semi-automated design space explo-

ration (DSE) for safety-critical embedded real-time systems

[1] applied to an industrial lane-keeping-support (LKS) case

study. We thereby minimize communication, hardware costs,

weight, and the number of processing units also satisfying hard

real-time constraints for distributed embedded systems.

In our tool demonstration we present how we model a

lane-keeping-support system consisting of multiple functions

like “line detection” or “situation evaluation” using the SPES

methodology from the SPES_XT project [2]. Using this

methodology for the case study we started out with a func-

tional structure (see Fig. 1) and refined our model. The func-

tional chain starts at the video sensing unit which produces

an uncompressed 2 mega-pixel 15 frames per second video

stream. This video stream is used to extract line information

which may indicate lanes of a street, so the data workload

between video sensing and line detection is quite high. From

there, rather small data amounts are passed down the chain,

picking up additional sensor data along the way. After the

trajectory planning there is a breakdown in different options,

depending on which hardware is actually used in the system

(either ESP or EPS; neither ESP nor EPS; both ESP and EPS).

In our case study we considered the latter.

In subsequent steps we derived a logical component struc-

ture from the functional view. The logical structure included

explicit distinctions between what is a logical task and a

logical signal. In a last refinement step we created a hard-

ware architecture and deduced software tasks and technical

signals/messages from their logical counterparts. The men-

tioned hardware structure is represented by a typical generic

bus-based hierarchy consisting of one global time division

multiplex (TDMA) based backbone bus which is connected

via gateways to local cluster buses (e. g. CAN, FlexRay, or

MOST).

While the architectural design was done using the SPES

methodology we still had to include certain aspects relevant

for an automatic DSE in our model. Therefore, we used timing

property extensions based on the timing augmented description

language (TADL) version 2 from the TIMMO-2-USE project

[3]. Further extensions include the annotation of execution

times and memory consumption data of tasks for different

ECU types. This way, we can allow (well defined) variations

This work was supported by the BMBF funded project SPES_XT.

Video Sensing Steering Angle HMI Yaw-Rate Sensing

Line Detection
Line-to-Lane

Fusion
Situation

Evaluation

Trajectory
Planning

Braking
Intervention

Steering
Intervention

ESP
(stability program)

EPS
(power steering)

Braking
Actuators

Steering
Actuators

Fig. 1. Functional structure of the LKS case study.

in the underlying hardware architecture while ensuring that all

timing requirements are met.

With the special hardware architecture in mind the DSE

can be performed more efficiently compared to holistic ap-

proaches. We divide the NP-hard DSE problem in a global

analysis minimizing communication on the backbone bus

using a heuristic and multiple local analyses where a cost-

minimal extension of the hardware architecture for a valid

deployment of the task structure is computed. A valid deploy-

ment is characterized by a mapping of the tasks and their

communication to the ECUs and buses such that all timing

requirements and mapping constraints are met.

Satisfying constraint bounds and all given hard real-time

requirements is one thing. Enhancing the design targeting one

or even multiple optimization objectives is another. In our

demonstrator we show how we automatically compute optimal

solutions for minimizing costs, weight, and the number of

ECUs.

For the embedded system design of the LKS we had to

deploy 17 tasks along with 14 communication signals to the

hardware architecture. Each optimization objective yielded

one solution – an overview is shown in TABLE I. Future

work on the DSE will allow for prioritizing or weighing the

optimization objectives.

TABLE I
RESULTS OF OUR DSE FOR THE LKS.

Opt. objective ↓ Costs (e) Weight (g) # of ECUs

min costs 89 1030 5

min weight 90 930 4

min # of ECUs 111 1050 3

REFERENCES

[1] M. Büker, G. Ehmen, S. Henkler, A. Rettberg, I. Stierand, and E. Thaden,
“From Matlab-Simulink to Distributed Embedded Applications: An Au-
tomotive Tool Demonstration,” in Proceedings of DATE Conference –

University Booth, 19 - 22 Mar. 2013.
[2] M. Broy, W. Damm, S. Henkler, K. Pohl, A. Vogelsang, and T. Weyer,

“Introduction to the SPES Modeling Framework,” in Model-Based En-

gineering of Embedded Systems. Berlin, Heidelberg: Springer-Verlag,
2012, pp. 31–49.

[3] TIMMO-2-USE Project, “TIMMO-2-USE D11,” 2012. [Online]. Avail-
able: http://www.timmo-2-use.org/deliverables/TIMMO-2-USE_D11.pdf

http://www.timmo-2-use.org/deliverables/TIMMO-2-USE_D11.pdf

	References

