
Automatic GPU Code Generation for Android
Oliver Reiche, Richard Membarth, Frank Hannig, and Jürgen Teich

We present the Heterogeneous Image Processing Acceleration (HIPAcc) framework. It allows programmers
to develop image preprocessing applications while providing high productivity, flexibility, and portability
as well as competitive performance. The same algorithm description serves as basis for targeting di�erent
GPU accelerators and low-level languages. Hereby, imaging algorithms can be expressed in a compact
and productive way by using a domain-specific language (DSL) that is embedded into C++ code. Using the
HIPAcc source-to-source compiler, DSL code is compiled to CUDA, OpenCL, C/C++, or even Renderscript
code, which targets heterogeneous architectures on recent MPSoCs running Android. Programming
those MPSoCs can be challenging, in particular when targeting di�erent architectures (CPU/GPU/DSP).
HIPAcc lifts this burden from programmers by automatically applying source code transformations based
on domain knowledge and a built-in architecture model.

This demonstration accompanies the conference talk 4.6.3 “Code Generation for Embedded Heteroge-
neous Architectures on Android”. It demonstrates the seamless integration of HIPAcc into the Android
Developer Tools. Hereby, the eclipse-based build software calls the HIPAcc compiler to process image filters
written in DSL code. The compiler call results in Renderscript and Filterscript source files, which are then
automatically further compiled into an Android app binary. Right after the build process, the resulting
app is presented on a Nexus 5 smartphone, a Nexus 10 tablet, and an Arndale prototyping board. The
latter two are based on a Samsung Exynos 5250 MPSoC. All devices are connected to the build system
and contain an embedded general purpose GPU (Qualcomm Adreno 320 and ARMMali T-604). To
emphasize the performance of the generated code, the purpose of the app is tomeasure its execution times
on di�erent processor types (CPU/GPU) and give a comparision to functional identical handwritten
naïve versions of the same image filters. Besides performance, this demonstrator easily highlights further
advantages of automatic code generation from a common DSL description for embedded GPUs, which
can be interactively presented as well:

• Productivity: The same DSL code is used to generate code for both target languages Renderscript
and Filterscript, simply by switching a compiler flag.

• Portability: The same DSL code can be used to generate e�cient CUDA, OpenCL, and C/C++

code on desktop machines for discrete GPUs.

• Filter Variation: Changes in filter code like modifying mask sizes for local operators, switching
boundary handling (clamp, mirror, constant, . . . ), changing image access interpolation (nearest
neighbor, linear filtering, . . . ), or adding another stage to an image pyramid can be done by just
changing a single line of DSL code.

• Optimization Techniques: Enabling code generation optimizations like loop unrolling, constant
propagation, iteration space unrolling (compute multiple output pixels per kernel execution) can
be done by setting compiler flags. Built-in exploration features can be used to easily evaluate the
best optimizations for certain architectures.


