The DATE organisation and sponsors would like to extend their warmest gratitude to all press journalists who give DATE coverage in the editorial pages. Listed below are the media houses and publications who generously agree to media partnership with DATE, and whose publications can be found on-site.

3D InCites

3D InCites brings content from industry experts, 3D InCites brings to life, the people, the personalites, the ideas, and the minds behind 3D integration.

http://www.3dinCites.com

Chip Design Magazine

Chip Design covers all of the technical challenges and implementation options engineers face in the development and manufacture of today’s complex integrated circuits. Chip Design is the only media network dedicated to the advanced IC Design market. Visit www.chipdesignmag.com to stay informed about the latest developments in chip modeling, architecture, design, test and manufacture, from EDA tools to digital and analog hardware issues. The System Level Design and Low Power Engineering Portals offer focused editorial content you won’t want to miss. And, be sure to visit www.ecatalog.com for valuable information about all of Extension Media’s outstanding technology resources.

http://chipdesignmag.com

EDA Confidential

EDA is a commercial-free publication providing a quiet place for conversation about the Electronic Design Automation industry and its companion technologies. The coverage does not intend to be comprehensive, but does intend to provide some food for thought. To that end, EDA Confidential includes “Recipes”, Freddy Santamaria’s “Gourmet Corner”, as well as “Voices” of other contributing authors, “Off the Record” op-ed pieces, and “Conference” coverage.

http://www.aycinena.com

EDACafé

EDACafé provides marketing professionals in the electronics industry with integrated online and print marketing services. The sites attract more than 75,000 unique visitors each month and leverage TechJobCafe.com to bring you job opportunities targeted to engineering and design. And daily e-newsletters reach more than 30,000

http://www.3dinCites.com

EE Times Europe

EE Times Europe provides marketing professionals in the electronics industry with integrated online and print marketing services. EE Times Europe’s print edition is a monthly magazine that brings news, analysis and product and design information to 70,000 highly qualified subscribers in over 40 European countries.

http://www.electronics-eetimes.com

Electróniques

Electroniques is the reference monthly for decision makers and engineers in the electronics sector. Circulation of 10,000 copies www.electroniques.biz, the electronic professional’s web site Daily Newsletter, the day’s essential news about our industry’s major sectors sent to more than 26,000 free sub-

http://www.electroniques.biz

Elektronik i Norden

Elektronik i Norden, an important tool for the Nordic electronic industry. We want Elektronik i Norden to be the most important source of information for the Nordic electronic industry (Sweden, Finland, Norway and Denmark). A circulation of 25,800 personally addressed copies proves we are the major electronics paper in this area. We publish news, comments and in-depth technical articles.

http://www.elektor.se

E&T

Engineering & Technology is packed with articles on the latest technology covering the areas of communications, control, consumer technology, electronics, IT, manufacturing & engineering. It is Europe’s largest circulation engineering magazine, published monthly & offers a global circulation of over 140,000 copies to more than 100 countries & a high pass-on readership. Each member of the Institution of Engineering & Technology (IET) receives a copy as part of their membership package. Readers include design & development engineers, system designers & Integrators, solutions providers & installers, engineering distributors, consultants, planners, facilities managers & end-users. With its HQ in London & regional offices in Europe, North America & Asia-Pacific, the Institution of Engineering & Technology provides a global knowledge network to facilitate the exchange of ideas & promote the positive role of technology around the World. The Institution of Electrical Engineers, dating from 1889, became the Institution of Engineering & Technology in 2006. It now organises more than 120 conferences & other events each year whilst providing professional advice & briefings to industry, education & governments.

http://eandt.theiet.org

JB Systems Media

JB Systems Media is a high tech engineering and media company. JB Systems main areas of interest are among others IoT Embedded Systems, IP Systems, engineering & media company. JB Systems main areas of interest are among others IoT Embedded Systems, IP Systems,

http://www.jbsystech.com

L’Embarqué

L’Embarqué is a 100% digital media focused on the embedded software and embedded systems market. The media combines a French language web site, several newsletters and a French digital magazine in rich PDF format. The web site www.lembarque.com features a daily updated news feed, various « guest » blogs run by embedded experts and/or VIPs, online job postings and regularly refreshed information on new products. With more than 50 pages displayed in rich PDF format and readable on PCs and tablets, the quarterly digital maga-

http://www.lembarque.com

ViziMag

ViziMag brings to life, the people, the personalities, the ideas, and the minds behind 3D integration.

http://www.vizimag.com
Dear Colleague,

We proudly present to you the Advance Programme of DATE 2015. DATE combines the world’s favorite electronic systems design and test conference with an international exhibition for electronic design, automation and test, ranging from advances on system-level hardware and software implementation to integrated circuit design and nano-technology manufacturing technologies.

DATE 2015 received eligible 915 paper submissions – an all-time high for DATE and a 3% increase over DATE 2014. Besides the large share (45%) of submissions coming from Europe, 24% of submissions are from North-America, 28% from Asia, and 3% from the rest of the world. This proves DATE’s international character, its global reach and world-wide impact.

For the 18th successive year, DATE has prepared an exciting technical programme. With the help of the 309 members from its Technical Programme Committee who carried out 3675 reviews (more than four per submission), finally 206 papers (22%) were selected for regular presentation and 86 additional ones (9%) for interactive presentation this year. The DATE 2015 conference will be held at the Alpexpo Congress Center in Grenoble, France, offering once again a truly interesting programme lasting the whole week of March 9 to 13, 2015. On Monday, the conference starts with ten in-depth tutorials. From Tuesday to Thursday, the main technical programme composed of 78 technical sessions comes about. This programme is divided in parallel tracks from four main areas: D – Design Methods and Tools, A – Application Design, T – Test and Robustness; and E – Embedded Systems Software. Finally, on Friday, ten parallel workshops will highlight latest research on hot topics in electronic systems design, such as, 3D design automation, neurocomputing and optical interconnect systems.

This year two of the plenary keynote speakers on Tuesday are EU Commissioner Günther H. Oettinger to talk about European Microelectronics Strategy and Jean Marc Chery, Chief Operating Officer of STMicroelectronics. On the same day, the Executive Track offers a series of business panels discussing hot topics. Executive speakers from companies leading the design and automation industry will address some of the complexity issues in electronics design and discuss about the advanced technology challenges and opportunities.

In addition, the distinctive highlights of DATE 2015 are the two special days: “Designing Electronics for the Internet of Things (IoT)” on Wednesday, and “Designing Electronics for Medical Applications” on Thursday. A comprehensive overview regarding both themes will be given, ranging from innovations and applications of latest technologies to analysis of upcoming electronic design automation (EDA) research challenges.

On one hand, the IoT, also known as the “Internet of Anything” promises to realize the omnipresent network of tens of billions of communicating devices. These devices will enable new business models and revolutionize industrial production, logistics and social life, but they will also require dedicated hardware, ultra-low power robust devices and new design methodologies. These topics will be covered by the three keynotes on Wednesday. First, Wolfgang Wahlster (German Research Center for Artificial Intelligence, DE) will address “Industrie 4.0: From the Internet of Things to Cyber-Physical Production Systems”. Then, Antun Domic (Synopsys, US) will analyze “The Rise of IoT, and the Role of EDA”. Finally, Hannes Schwaderer (Intel, DE) will highlight the market driven challenges of IoT devices.

On the other hand, providing universal and costly-effective healthcare to the complete human kind has become a major challenge in our modern society. Thus, Thursday will feature an outstanding set of four special sessions on the topic of “Game-changing innovation in health care”. This day includes ten trend-setting invited papers, eight of which come from key industrial players in the health care field. Furthermore, one keynote in the frame of the Special Day on Medical Electronics will be given by Kristoffer Famm from GlaxoSmithKline (GSK) to talk about “Bioelectronic Medicines - Heralding in a New Therapeutic Approach”.

In addition, numerous Interactive Presentations are organized into five IP sessions during the conference. The accompanying exhibition offers a comprehensive overview of commercial design and verification tools including vendor seminars and industrial presentations in the Exhibition Theatre. Moreover, abundant networking possibilities exist with fringe meetings and demonstrations of university research in European projects.

We wish you a successful and exciting DATE 2015 and an entertaining DATE networking event on Wednesday evening, which will take place in the memorable “Musée de Grenoble”.

