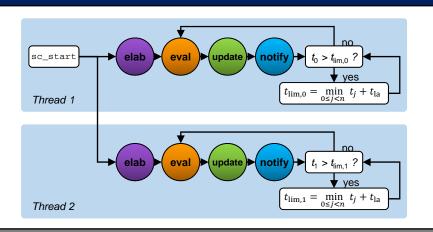


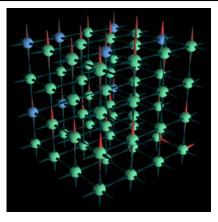

## **SCope** – Time Decoupled Parallel SystemC Simulation

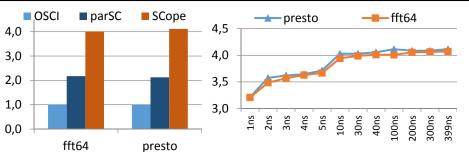


Jan Henrik Weinstock, Christoph Schumacher, Rainer Leupers, Gerd Ascheid and Laura Tosoratto


## □ SCope is a parallel SystemC kernel, compliant with IEEE 1666-2011




- been tested to work with Synopsys Processor Designer Models, SCML- and TLM-based models
- SCope's TLM software layer abstracts cross thread communication
- SCope's SystemC kernel allows SC\_THREADS and SC\_METHODS to run in parallel


## □ SCope uses multiple threads for simulation, each with its own state – such as time

- Each simulation thread receives its own state (e.g. time) and executes its own simulation loop
- Thread simulation times must not deviate from each other by more then the lookahead t<sub>la</sub>: ∀t<sub>i</sub> ∄ t<sub>i</sub>, t<sub>i</sub> > t<sub>i</sub> + t<sub>la</sub>
- SCope avoids causality errors and operates deterministically



## □ SCope achieves linear speedups simulating the EURETILE system





- Tests show linear speedup running a system with 64 RISCs (System runs a distributed FFT and a network stress-test app)
- Speedup > 3.8 until lookahead drops below CPU cycle time









