UB10 Session 10

Printer-friendly version PDF version

Date: Thursday, March 28, 2019
Time: 12:00 - 14:30
Location / Room:

LabelPresentation Title
Authors
UB10.1TINYWIDS: A INTRUSION DETECTION SYSTEM FOR WIRELESS SENSOR NETWORKS
Authors:
Walter Tiberti1 and Luigi Pomante2
1University of L'Aquila, IT; 2DEWS, IT
Abstract
In the domain of Wireless Sensor Networks (WSN), providing an effective security solution to protect the motes and their communications is challenging. Due to the hard constraints on performance, storage and energy consumption, normal network-security related techniques cannot be applied. Focusing on the "Intrusion Detection" problem, we propose a real-world application of our WSN Intrusion Detection System (WIDS). WIDS exploits the Weak Process Models to classify potential security issues in the WSN and to notify the operators when an attack tentative is detected. In this demonstration, we show how our IDS works, how it detects some basic attacks and how the IDS can evolve to fullfil the needs of secure WSN deployments.

Download Paper (PDF)
UB10.2RESCUE: EDA TOOLSET FOR INTERDEPENDENT ASPECTS OF RELIABILITY, SECURITY AND QUALITY IN NANOELECTRONIC SYSTEMS DESIGN
Authors:
Cemil Cem Gürsoy1, Guilherme Cardoso Medeiros2, Junchao Chen3, Nevin George4, Josie Esteban Rodriguez Condia5, Thomas Lange6, Aleksa Damljanovic5, Raphael Segabinazzi Ferreira4, Aneesh Balakrishnan6, Xinhui Anna Lai1, Shayesteh Masoumian7, Dmytro Petryk3, Troya Cagil Koylu2, Felipe Augusto da Silva8, Ahmet Cagri Bagbaba8 and Maksim Jenihhin1
1Tallinn University of Technology, EE; 2Delft University of Technology, NL; 3IHP, DE; 4BTU Cottbus-Senftenberg, DE; 5Politecnico di Torino, IT; 6IROC Technologies, FR; 7Intrinsic ID B.V., NL; 8Cadence Design Systems GmbH, DE
Abstract
The demonstrator will introduce an EDA toolset developed by a team of PhD students in the H2020-MSCA-ITN RESCUE project. The recent trends for the computing systems include machine intelligence in the era of IoT, complex safety-critical applications, extreme miniaturization of technologies and intensive interaction with the physical world. These trends set tough requirements on mutually dependent extra-functional design aspects. RESCUE is focused on the key challenges for reliability (functional safety, ageing, soft errors), security (tamper-resistance, PUF technology, intelligent security) and quality (novel fault models, functional test, FMEA/FMECA, verification/debug) and related EDA methodologies. The objective of the interdisciplinary cross-sectoral team from Tallinn UT, TU Delft, BTU Cottbus, POLITO, IHP, IROC, Intrinsic-ID, Cadence and Bosch is to develop in collaboration a holistic EDA toolset for modelling, assessment and enhancement of these extra-functional design aspects.

Download Paper (PDF)
UB10.3MICROPLAN: MICRO-SYSTEM DESIGN AND PRODUCTION PLANNING TOOL
Authors:
Horst Tilman, Robert Fischbach and Jens Lienig, Technische Universität Dresden, DE
Abstract
We present a tool that enables to layout and plan the production of heterogeneous micro-systems. The tool consists of a simple layout editor, a visualization of the wafer utilization and eventually a calculation of the production cost for a given order quantity. Being superior with regard to performance, heterogeneous systems are often rendered unviable due to high production costs. However, using our tool allows users to design heterogeneous systems with an emphasis on low production costs. The tool is developed within the MICROPRINCE project and in close cooperation with X-Fab. The tool doesn't require installation and can be used by any visitor on their smartphone or computer.

Download Paper (PDF)
UB10.4A MODULAR RECONFIGURABLE DIGITAL MICROFLUIDICS PLATFORM
Authors:
Georgi Tanev1, Winnie Svendsen2 and Jan Madsen3
1Technical University of Denmark, DK; 2DTU Bioengineering, DK; 3DTU Compute, DK
Abstract
Digital microfluidics is a lab-on-a-chip (LOC) technology that allows for manipulation of a small amount of liquids on a chip-scaled device patterned with individually addressable electrodes. Microliter sized droplets can be programmatically dispensed, moved, mixed, react, split and stored thus implementing sample preparation protocols. Combining digital microfluidics with miniaturized analytical methods allows biomedical lab assays to be implemented on a LOC device that provides full sample-to-answer functionality. The growing complexity and integration of the LOC devices impose the need of software tools and hardware instruments to design, simulate, program and operate the broad range of LOC instrumentation needs. To address this matter, we present a modular reconfigurable microfluidics instrumentation platform (shown in Figure 1) capable of evolving to match the instrumentation needs of a specific LOC. The prototype shown in Figure 2 serves the purpose to demonstrate the platform.

Download Paper (PDF)
UB10.5APODOSIS: ADVANCED ORCHESTRATOR FOR SMART-BUILDINGS
Authors:
Kostas Siozios1 and Stylianos Siskos2
1Aristotle University of Thessaloniki, GR; 2Department of Physics, Aristotle University of Thessaloniki, GR
Abstract
This work presents a distributed system for supporting advanced orchestrator of a smart grid environment. By efficiently control energy production from renewable sources and the energy loads, it is feasible to minimize the energy cost. In contrast to similar approaches, the proposed decision-making is performed in a distributed manner, while it also exhibits limited computational complexity.

Download Paper (PDF)
UB10.8REQV: A TOOL FOR REQUIREMENTS FORMAL CONSISTENCY CHECKING
Authors:
Luca Pulina1, Massimo Narizzano2, Armando Tacchella2 and Simone Vuotto1
1University of Sassari, IT; 2University of Genoa, IT
Abstract
In the demo we will present ReqV, a tool for requirements formal consistency checking developed in the context of the H2020 EU project CERBERO (http://www.cerbero-h2020.eu/tools-and-tutorials/). ReqV takes as input a set of requirements expressed in natural language, so it does not require any background knowledge of formal methods and logical languages. A video tutorial is currently available at http://www.cluster-prossimo.it/docs/ReqV_video.mp4. The basic technologies used in ReqV are an extension of Property Specification Patterns to constrained numerical signals -- which enables to write useful requirements specifications in the context of Cyber-Physical Systems -- and Linear Temporal Logic satisfiability solvers for the formal consistency checking part. In the case of inconsistency of the set of input requirements, ReqV can also extract the minimal set of conflicting requirements, in order to help the designer to correct a wrong specification.

Download Paper (PDF)
14:30End of session