DATE 2015 General Chair
Wolfgang Nebel
OFFIS & University of Oldenburg, DE

DATE 2015 Programme Chair
David Atienza
EPFL, CH
WEDNESDAY KEYNOTE ADDRESS

1250 – 1320
Salle Oisans

7.0.1 Industrie 4.0: From the Internet of Things to Cyber-Physical Production Systems

Wolfgang Wahlster
German Research Center for Artificial Intelligence, DE

The Internet of Things is finding its way into production. Semantic machine-to-machine communication revolutionizes factories by decentralized control. Embedded digital product memories guide the flexible workpiece flow through smart factories, so that low-volume, high-mix production is realized in a cost-efficient way. A new generation of industrial assistant systems using augmented reality and multimodal interaction will help factory workers to deal with the complexity of cyber-physical production. INDUSTRIE 4.0 is the German strategic initiative to take up a pioneering role in industrial IT that is currently revolutionizing the manufacturing engineering sector. Semantic product memories will play a key role in the upcoming fourth industrial revolution based on cyber-physical production systems. Low-cost and compact digital storage, sensors and radio modules make it possible to embed a digital memory into a product for recording all relevant events throughout the entire lifecycle of the artifact. By capturing and interpreting ambient conditions and user actions, such computationally enhanced products have a data shadow and are able to perceive and control their environment, to analyze their observations and to communicate with other smart objects and human users about their lifelog data. Cyber-physical systems and the Internet of Things lead to a disruptive change in the production architecture: the workpiece navigates through a highly instrumented smart factory and tries to find the production services that it needs in order to meet its individual product specifications stored on the product memory. We illustrate this revolutionary production architecture with examples from DFKI’s Smart Factory.
On April 19th, 2015, we will celebrate the 50th anniversary of Moore’s law. Process technology went from several microns to a few nanometers, transistors integration capabilities increased millions of times, and volume production grew from the few thousands of units in the early digital computer era to the several billions in the smartphone one. IoT is expected to bring volume production up by one, and perhaps even two orders of magnitude in the next decade. Today, IC volume growth has been anchored on smart phones. Smart everything (cars, homes, cities) may be the next killer application, which would fuel the volume growth. IoT devices and systems will certainly span the entire spectrum, from extremely advanced and complex to “disposable”. They will make metrics such as reliability and resilience, be as important as performance, power, and area. But in order for IoT to happen, our industry should dramatically improve its efficiency – all “resources” are scarce, and therefore precious. Flexibility – systems are heterogeneous by nature – and productivity – to deliver the best possible quality-of-results within the allotted turn-around-time – will be critical. As both process technology and system complexity increase, advanced EDA will be a key enabler. Advanced design implementation infrastructure, tools, flows, and methodologies will deliver a competitive advantage, and advanced IP sub-systems, consisting of hardware and software solutions will deliver complete, complex functions, ready for integration, greatly simplifying the IoT “siliconization”. These two components show the only viable path towards the trillion units many industry leaders are envisioning.

Imagine a day when electrical impulses are a mainstay of medical treatment, a day when your doctor will routinely administer microscopic devices that modulate signals in specific nerves for treatment effect. Every organ in our bodies is wired and controlled by nerves, so bioelectronic medicines may be applicable across a broad range of diseases just like molecular medicines are today. Through bioelectronic medicines, GSK, a leading pharmaceutical company, and its extensive network of research collaborators aim to bring the precision and intelligence of electronics right to the core of future treatments.
Coffee Break in Exhibition Area

On all conference days (Tuesday to Thursday), coffee and tea will be served during the coffee breaks at the below-mentioned times in the exhibition area.

Lunch Break

On Tuesday and Wednesday, lunch boxes will be served in front of the session room Salle Oisans and in the exhibition area for fully registered delegates (a voucher will be given upon registration on-site). On Thursday, lunch will be served in Room Les Ecrins (for fully registered conference delegates only).

Tuesday, March 10, 2015

- Coffee Break: 1030 – 1130
- Lunch Break: 1300 – 1430
- Keynote session sponsored by Mentor Graphics in room Oisans: 1320 – 1420
- Coffee Break: 1600 – 1700

Wednesday, March 11, 2015

- Coffee Break: 1000 – 1100
- Lunch Break: 1230 – 1430
- Keynote lectures in room Oisans: 1250 – 1420
- Coffee Break: 1600 – 1700

Thursday, March 12, 2015

- Coffee Break: 1000 – 1100
- Lunch Break: 1230 – 1400
- Keynote lecture in room Oisans: 1320 – 1350
- Coffee Break: 1530 – 1600

Welcome Reception

Mon, March 9, 2015

The organizers kindly invited all registered conference delegates to the DATE 2015 Welcome Reception which will take place on Monday, March 9, 2015, from 1800 – 1900 in the area “Salle de Reception” of the congress center. Subsequently, the PhD Forum will take place from 1900 – 2100 in the same location, where every interested delegate can attend as well.

Exhibition Reception

Tue, March 10, 2015

The Exhibition Reception will take place on Tuesday, March 10, 2015, from 1830 – 1930 in the exhibition area of the congress center, where free drinks for all conference delegates and exhibition visitors will be offered. All exhibitors are welcome to also provide drinks and snacks for the attendees.
DATE Networking Event
Wed, March 11, 2015

As one of the main networking opportunities during the DATE week, the DATE Party states a perfect occasion to meet friends and colleagues in a relaxed atmosphere while enjoying local amenities. **It will take place on March 11, 2015, from 1930 to 2300 in the renowned “Musée de Grenoble” (Grenoble Museum).**

This painting museum features a unique collection of ancient, modern and contemporary art including major masterpieces of classical Flemish, Dutch, Italian and Spanish painting and all the great pot-1945 contemporary art-trends, right up to the most recent artwork of the 2000s. During this evening, you can enjoy the famous French Cuisine and outstanding wines. Discover the region of the French Alps through its cheese and wine specialties. The dinner will be accompanied by jazz songs and instrumental music from Anna Cruz and her vocal band. Another highlight will be the show waders “THE INSEPARABLES”, sweet and ephemeral characters walking through the premises, releasing dreams and laughter. Furthermore, at the very beginning of the evening, from 2000 to 2130, you will have the opportunity to visit parts of the permanent collection of the museum (nineteenth and twentieth century). Please kindly note that it is not a seated dinner. All delegates, exhibitors and their guests are invited to attend the party. Please be aware that entrance is only possible with a valid party ticket. Each full conference registration includes a ticket for the DATE Party (which needs to be booked during the online registration process though). Additional tickets can be purchased on-site at the registration desk (subject to availability of tickets). Price for extra ticket: 60 € per person.

How to get there: Tram B has a stop called “Notre Dame Musée” which is next to the Museum. Attendees would take Tram A from Alpexpo and change for Tram B in one of the stations between “Gares” and “Maison du Tourisme” to get to the museum. The trip takes about 30 minutes.

Interactive Presentations, sponsored by Cadence Academic Network

Interactive presentations allow presenters to interactively discuss novel ideas and work in progress that may require additional research work and discussion, with other researchers working in the same area. Interested attendees can walk around freely and talk to any author they want in a vivid face-to-face format. The author may illustrate his work with a slide shown on a laptop computer, a demonstration, etc. IP presentations will also be accompanied by a poster. Each IP will additionally be introduced in a relevant regular session prior to the IP Session in a one-minute presentation.

To give an overview, there will be one central projection displaying a list of all the presentations going on at the same time in the IP area. Interactive Presentation (IP) Sessions will be held in the Poster Area (as part of the exhibition area) in 30-minute time slots on the following days:

<table>
<thead>
<tr>
<th>IP Session</th>
<th>Date/Time</th>
<th>Area/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Session 1</td>
<td>Tuesday, March 10, 2015</td>
<td>Exhibition Area</td>
</tr>
<tr>
<td>IP Session 2</td>
<td>Wednesday, March 11, 2015</td>
<td>Exhibition Area</td>
</tr>
<tr>
<td>IP Session 3</td>
<td>Wednesday, March 11, 2015</td>
<td>Exhibition Area</td>
</tr>
<tr>
<td>IP Session 4</td>
<td>Thursday, March 12, 2015</td>
<td>Exhibition Area</td>
</tr>
<tr>
<td>Presentation of Best IP Award</td>
<td></td>
<td>Salle Oisans</td>
</tr>
<tr>
<td>IP Session 5</td>
<td>Thursday, March 12, 2015</td>
<td>Exhibition Area</td>
</tr>
</tbody>
</table>

Executive Sessions — Tuesday

Organiser: **Yervant Zorian**, Synopsys, US

DATE 2015 will again feature an Executive Track of presentations by leading company executives representing a range of semiconductor manufacturers, EDA vendors, fabless houses and IP providers. This one-day programme will be held on Tuesday 10 March, the first day of the DATE conference immediately after the Opening Session and it will be comprised of three sessions where the executives will present their technical/business vision in this nanometer technology era. Each session will feature 3-4 executives and run in parallel to the technical conference tracks.

All three executive sessions will first provide each executive with a timeslot to present his/her vision, followed by a question and answer period to provide interaction with the attendees. The Executive Track should offer prospective attendees valuable information about the vision and roadmaps of their corresponding companies from a business and technology point-of-view.

2.1 Executive Session:
New Opportunities in the Internet of Things

See Page 41

3.1 Executive Session:
Extending Moore’s Law & Heterogeneous Integration

See Page 46

4.1 Executive Session:
Trends and Challenges in Today’s Automotive Semiconductors

See Page 52
Designing Electronics for the Internet of Things
The IoT, also known as the “Internet of Anything” promises to realize the omnipresent network of tens of billions of communicating devices. These devices will enable new business models and revolutionize industrial production, logistics and social life, but they will also require dedicated hardware, ultra-low power robust devices and new design methodologies. The sessions and keynotes of the Special Day on Wednesday will cover these topics.

