
Automated Functional Verification of Systems-on-Chip1

Zdeněk Přikryl, Marcela Šimková, Karel Masařík
Faculty of Information Technology, Brno University of Technology,

Czech Republic

{iprikryl , isimkova, masarik}@fit .vutbr.cz

Motivation

An increase of the complexity of systems-on-chip (SoC) induces an increase of the complexity of their verification as
well. The reason is that we must verify not only the functions of separate logic blocks, but we need to check their
interconnections, timing and functional collaboration as well.

The biggest amount of time in functional verification is consumed by:

 implementation of verification environments and testbenches,

 preparation of different test scenarios,

 preparation of reference models according to the specification,

 verification runs.

Therefore, there is still a great demand for verification tools, which are TIME-EFFECTIVE, FAST and as AUTOMATED
as possible. Exactly these issues we target in our solution.

Proposed Solution

The aim of our work is to automatically generate up-to-date UVM (Universal Verification Methodology) verification

environments [1] for SoCs, with simulation models serving as the reference models. The progress in verification runs

is measured by the achieved level of functional, assertion and code coverage. For this purpose, we need specific

information about the SoC under analysis, which we gain from one of the following approaches:

1) Up-to-bottom (orange part of the picture): all components of SoC (processors, buses, peripherals) and their

interconnections are specified at the higher level of abstraction, e.g. using Codasip Framework [2]. We have

all information needed for verification at our disposal.

2) Bottom-to-up (brown part of the picture):

third-party components provided in

RTL/Netlist form are automatically

analyzed at first and then the important

information for verification is extracted by

our tools.

3) Combination of above approaches or

other user-defined approaches (green

part of the picture).

The information needed for the generation of

verification environments (performed in the

Verification Manager block) is stored into the

internal IP-XACT [3] representation.

References:
[1] Mentor Graphics Verification Academy. UVM/OVM. 2013. https://verificationacademy.com/topics/verification-methodology.

[2] Codasip Framework. Codasip. 2013. www.codasip.com.

[3] IEEE 1685. IP-XACT, Standard Structure for Packaging, Integrating, and Reusing IP within Tool Flows. 2013. www.ieee.org.

1
 This work was supported by the European Social Fund (ESF) in the project Excellent Young Researchers at BUT (CZ.1.07/2.3.00/30.0039), the IT4Innovations

Center of Excellence (CZ.1.05/1.1.00/02.0070), Brno Ph.D. Talent Scholarship Programme, the BUT FIT project FIT-S-11-2, and project no. MSM0021630528.

https://verificationacademy.com/topics/verification-methodology
http://www.codasip.com/
http://www.ieee.org/