5.1 SPECIAL DAY Hot Topic: Applications of IoT
See Page 56

6.1 SPECIAL DAY Hot Topic: Platforms for the IoT
See Page 61

7.0 SPECIAL DAY Keynotes

7.0.1 Industrie 4.0: From the Internet of Things to Cyber-Physical Production Systems

7.0.2 The rise of IOT, and the role of EDA

7.0.3 Market driven challenges of IoT devices
See Page 65

7.1 SPECIAL DAY Hot Topic: Design Tools for the IoT
See Page 65

8.1 SPECIAL DAY Panel: Security and Verification for the IoT
See Page 71

Designing Electronics for Medical Applications
Providing universal and costly-effective healthcare to the complete human kind has become a major challenge in our modern society. Thus, Thursday will feature an outstanding set of 4 special sessions on the topic of “Game-changing innovation in health care”. This Special Day includes 10 trend-setting invited papers, 8 of which come from key industrial players in the health care field and one keynote during lunch time.

9.1 SPECIAL DAY Hot Topic: Game-changing Innovative Technology Platforms for Health Care
See Page 77

10.1 SPECIAL DAY Hot Topic: Wearable Medical Applications
See Page 82

11.0 SPECIAL DAY Keynote Bioelectronic Medicines – Heralding in a New Therapeutic Approach
See Page 87

11.1 SPECIAL DAY Hot Topic: Implantable Medical Applications
See Page 87

12.1 SPECIAL DAY Hot Topic: Technology and Design Platforms for Diagnostics
See Page 93
SPECIAL SESSIONS

Special Session Chairs: Marco Casale-Rossi, Synopsys, US
 Marco Platzner, University of Paderborn, DE

The following ten Special Sessions have been organized, which should prove to be of great general interest. Panel Sessions provide forums in which motivated opinions on unsettled issues are discussed. The ‘trend setters’ are given a time-slot to present their views, which are then subjected to critical appraisal and rich exchanges from the audience. Hot Topic Sessions give technical information about strongly emerging topics and offer a good overview and technical insight provided by leading experts in the field. Relevant issues and their importance for research and development are exposed as food for thought. Embedded Tutorials give an insight of relevant topics usually starting from an introductory basis.

3.6 Hot Topic - Memristor based Computation-in-Memory Architecture for Data-Intensive Applications
Organisers: Koen Bertels, TU Delft, NL
 Said Hamdioui, TU Delft, NL

3.8 Hot Topic - Design Methodologies for a Cyber-Physical Systems Approach to Personalized Medicine-on-a-Chip: Challenges and Opportunities
Organiser: Krishnendu Chakrabarty, Duke University, US

5.8 Hot Topic - The Next Generation of Virtual Prototyping: Ultra-fast yet Accurate Simulation of HW/SW Systems
Organisers: Daniel Müller-Gritschneider, Technische Universität München, DE
 Oliver Bringmann, University of Tübingen, DE

6.6 Panel - The Future of Electronics, Semiconductor, and Design in Europe
Organiser: Marco Casale-Rossi, Synopsys, US

7.2 Hot Topic - Trading Accuracy for Efficient Computing
Organisers: Anand Raghunathan, Purdue University, US
 Akash Kumar, National University of Singapore, SG

7.3 Hot Topic - Advances in Hardware Trojans Detection
Organiser: Julien Francq, Airbus Defence & Space -- CyberSecurity, FR

8.5 Hot Topic - Spintronics based Computing
Organisers: Weisheng Zhao, University Paris - Sud/CNRS, FR
 Lionel Torres, LIRMM, CNRS/University of Montpellier, FR

9.2 Hot Topic - Transparent Use of Accelerators in Heterogeneous Computing Systems
Organisers: Heiner Giefers, IBM Research Zurich, CH
 Christian Plessl, University of Paderborn, DE

9.8 Hot Topic - Monolithic 3D: A Path to Real 3D Integrated Chips
Organisers: Giovanni De Micheli, École Polytechnique Fédérale de Lausanne (EPFL), CH
 Pierre-Emmanuel Gaillardon, École Polytechnique Fédérale de Lausanne (EPFL), CH

11.3 Hot Topic - Multi/Many-Core Programming: Where Are We Standing?
Organisers: Jeronimo Castrillon, Technische Universität Dresden, DE
 Rainer Leupers, RWTH Aachen, DE
Event Overview

MONDAY
- Educational Tutorials
- Fringe Meetings
- Welcome Reception
- ACM SIGDA/EDAA PhD Forum

TUESDAY
- Opening Plenary, DATE Awards Ceremony and Keynote Addresses
- Technical Conference
- Executive Sessions
- Lunchtime Keynote Session sponsored by Mentor Graphics
- Vendor Exhibition & Exhibition Theatre
- University Booth
- Fringe Meetings
- Exhibition Reception

WEDNESDAY
- Technical Conference
- Special Day on Designing Electronics for the Internet of Things and Keynotes
- Vendor Exhibition & Exhibition Theatre
- University Booth
- DATE Networking Event (DATE Party)

THURSDAY
- Technical Conference
- Special Day on Designing Electronics for Medical Applications and Keynote
- Vendor Exhibition & Exhibition Theatre
- University Booth
- Fringe Meetings

FRIDAY
- Special Interest Workshops

Contacts

DATE 2015 Event Secretariat
c/o K.I.T. Group GmbH Dresden
Muenzgasse 2
01067 Dresden, Germany
Phone: +49 351 4967 541
Fax: +49 351 4956 116
E-Mail: date@kitdresden.de

Conference & Exhibition Manager
Franziska Kremling
K.I.T. Group GmbH, DE
Phone: +49 351 4967 541

Registration & Accommodation
Eva Schubert
K.I.T. Group GmbH, DE
Phone: +49 351 4967 312

Monday 09 March

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0730 – 0930</td>
<td>Tutorial Registration and Welcome Refreshments</td>
</tr>
<tr>
<td>Breaks</td>
<td>1100-1130 Morning Coffee Break 1600-1630 Afternoon Coffee Break</td>
</tr>
<tr>
<td></td>
<td>Belle-Etoile Meije Chartreuse Sept Laux Les Bans</td>
</tr>
<tr>
<td>0930 – 1300</td>
<td>M01 New Technologies: Spintronics: From Devices To Systems</td>
</tr>
<tr>
<td></td>
<td>M02 New Technologies: Spin Orbit Torque Magnetic Memories (SOT-MRAM):</td>
</tr>
<tr>
<td></td>
<td>A Device to Architecture Review</td>
</tr>
<tr>
<td></td>
<td>M03 Embedded Systems: Embedded Memory Design for Future Technologies:</td>
</tr>
<tr>
<td></td>
<td>Challenges, Solutions and Applications</td>
</tr>
<tr>
<td></td>
<td>M04 Embedded Systems: Functional Qualification: Applications in the C/C++</td>
</tr>
<tr>
<td></td>
<td>domain</td>
</tr>
<tr>
<td></td>
<td>M05 Automotive: Let’s kick start electric vehicles!</td>
</tr>
<tr>
<td></td>
<td>M06 Automotive: Automotive Cyber-Physical Systems</td>
</tr>
<tr>
<td></td>
<td>M07 Low Power: Fixed-point refinement, a guaranteed approach towards</td>
</tr>
<tr>
<td></td>
<td>energy efficient computing</td>
</tr>
<tr>
<td></td>
<td>M08 Low Power: The power of Power in future wireless smart</td>
</tr>
<tr>
<td></td>
<td>systems for the Internet of Things</td>
</tr>
<tr>
<td></td>
<td>M09 Testing: Memory Test and Reliability in Nano-Era</td>
</tr>
<tr>
<td>1300 – 1430</td>
<td>Lunch Break</td>
</tr>
<tr>
<td></td>
<td>A Device to Architecture Review</td>
</tr>
<tr>
<td></td>
<td>M04 Embedded Systems: Functional Qualification: Applications in the C/C++</td>
</tr>
<tr>
<td></td>
<td>domain</td>
</tr>
<tr>
<td></td>
<td>M06 Automotive: Automotive Cyber-Physical Systems</td>
</tr>
<tr>
<td></td>
<td>M08 Low Power: The power of Power in future wireless smart</td>
</tr>
<tr>
<td></td>
<td>systems for the Internet of Things</td>
</tr>
<tr>
<td></td>
<td>M09 Testing: Memory Test and Reliability in Nano-Era</td>
</tr>
<tr>
<td></td>
<td>Belle-Etoile Meije Chartreuse Sept Laux Les Bans</td>
</tr>
<tr>
<td>1800 – 1900</td>
<td>Welcome Reception, Salle de Reception</td>
</tr>
<tr>
<td>1900 – 2100</td>
<td>ACM SIGDA/EDAA PhD Forum, Salle de Reception</td>
</tr>
</tbody>
</table>
TUESDAY 10 MARCH

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0730</td>
<td>Registration and speaker's breakfast, room Les Écrins</td>
</tr>
<tr>
<td>0830–</td>
<td>1.1 Opening Session: Plenary, Awards Ceremony & Keynote Addresses</td>
</tr>
<tr>
<td>1030–</td>
<td>Exhibition and Coffee Break</td>
</tr>
<tr>
<td>TRACK 1</td>
<td></td>
</tr>
<tr>
<td>TRACK 2</td>
<td></td>
</tr>
<tr>
<td>TRACK 3</td>
<td></td>
</tr>
<tr>
<td>TRACK 4</td>
<td></td>
</tr>
<tr>
<td>1130–</td>
<td>TRACK 1: Oisans</td>
</tr>
<tr>
<td></td>
<td>TRACK 2: Belle-Etoile</td>
</tr>
<tr>
<td></td>
<td>TRACK 3: Stendhal</td>
</tr>
<tr>
<td></td>
<td>TRACK 4: Chartreuse</td>
</tr>
<tr>
<td>1130–</td>
<td>2.1 New Opportunities in the Internet of Things</td>
</tr>
<tr>
<td></td>
<td>2.2 Adaptability for Low Power Computing</td>
</tr>
<tr>
<td></td>
<td>2.3 System Level Design Methods</td>
</tr>
<tr>
<td></td>
<td>2.4 Automotive Systems and Smart Energy Systems</td>
</tr>
<tr>
<td>1300–</td>
<td>Lunch Break</td>
</tr>
<tr>
<td></td>
<td>Keynote session sponsored by Mentor Graphics, 1320-1420, room Oisans</td>
</tr>
<tr>
<td>1430–</td>
<td>TRACK 1: Oisans</td>
</tr>
<tr>
<td></td>
<td>TRACK 2: Belle-Etoile</td>
</tr>
<tr>
<td></td>
<td>TRACK 3: Stendhal</td>
</tr>
<tr>
<td></td>
<td>TRACK 4: Chartreuse</td>
</tr>
<tr>
<td></td>
<td>3.1 Extending Morré's Law & Heterogeneous Integration</td>
</tr>
<tr>
<td></td>
<td>3.2 Passive Implementation Attacks and Countermeasures</td>
</tr>
<tr>
<td></td>
<td>3.3 Loop Acceleration</td>
</tr>
<tr>
<td></td>
<td>3.4 Tackling Memory Walls with Emerging Architectures and Technologies</td>
</tr>
<tr>
<td>1600–</td>
<td>Coffee Break</td>
</tr>
<tr>
<td></td>
<td>IP1 Interactive Presentations</td>
</tr>
<tr>
<td>1700–</td>
<td>TRACK 1: Oisans</td>
</tr>
<tr>
<td></td>
<td>TRACK 2: Belle-Etoile</td>
</tr>
<tr>
<td></td>
<td>TRACK 3: Stendhal</td>
</tr>
<tr>
<td></td>
<td>TRACK 4: Chartreuse</td>
</tr>
<tr>
<td></td>
<td>4.1 Trends and Challenges in Today's Automotive Semiconductors</td>
</tr>
<tr>
<td></td>
<td>4.2 Implementation and Verification of Security Components</td>
</tr>
<tr>
<td></td>
<td>4.3 Multi-/Manycore Scheduling</td>
</tr>
<tr>
<td></td>
<td>4.4 Exploring Reliability and Efficiency Tradeoffs at the Architectural Level</td>
</tr>
<tr>
<td>1930</td>
<td>EXHIBITION RECEPTION</td>
</tr>
</tbody>
</table>

TRACKS

<table>
<thead>
<tr>
<th>TRACK</th>
<th>Location</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oisans</td>
<td>2.1 New Opportunities in the Internet of Things</td>
</tr>
<tr>
<td>2</td>
<td>Belle-Etoile</td>
<td>2.2 Adaptability for Low Power Computing</td>
</tr>
<tr>
<td>3</td>
<td>Stendhal</td>
<td>2.3 System Level Design Methods</td>
</tr>
<tr>
<td>4</td>
<td>Chartreuse</td>
<td>2.4 Automotive Systems and Smart Energy Systems</td>
</tr>
<tr>
<td>5</td>
<td>Meije</td>
<td>2.5 Power of Assertions</td>
</tr>
<tr>
<td>6</td>
<td>Bayard</td>
<td>2.6 Design and Analysis of Dependable Systems</td>
</tr>
<tr>
<td>7</td>
<td>Les Bans</td>
<td>2.7 Compilation and Code Transformations for Reconfigurable Computing</td>
</tr>
<tr>
<td>8</td>
<td>Lesdiguières</td>
<td>2.8 Facilities for Design and Fabrication for FDSOI IC</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Oisans</td>
<td>3.1 Extending Morré's Law & Heterogeneous Integration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2 Passive Implementation Attacks and Countermeasures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.3 Loop Acceleration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.4 Tackling Memory Walls with Emerging Architectures and Technologies</td>
</tr>
<tr>
<td>11</td>
<td>Meije</td>
<td>3.5 Breaking Simulation Boundaries</td>
</tr>
<tr>
<td>12</td>
<td>Bayard</td>
<td>3.6 Hot Topic - Memristor based Computation-in-Memory Architecture for Data-Intensive Applications</td>
</tr>
<tr>
<td>13</td>
<td>Les Bans</td>
<td>3.7 Model-based Analysis and Verification</td>
</tr>
<tr>
<td>14</td>
<td>Lesdiguières</td>
<td>3.8 Hot Topic - Design Methodologies for a Cyber-Physical Systems Approach to Personalized Medicine-on-a-Chip: Challenges and Opportunities</td>
</tr>
<tr>
<td>15</td>
<td>Oisans</td>
<td>4.1 Trends and Challenges in Today's Automotive Semiconductors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2 Implementation and Verification of Security Components</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3 Multi-/Manycore Scheduling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.4 Exploring Reliability and Efficiency Tradeoffs at the Architectural Level</td>
</tr>
<tr>
<td>16</td>
<td>Meije</td>
<td>4.5 Industrial Test and Validation Experiments</td>
</tr>
<tr>
<td>17</td>
<td>Bayard</td>
<td>4.6 Online Testing and Reliable Memories</td>
</tr>
<tr>
<td>18</td>
<td>Les Bans</td>
<td>4.7 How Resilient Are Emerging Technologies?</td>
</tr>
<tr>
<td>19</td>
<td>Lesdiguières</td>
<td>4.8 Strength by Interdisciplinary Research: The Cadence Academic Network</td>
</tr>
</tbody>
</table>

Additional Activities

- **Coffee Break**
- **EXHIBITION RECEPTION**
WEDNESDAY 11 MARCH

0730
Registration and speaker's breakfast, room Les Écrins

<table>
<thead>
<tr>
<th>TRACK 1</th>
<th>TRACK 2</th>
<th>TRACK 3</th>
<th>TRACK 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salle Oisans</td>
<td>Belle-Etoile</td>
<td>Stendhal</td>
<td>Chartreuse</td>
</tr>
</tbody>
</table>

0830 – 1000

| 5.1 | 5.2 | 5.3 | 5.4 |
| SPECIAL DAY | Hot Topic: Applications of IoT | Hardware Trojan and Active Implementation Attacks | Variability Challenges in Nanoscale Circuits | Emerging Technologies for NoCs |

1000 – 1100

Coffee Break
IP2 Interactive Presentations

Salle Oisans | Belle-Etoile | Stendhal | Chartreuse |

1100 – 1230

| 6.1 | 6.2 | 6.3 | 6.4 |
| SPECIAL DAY | Hot Topic: Platforms for the IoT | Physical Unclonable Functions | Emerging Low Power Techniques | Bridging the Moore’s Law Gap with Application-Specific Architectures |

1230 – 1430

Lunch Break
7.0 SPECIAL DAY Keynotes, 1250 – 1420, room Oisans

Salle Oisans | Belle-Etoile | Stendhal | Chartreuse |

1430 – 1600

| 7.1 | 7.2 | 7.3 | 7.4 |
| SPECIAL DAY | Hot Topic: Design Tools for the IoT | Hot Topic - Trading Accuracy for Efficient Computing | Hot Topic - Advances in Hardware Trojans Detection | Routing Advances for Fault-tolerant and Multicast NoCs |

1600 – 1700

Coffee Break
IP3 Interactive Presentations

Salle Oisans | Belle-Etoile | Stendhal | Chartreuse |

1700 – 1830

| 8.1 | 8.2 | 8.3 | 8.4 |

1930 – 2300

DATE Networking Event (DATE PARTY)
THURSDAY 12 MARCH

<table>
<thead>
<tr>
<th>Time</th>
<th>TRACK 1</th>
<th>TRACK 2</th>
<th>TRACK 3</th>
<th>TRACK 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0730</td>
<td>Salle Oisans</td>
<td>Belle-Etoile</td>
<td>Stendhal</td>
<td>Chartreuse</td>
</tr>
<tr>
<td>1000–1100</td>
<td>Coffee Break</td>
<td>IP4 Interactive Presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230–1400</td>
<td>Lunch Break</td>
<td>Best IP Award Presentation, 1315-1320, room Oisans</td>
<td>11.0 SPECIAL DAY Keynote, 1320-1350, room Oisans</td>
<td></td>
</tr>
<tr>
<td>1400–1530</td>
<td>11.1 SPECIAL DAY Hot Topic: Implantable Medical Applications</td>
<td>11.2 Variability and Robustness for Emerging Technologies</td>
<td>11.3 Hot Topic - Multi/Many-Core Programming: Where Are We Standing?</td>
<td>11.4 Logic Synthesis: the Faithful, the Approximate and the Stochastic</td>
</tr>
<tr>
<td>1530–1600</td>
<td>Coffee Break</td>
<td>IP5 Interactive Presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600–1730</td>
<td>12.1 SPECIAL DAY Hot Topic: Technology and Design Platforms for Diagnostics</td>
<td>12.2 Solver Advances and Emerging Applications</td>
<td>12.3 Patterning, Placement and Packing</td>
<td>12.4 High-Level Specifications and Models</td>
</tr>
</tbody>
</table>

THURSDAY 12 MARCH

<table>
<thead>
<tr>
<th>Time</th>
<th>TRACK 5</th>
<th>TRACK 6</th>
<th>TRACK 7</th>
<th>TRACK 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0730</td>
<td>Meiège</td>
<td>Bayard</td>
<td>Les Bans</td>
<td>Lesdiguières</td>
</tr>
<tr>
<td>1000–1100</td>
<td>Coffee Break</td>
<td>IP4 Interactive Presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100–1230</td>
<td>10.5 Reconfigurable Architectures and Applications</td>
<td>10.6 Circuit Design and Test: From Characterization to Measurement</td>
<td>10.7 Expanding the Applicability of Formal Methods</td>
<td>10.8 From IP to EDA Tools Enterprise Management: What is so special?</td>
</tr>
<tr>
<td>1230–1400</td>
<td>Lunch Break</td>
<td>Best IP Award Presentation, 1315-1320, room Oisans</td>
<td>11.0 SPECIAL DAY Keynote, 1320-1350, room Oisans</td>
<td></td>
</tr>
<tr>
<td>1400–1530</td>
<td>11.5 Ultra-low Power Devices for Health and Rehabilitation</td>
<td>11.6 Video Architectures for Multimedia and Communications</td>
<td>11.7 Exploiting Dark Silicon</td>
<td>11.8 (1400-1500) Exhibition Keynote: Designing Systems for the Connected Autonomous Future</td>
</tr>
<tr>
<td>1530–1600</td>
<td>Coffee Break</td>
<td>IP5 Interactive Presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600–1730</td>
<td>12.5 New Perspectives in Next-Generation Medical Systems</td>
<td>12.6 Medical Design Automation: Is All That Simulation and Model Reduction Getting Into Your “Head”?</td>
<td>12.7 Brain Health and Mental Disorders: new challenges for electronic engineers</td>
<td>12.8 (1500-1730) Tutorial: An Industry Approach to FPGA/ARM System Development and Verification</td>
</tr>
</tbody>
</table>
FRIDAY 13 MARCH

0730 – 0830 Workshop Registration and Welcome Refreshments

Breaks

Please see individual workshop programmes for lunch and break times

0830 – 1600 Meije
0830 – 1630 Stendhal
0830 – 1630 Berlioz
0815 – 1730 Belle-Etoile

|---|---|---|---|---|

|---|---|---|---|

TUTORIALS – MONDAY 09 MARCH

0730-0930 REGISTRATION AND TUTORIAL WELCOME REFRESHMENTS

0930-1300 TUTORIALS (1100-1130 Coffee Break)
M01 Belle-Etoile NEW TECHNOLOGIES: SPINTRONICS: FROM DEVICES TO SYSTEMS

M03 Meije EMBEDDED SYSTEMS: EMBEDDED MEMORY DESIGN FOR FUTURE TECHNOLOGIES: CHALLENGES, SOLUTIONS AND APPLICATIONS

M05 Chartreuse AUTOMOTIVE: LET’S KICK START ELECTRIC VEHICLES!

M07 Sept Laux LOW POWER: FIXED-POINT REFINEMENT, A GUARANTEED APPROACH TOWARDS ENERGY EFFICIENT COMPUTING

M09 Les Bans TESTING: FROM DATA TO ACTIONS: APPLICATIONS OF DATA ANALYTICS IN SEMICONDUCTOR MANUFACTURING & TEST

1300-1430 LUNCH BREAK CONFERENCE REGISTRATION BEGINS

1430-1800 TUTORIALS (1600-1630 Coffee Break)
M02 Belle-Etoile NEW TECHNOLOGIES: SPIN ORBIT TORQUE MAGNETIC MEMORIES (SOT-MRAM): A DEVICE TO ARCHITECTURE REVIEW

M04 Meije EMBEDDED SYSTEMS: FUNCTIONAL QUALIFICATION: APPLICATIONS IN THE C/C++ DOMAIN

M06 Chartreuse AUTOMOTIVE: AUTOMOTIVE CYBER-PHYSICAL SYSTEMS

M08 Sept Laux LOW POWER: THE POWER OF POWER IN FUTURE WIRELESS SMART SYSTEMS FOR THE INTERNET OF THINGS

M10 Les Bans TESTING: MEMORY TEST AND RELIABILITY IN NANO-ERA

1800-1900 WELCOME RECEPTION

1900-2100 ACM SIGDA / EDAA PHD FORUM
With the scaling of CMOS technology approaching its fundamental limits, several new technologies are being actively explored as potential replacements. Among them, spintronics, which uses electron “spin” rather than “charge” as a state variable is considered to be a promising direction for the post-CMOS era. Spintronic devices are well-suited for realizing memories that are highly dense and non-volatile, i.e., have very low leakage power, compared to their CMOS counterparts such as SRAM and DRAM, and therefore have great potential to revolutionize the storage and computing capabilities of future systems. Further, spintronic devices have certain unique characteristics that make them highly efficient for non-Boolean computing. In addition to extensive research efforts over the decade, multiple industrial prototypes and early commercial offerings of spintronic memories underscore the great interest in this field.

This tutorial presents a devices-to-systems overview of the state-of-the-art in the design of spintronic computing systems. The first part of the tutorial focuses on the design of memory hierarchies with different spintronic technologies – Spin Transfer Torque Magnetic RAM (STT-MRAM), Domain Wall Memory (DWM), Spin-Hall Magnetic RAM (SH-MRAM). We show that spintronic memories fundamentally change the design landscape in terms of read-write stability, density, energy, and performance and pose certain unique challenges such as high write latency and energy, asymmetry in write operations, variable access latency, etc. We survey a wide range of device, circuit and architectural techniques to address the challenges associated with spintronic memories.

The second part of this tutorial focuses on the design of spintronic logic. Realizing Boolean logic with spintronic devices is considerably more challenging than memory. We will describe various proposals for spintronic Boolean logic families and compare their merits and demerits with CMOS. Re-configurable fabrics, which make extensive use of memory to store logic functions and interconnect configurations, offer an opportunity to harness the efficiency of spintronic memory for logic design. This tutorial will cover proposals for spintronic reconfigurable fabrics and memory-based computing. Further, spintronic devices are highly promising in certain application domains that match their characteristics. We present one such application – neuromorphic computing, the design of computing systems that mimic the functionality of the human brain. Neuromorphic computing has received great interest in the last decade in several applications involving classification, recognition, search, and inference and is used in real-world systems such as Google+ image search, Apple Siri voice recognition, etc. We describe recent efforts to use spintronic devices for realizing the building blocks of artificial neural networks, viz. neurons and synapses, and to utilize these primitives for large-scale neuromorphic computing.
Embedded Systems: Embedded Memory Design for Future Technologies: Challenges, Solutions and Applications

Meije 0930 – 1300

Organiser Swaroop Ghosh, University of South Florida, US

Invited Speakers Swaroop Ghosh, University of South Florida, US Swarup Bhunia, Case Western Reserve University, US Jaydeep Kulkarni, Intel Corporation, US

Conventional CMOS memory i.e., Static Random Access Memory (SRAM) has been the popular choice for embedded memory application for last several decades. However, SRAM seems to be approaching a brick wall. On one hand process variability and leakage power is posing severe obstruction towards SRAM scaling to future nodes and on the other hand, emerging energy-constrained and bandwidth hungry electronic gadgets demand for larger as well as energy-efficient on-chip cache which cannot be satisfied with SRAM. To address the changing landscape of consumer market, there is a corresponding need of changing the design paradigm. What is really needed is a memory technology that is at least 50-100X denser, 1000X energy-efficient and as fast as SRAM. Several emerging memory technologies are on the horizon but there is no clear universal choice for embedded application. This tutorial will explore the latest trends in the embedded memory segment and discuss the fundamental limitations of SRAM in meeting the new needs of the electronic systems. The complex (and not very well understood) inter-relationships between memory density, bandwidth, latency, power and speed will be elaborated. The tutorial will discuss most promising emerging memory technologies where storage element is based on charge, spin and resistance. The specific focus will be on the operating principles, design challenges and solutions of non-volatile memories (NVM) such as Spin Transfer Torque RAM (STTRAM), Domain Wall Memory (DWM) and Resistive RAM (RRAM). New applications of the emerging memory technologies for exciting applications such as memory-based computations, hardware security and neuromorphic computing will also be presented.

0930 INTRODUCTION AND MOTIVATION

STATIC RANDOM ACCESS MEMORY

SPINTRONIC MEMORY

RESISTIVE RAM

CONCLUSIONS AND DISCUSSIONS

Embedded Systems: Functional Qualification: Applications in the C/C++ domain

Meije 1430 – 1800

Organiser Florian Letombe, Synopsys, FR

General Chair Ali Abbara, Synopsys, FR

Invited Speakers Susanne Kandl, Vienna University of Technology, AT Stéphane Bouvier, ST Microelectronics, FR Jürgen Hanisch, Robert Bosch GmbH, DE Jean-Marc Forey, Synopsys, FR Olivier Sentieys, INRIA - University of Rennes 1, FR

The amount of effort spent creating, debugging and maintaining a typical verification environment often outstrips the effort spent on the design itself. Measuring the effectiveness of verification is critical to ensuring high-quality, bug-free designs. As the use of languages like C/C++ to represent portions of the design continues to increase, the ability to obtain such measurements via traditional techniques becomes difficult. This tutorial describes the fundamental aspects of functional verification that remain invisible to existing verification tools. It introduces the origins and the main concepts of a technology that allows this gap to be closed: mutation-based testing.

Certitude™’s mutation-based approach assesses verification effectiveness by measuring the environment’s ability to activate, propagate and detect potential bugs. This technique, in use with RTL designs for years, can now be applied to components described in C/C++, with similar benefits. This tutorial will cover the following:

– A primer on the use and operation of Certitude;
– An overview of how these techniques can be applied to components described in C/C++;
– A survey of specific applications and benefits in the C/C++ domain.

1430 MUTATION-BASED TESTING: ORIGINS, CONCEPTS, AND APPLICATIONS

Chair: Ali Abbara, Synopsys, FR, Contact Ali Abbara
Co-Chair: Florian Letombe, Synopsys, FR, Contact Florian Letombe

1430 CERTITUDE-C/C++ : A FUNCTIONAL QUALIFICATION TOOL FOR FAULT INJECTION IN C/C++/SYSTEMC MODELS

Speaker: Jean-Marc Forey and Ali Abbara, Synopsys, FR

1530 HOW MUTATIONS CAN HELP TO PROVE THAT YOUR SYSTEM DOES NOT CONTAIN (UNWANTED) MUTATIONS

Speaker: Susanne Kandl, Vienna University of Technology, AT

1630 APPLYING CERTITUDE ON AUTOMOTIVE AND MULTIMEDIA C/C++/SYSTEMC MODELS

Chair: Ali Abbara, Synopsys, FR, Contact Ali Abbara
Co-Chair: Florian Letombe, Synopsys, FR, Contact Florian Letombe

1630 MULTIMEDIA IPS VERIFICATION QUALITY IMPROVEMENT : USAGE OF CERTITUDE ON C/C++ MODELS

Speaker: Stéphane Bouvier, STMicroelectronics, FR
Automotive: Let’s kick start electric vehicles!

Organiser: Davide Quaglia, EDALab s.r.l., IT

Invited Speakers:
- Martin Lukasiewycz, TUM CREATE, SG
- Riccardo Muradore, University of Verona, IT
- Sebastian Steinhorst, TUM CREATE, SG
- Massimo Poncino, Politecnico di Torino, IT

Future electric vehicle E/E architectures will bring disruptive changes to many areas of automotive design automation and system design. This tutorial will give both insights into which changes to expect and how these changes can help to design automotive systems more effectively. Topics such as communication-controller co-design, advanced battery management, verification approaches and system-level simulation have been relevant in the research community. The organizers of this tutorial believe, however, that it is now the time to bring a condensed overview of these topics to a wider audience, clearly focusing on applicability and relevance to all researchers and practitioners to stimulate adoption of best practices established over recent years as well as bleeding edge approaches.

The tutorial is targeted towards students, researchers and practitioners belonging to both academia and industry and concerned with:
- Electric Vehicle Architectures
- Automotive Electronics
- Automotive Communication Architecture Design
- Advanced Electrical Energy Storages
- Networked Control Systems

The presentations will report concrete case studies, e.g., the electric vehicle built by TUM CREATE in Singapore (http://www.eva-taxi.sg), thus showing how the presented concepts support the design and verification of actual electric vehicles.

0930 - 1300:
- Session 1
 Chair: Davide Quaglia, EDALab s.r.l., IT, davide.quaglia@edalab.it
- Introduction to Electric Vehicles: Key Aspects and Design Challenges
 Speaker: Martin Lukasiewycz, TUM CREATE, SG
- Battery Management in Electric Vehicles
 Speaker: Sebastian Steinhorst, TUM CREATE, SG

1130 - 1430:
- Session 2
 Chair: Martin Lukasiewycz, TUM CREATE, SG
- Joint Controller-Communication Design in Electric Vehicles
 Speaker: Riccardo Muradore, University of Verona, IT
- System-Level Simulation of Electric Vehicles
 Speaker: Davide Quaglia, EDALab s.r.l., IT
Low Power: Fixed-point refinement, a guaranteed approach towards energy efficient computing

Organiser: Olivier Sentieys, INRIA - University of Rennes 1, FR

Invited Speakers
- Daniel Menard, INSA Rennes/IETR, FR
- David Novo, EPFL, CH
- Karthick Parashar, IMEC, BE

Emerging smart systems market is constantly pushing for miniaturization and reduction in form-factors even while the demand for computation is steadily increasing. Overcoming the so-called “power-wall” and achieving higher number of computations at the expense of unit energy is increasingly becoming a challenge. Software-defined modems or video applications, which are under constant pressure for reaching the market expectations set by modern communication standards, are a classic example of this phenomenon.

In this tutorial, we demonstrate how careful tuning of the fixed-point arithmetic used to implement numerous signal processing algorithms can lead to better system performance parameters irrespective of the chosen implementation platform. The choice of fixed-point word-lengths has a direct impact on area, latency and energy consumption of hardware designs implemented as ASICs or realized on FPGAs. With the growing complexity of hardware designs, paradigms enabling further design automation, such as high level synthesis (HLS), are emerging as a must to achieve a competitive product design cycle. Importantly, efficient automatic fixed-point refinement is essential for HLS to approach the quality of hand-tuned hardware designs. Furthermore, several popular embedded computer architectures support Single Instruction Multiple Data (SIMD). In all such architectures, shorter bit-widths can potentially benefit from high order of vectorization at the cost of a controlled loss in accuracy. Changing data-level parallelism by modifying bit widths has an impact on the throughput, latency and eventually the energy profile of the processor. Processor’s performance and accuracy of computation is therefore an important design trade-off for achieving efficient implementations.

This tutorial packs nearly a decade worth of research in designing fixed-point systems for signal processing. It broadly consists of two parts. In the first part, we expose the deficiency in the support offered by existing fixed-point evaluation tools and motivate the need for new solutions. Accordingly, we put into perspective several recent techniques that have been developed to facilitate a quick analysis of the impact of a selected fixed-point format on the accuracy of the system. In the second part, we focus on the processor architecture - compiler ecosystem. Here, we explore opportunities to improve energy efficiency by appropriately dimensioning the bit widths of variables used to represent signals. For this, we reflect upon a recent promising idea called soft SIMD that provides insights on the impact of choice of bit widths on SIMD vectorization, and describe novel techniques for jointly achieving optimized sub-word parallelism and fixed-point refinement. We also expose some energy reduction approaches that are uniquely available for processor-based and accelerator-based implementations. Along this tutorial, we use several examples from the signal and video processing domain and a complete wireless application to illustrate the impact of fixed-point refinement on the system performance.

In summary, with this tutorial we challenge the extended dogma of starting the application mapping onto software or hardware from a typed specification (i.e., the variables are already defined with standard data types such as int, short, etc.), which has already obscured the potential for significant optimizations, especially in terms of performance and energy efficiency.

0930 FIXED-POINT REFINEMENT, A GUARANTEED APPROACH TOWARDS ENERGY EFFICIENT COMPUTING: PART I

Organiser: Olivier Sentieys, INRIA - University of Rennes 1, FR, Contact Olivier Sentieys

0930 1. INTRODUCTION

Speaker: Olivier Sentieys, INRIA - University of Rennes 1, FR

0945 2. FIXED-POINT ARITHMETIC

Speaker: Olivier Sentieys, INRIA - University of Rennes 1, FR

1015 3. FINITE WORD-LENGTH EFFECT ANALYSIS

Speaker: Daniel Menard, INSA Rennes/IETR, FR
In the future, objects and people will be almost permanently connected and exchanging information in the so-called Internet of Things (IoT). While the potential influence of IoT in our daily life is enormous, there are major challenges related to its energy sustainability. Also in the healthcare domain, progress in microelectronics has enabled the miniaturization of data processing elements, radio transceivers and sensors for medical applications. However, the inherent resource-constrained nature of these systems, coupled with the specific operating conditions and the stringent autonomy requirements pose important design challenges. The evolution of battery energy density is below the curve of Moore’s law thus making power consumption the limiting factor of next-generation smart systems. Furthermore, technology allows integrating various types of energy harvesting devices, which are able to scavenge energy from the environment thus potentially compensating the increased gap between the energy demand and its availability.

This tutorial addresses all these issues involving energy management in autonomous wireless devices from a novel perspective. As a matter of fact, while the analysis and the optimization of how energy is consumed in electronic systems has been the subject of many studies, a lot of misconceptions are still around when it comes to how optimally generate, store, convert and distribute the energy available in a system that incorporates energy generation and storage devices.

The tutorial will cover the following key topics:
1) Architecture of wireless autonomous smart systems and design challenges
2) Energy storage devices: background and non-idealities, models and design guidelines, conversion issues
3) Energy harvesting techniques and architectures for energy neutral systems
4) Power management policies and protocols for autonomous objects
5) Modeling and simulation techniques
6) Trends for future wireless smart systems

The presentations will report results from SMAC and CONTREX European projects and will be accompanied by actual case studies, showing how the presented concepts support the design and verification of wireless autonomous smart systems.

The tutorial is targeted towards students and practitioners belonging to both academia and industry and concerned with design of advanced wireless embedded systems (e.g., wearables, smart metering, body sensor networks, etc.).
Testing: Memory Test and Reliability in Nano-Era

Les Bans

Monday 09 March, 2015

1430 – 1800

Organizer
Said Hamdioui, Delft University of Technology, NL

Invited Speakers
Said Hamdioui, Delft University of Technology, NL
Kanad Chakraborty, Lattice Semiconductor

The objective is to provide attendees with an overview of memory test, reliability and yield improvement.

In terms of testing, aspects such as fault modeling, test design and BIST will be covered. Traditional fault modeling and advanced ones for current and future technologies are covered. Systematic methods are presented for designing and optimizing tests, supported by industrial results from different companies (e.g. Intel, ST, Infineon) in order to get better insight in the test effectiveness. State-of-the art and novel BIST architectures are covered. Testing of some emerging memories is discussed.

In terms of reliability and yield improvement, effects of process scaling and environment on reliability failures caused by static noise (contributed by crosstalk, IR-drop, threshold voltage variation, negative-bias temperature instability, and random telegraph noise), hot carrier injection (HCI), gate oxide breakdown, latchup, metallization reliability failures and electrostatic discharge/electrical overstress (ESD/EOS) will be discussed. Industry practices for designing for reliability are discussed. Traditional reliability testing approaches such as burn-in, IDDQ/IDD, parametric and at-speed functional testing, and present-day adaptive and data-driven approaches are covered. Self-repair and yield/reliability tradeoffs and yield modeling of repairable memories is discussed. Yield learning based on correlation to defect inspection and physical failure analysis is highlighted. Improved RAM circuit design techniques for noise and SEU mitigation are discussed, together with an overview of ECC approaches.

Finally, future challenges in memory testing and reliability are highlighted.

SESSION 1

1430

Said Hamdioui, Delft University of Technology

INTRODUCTION
Quality versus Reliability
Importance of test
Importance of reliability

FAULT MODELS, TESTS AND INDUSTRIAL RESULTS
Defects v fault models
Classification of memory fault models
Static fault models
Dynamic fault models
Test algorithms
Industrial results
Summary

MEMORY BIST ARCHITECTURE
Motivation
Space of algorithms and stresses
MBIST Classification
Algorithm based MBIST architecture
Generic March Element MBIST architecture
March element MBIST architecture
Memory operation based MBIST
Comparison

TESTING EMERGING MEMORIES
Testing Resistive RAMS
Testing stacked 3D ICs
Testing MRAMS

SESSION 2

1630

Kanad Chakraborty, Lattice Semiconductor
TECHNICAL PROGRAMME

1.1 Opening Session: Plenary, Awards Ceremony & Keynote Addresses

Auditorium Dauphiné 0830 - 1030

Chair:

Wolfgang Nebel, OFFIS & University of Oldenburg, DE

Co-Chair:

David Atienza, EPFL, CH

0830

WELCOME ADDRESSES

Wolfgang Nebel
DATE 2015 General Chair, OFFIS & University of Oldenburg, DE

David Atienza
DATE 2015 Programme Chair, EPFL, CH

0845

PRESENTATION OF DISTINGUISHED AWARDS

DATE 2015 Best Paper Award

2015 EDAA Lifetime Achievement Award
(Lothar Thiele, ETH Zurich, CH)

EDAA Outstanding Dissertation Award

DATE Fellow Award
(Anne Cirkel, Mentor US | Gerhard Fettweis, TU Dresden, DE)

IEEE Fellow Award
(Rolf Drechsler, University of Bremen/DFKI, DE)

IEEE/CEDA Outstanding Service Contribution Award 2014
(Gerhard Fettweis, TU Dresden, DE)

IEEE CS TTTC Outstanding Contribution Award
(Gerhard Fettweis, TU Dresden, DE)

2015 IEEE Frederik Philips Award
(Benedetto Vigna, STMicroelectronics, CH)

0910

KEYNOTE ADDRESSES

KEYNOTE ADDRESS

Geneviève Fioraso, secrétaire d’État chargée de l’Enseignement supérieur et de la Recherche (to be confirmed), FR

KEYNOTE ADDRESS

Günther H. Oettinger, European Commissioner for Digital Economy and Society, DE

KEYNOTE ADDRESS: ST TECHNOLOGIES FULLY ADDRESSING INTERNET OF THINGS APPLICATIONS FROM LP DIGITAL TO RF-CMOS, ENVM AND SENSORS

Jean Marc Chery, Chief Operating Officer of STMicroelectronics, FR

1030

COFFEE BREAK IN EXHIBITION AREA

TECHNICAL SESSIONS

2.1 Executive Panel - New Opportunities in the Internet of Things

Salle Oisans 1130 - 1300

Organiser:

Yervant Zorian, Synopsys, US

Billions of devices connected to the internet is not too far from today’s reality. Such an Internet of Things offers advanced connectivity between built-in sensors, field operation devices, and cloud systems, covering a variety of applications, including medical, home automation, energy, transportation, environmental monitoring, etc. This results in several new approaches and innovative methods that work together to enable the network of smart devices. Executives in this session will discuss the impact of IoT on the semiconductor industry and the new opportunities it may bring in designing today’s Internet of Things.

1130

PANELISTS

Moij Chian, CEO, Silicon Cloud International, US

Christoph Heer, Division VP, Head of Design System & IP, Intel, DE

Subramani Kengeri, VP, Global Design, GLOBALFOUNDRIES, US

Philipe Magarshack, EVP, Design Enablement, STMicroelectronics, FR

Remy Pottier, Director, IoT Strategy, ARM, GB

Yankin Tanurhan, VP, Processor & SOC Solutions, Synopsys, US

1300

LUNCH BREAK,
in front of the session room Salle Oisans and in the exhibition area
Keynote session from 1320 – 1420 (Room Oisans) sponsored by Mentor Graphics

2.2 Adaptability for Low Power Computing

Belle-Etoile 1130 - 1300

Chair:

Patrick Knocke, OFFIS, DE

Co-Chair:

Ruzica Jevtic, Universidad Carlos III, ES

Run-time adaptability is increasingly exploited to improve efficiency of energy-scarce systems. This however inevitably brings serious increases in system complexity to optimally control the adaptability knobs and threatens system reliability. This session groups several approaches to achieve effective run-time reconfiguration at various levels of granularity. Adaptive strategies for multi-core task allocation, NV back-up storage, PV energy harvesting and multi-domain clock gating are presented.

1130

CLOCK DOMAIN CROSSING AWARE SEQUENTIAL CLOCK GATING

Mohit Kumar1, Jianfeng Liu2, Mi-Suk Hong2, Kyungtae Do2, JungYun Choi2, Jaehong Park2, Ahishree Ranjan1, Manish Kumar1 and Nikhil Tripathi1

1Calypto Design Systems, IN; 2S.LSI, Samsung Electronics Co. Ltd., KR

1200

AN ENERGY EFFICIENT BACKUP SCHEME WITH LOW INRUSH CURRENT FOR NONVOLATILE SRAM IN ENERGY HARVESTING SENSOR NODES

Hehe Li1, Yongpan Liu1, Qinghang Zhao1, Guangyu Sun2, Chao Zhang2, Yizi Gu1, Rong Luo2, Huazhong Yang3, Meng-Fan Chang2 and Xiao Sheng1

1Department of Electronic Engineering, Tsinghua University, CN; 2Center for Energy-Efficient Computing and Applications, EECS, Peking University, CN

1230

RACE TO IDLE OR NOT: BALANCING THE MEMORY SLEEP TIME WITH DVS FOR ENERGY MINIMIZATION

Chencheng Fu1, Minming Li2 and Jason Xue2

1Department of Computer Science, City University of Hong Kong, HK; 2City University of Hong Kong, HK

1245

EVENT-DRIVEN AND SENSORLESS PHOTOVOLTAIC SYSTEM RECONFIGURATION FOR ELECTRIC VEHICLES

Xue Lin1, Yanzhi Wang1, Massoud Pedram1, Jaemin Kim1 and Naehyuck Chang1

1University of Southern California, US; 2Seoul National University, KR

1300

COORDINATION FOR ELECTRIC VEHICLES

Christoph Heer1, Patrick Knocke2, Ruzica Jevtic3 and Bourabia Manar3

1University of Bremen/DFKI, DE; 2OFFIS, DE; 3Department of Electrical Engineering, National Tsing Hua University, TW
Tuesday 10 March, 2015

1300 LUNCH BREAK, in front of the session room Salle Osans and in the exhibition area. Keynote session from 1320 – 1420 (Room Osans) sponsored by Mentor Graphics

2.3 System Level Design Methods

Stendhal 1130 - 1300
Chair: Yuichi Nakamura, NEC, JP
Co-Chair: Andreas Herkersdorf, TU München, DE
This session tackles complex system-level design problems in state-of-the-art FPGA-based designs and schedulability-critical systems. The first talk proposes a runtime system assigning multiple-clock domains in FPGA-based designs for minimizing the makespan of multiple tasks. The second talk studies novel multi-cycling optimization in high-level synthesis which is driven by software profiling. The third talk presents useful schedulability analysis and formulation on execution time bound for integrated modular avionic systems. Finally two IP talks propose an automated design flow for asynchronous dataflow networks to achieve better performance and area as well as feature localization for SystemC designs.

1130 ONLINE BINDING OF APPLICATIONS TO MULTIPLE CLOCK DOMAINS IN SHARED FPGA-BASED SYSTEMS
Farzad Samie1, Lars Bauer1, Chinh-Hing Hsiem2 and Joerg Henkel1
1Karlsruhe Institute of Technology (KIT), DE; 2Karlsruhe Institute of Technology, DE

1200 PROFILING-DRIVEN MULTI-CYCLING IN FPGA HIGH-LEVEL SYNTHESIS
Stefan Hadjis1, Andrew Canis1, Ryoya Sobue2, Yuko Hara-Azumii2, Hiroyuki Tomiya1 and Jason Anderson1
1University of Toronto, CA; 2Ritsumeikan University, JP; 3Tokyo Institute of Technology, JP

1230 SCHEDULABILITY BOUND FOR INTEGRATED MODULAR AVIONICS PARTITIONS
Jung-Eun Kim1, Tarek Abdelzaher2 and Lui Sha2
1Department of Computer Science, University of Illinois at Urbana-Champaign, US; 2University of Illinois, US

IPS 1130 - 1300
IP1-3, IP1-4

2.4 Automotive Systems and Smart Energy Systems

Chartreuse 1130 - 1300
Chair: Bart Vermeulen, NXP Semiconductors, NL
Co-Chair: Geoff Merrett, University of Southampton, GB
This session covers energy optimisation for embedded systems and emerging automotive systems and networks, including Ethernet and IP. To create effective Ethernet-enabled automotive networks, topics including service discovery, bridging and traffic shaping are addressed.

1130 WORKLOAD UNCERTAINTY CHARACTERIZATION AND ADAPTIVE FREQUENCY SCALING FOR ENERGY MINIMIZATION OF EMBEDDED SYSTEMS
Anup Das1, Akash Kumar2, Bharadwaj Veeravalli1, Rishad Shafik1, Geoff Merrett1 and Bashir Al-Hashimi2
1University of Southampton, GB; 2National University of Singapore, SG

1200 FORMAL ANALYSIS OF THE STARTUP DELAY OF SOME/IP SERVICE DISCOVERY
Jan Reinke Seyler1, Thilo Streichert1, Michael Glaß2, Nicolas Nave1 and Jürgen Teich1
1Daimler AG, DE; 2Friedrich-Alexander-Universität Erlangen-Nürnberg, DE; 3Université du Luxembourg, LU

1230 ANALYSIS OF ETHERNET-SWITCH TRAFFIC SHAPERS FOR IN-VEHICLE NETWORKING APPLICATIONS
Swakumar Thangamuthu1, Nicola Concer2, Pieter Cuypers1 and Johan Luik1
1NXP Semiconductors, IN; 2NXP Semiconductors, NL; 3Technische Universität Eindhoven, NL

1245 REAL-TIME CAPABLE CAN TO AVB ETHERNET GATEWAY USING FRAME AGGREGATION AND SCHEDULING
Christian Herber, Andre Richter, Thomas Wild and Andreas Herkersdorf, Technische Universität München, DE

1300 LUNCH BREAK, in front of the session room Salle Osans and in the exhibition area. Keynote session from 1320 – 1420 (Room Osans) sponsored by Mentor Graphics

2.5 Power of Assertions

Meije 1130 - 1300
Chair: Franco Fummi, University of Verona, IT
Co-Chair: Pablo Sanchez, University of Cantabria, ES

IPS 1130 - 1300

1200 AUTOMATIC EXTRACTION OF ASSERTIONS FROM EXECUTION TRACES OF BEHAVIOURAL MODELS
Alessandro Danese, Tara Ghasempouri and Graziano Pravadelli, University of Verona, IT

1230 A METHODOLOGY FOR AUTOMATED DESIGN OF EMBEDDED BIT-FLIPS DETECTORS IN POST-SILICON VALIDATION
Pouya Taatadze and Nicola Nicolici, McMaster University, CA

1245 DATA MINING DIAGNOSTICS AND BUG MRIS FOR HW BUG LOCALIZATION
Monica Farkash1, Bryan Hickerson2 and Balavminyagam Samynathan1
1University of Texas at Austin, US; 2IBM, US

1300 LUNCH BREAK, in front of the session room Salle Osans and in the exhibition area. Keynote session from 1320 – 1420 (Room Osans) sponsored by Mentor Graphics
TUESDAY 10 MARCH, 2015

2.6 Design and Analysis of Dependable Systems

Bayard 1130 - 1300

Chair:
Arne Hamann, Robert Bosch GmbH, DE
Co-Chair:
Viacheslav Izosimov, Semcon/KTH, SE

This section introduces new methods for uncertainty-aware reliability analysis and soft error vulnerability estimation as well as techniques for error recovery in safety-critical systems and security attacks through the JTAG port.

1130 LOW-COST CHECKPOINTING IN AUTOMOTIVE SAFETY-RELEVANT SYSTEMS
Carles Hernandez and Jaume Abella, Barcelona Supercomputing Center (BSC-CNS), ES

1200 UNCERTAINTY-AWARE RELIABILITY ANALYSIS AND OPTIMIZATION
Farinaz Kouscavi, Malte Müller, Michael Glaß and Jürgen Teich, Friedrich-Alexander-Universität Erlangen-Nürnberg, DE

1230 EFFICIENT SOFT ERROR VULNERABILITY ESTIMATION OF COMPLEX DESIGNS
Shahrzad Mirkhani¹, Subhasish Mitra², Chen-Yong Cher³ and Jacob Abraham⁴
¹University of Texas at Austin, US; ²Stanford University, US; ³IBM Research, US; ⁴University of Texas, US

1245 DETECTION OF ILLEGITIMATE ACCESS TO JTAG VIA STATISTICAL LEARNING IN CHIP
Xuanle Ren¹, Vitor Grade Tavares² and Shawn Blanton¹
¹Carnegie Mellon University, US; ²Faculdade de Engenharia da Universidade do Porto, PT

IPS IP1-8, IP1-9

1300 LUNCH BREAK,
in front of the session room Salle Oisans and in the exhibition area
Keynote session from 1320 – 1420 (Room Oisans) sponsored by Mentor Graphics

2.7 Compilation and Code Transformations for Reconfigurable Computing

Les Bans 1130 - 1300

Chair:
Dirk Stroobandt, University of Ghent, BE
Co-Chair:
Marco Platzer, University of Paderborn, DE

This session presents techniques for efficient compilation to CGRAs and a code transformation approach to enhance embedded system security.

1130 JOINT AFFINE TRANSFORMATION AND LOOP PIPELINING FOR MAPPING NESTED LOOP ON CGRA
Shouyi Yin¹, Dajiang Liu¹, Leibo Liu¹, Shaojun Wei¹ and Yike Guo³
¹Tsinghua University, CN; ²Institute of Microelectronics and The National Lab for Information Science and Technology, Tsinghua University, CN; ³Imperial College, London, GB

1200 PATH SELECTION BASED ACCELERATION OF CONDITIONALS IN CGRAS
Shri Hari Rajendran Radhika, Aviral Shrivastava and Mahdi Hamzeh, Arizona State University, US

1230 HARDWARE-ASSISTED CODE OBFUSCATION FOR FPGA SOFT MICROPROCESSORS
Meha Kairnith, Lekshmi Krishnan, Chaitra Narayana, Sandesh Virupaksha and Russell Tessier, University of Massachusetts, US

IPS IP1-10, IP1-11, IP1-12, IP1-13

1300 LUNCH BREAK,
in front of the session room Salle Oisans and in the exhibition area
Keynote session from 1320 – 1420 (Room Oisans) sponsored by Mentor Graphics

2.8 Facilities for Design and Fabrication for FD-SOI IC

Lesdiguières 1130 - 1300

Organiser:
Ahmed Jerraya, CEA-Leti, FR
Moderator:
Gerd Teepe, GLOBALFOUNDRIES, DE
Panelists:
Patrick Blouet, STMicroelectronics, FR, Olivier Thomas, CEA-Leti, FR

FD-SOI technology enables low cost and energy efficient designs best suited for today consumer, IoT and automotive applications, in continuity with traditional planar technologies simpler to design and manufacture with. The talks will illustrate the availability of a full FD-SOI technology ecosystem, encompassing IC fabrication, IP availability and design experiences.

1130 FD-SOI TECHNOLOGY ROADMAP
Gerd Teepe, GLOBALFOUNDRIES, DE

1200 FOUNDRY SERVICES FOR FD-SOI
Patrick Blouet, STMicroelectronics, FR

1215 INDUSTRIAL FD-SOI MPW AND GRENOBLE IC DESIGN CENTER
Olivier Thomas, CEA-Leti, FR

1230 DISCUSSION

1300 LUNCH BREAK,
in front of the session room Salle Oisans and in the exhibition area
Keynote session from 1320 – 1420 (Room Oisans) sponsored by Mentor Graphics

3.0 LUNCH TIME KEYNOTE SESSION:
“How micro-electronic will change your life style” sponsored by Mentor Graphics

Oisans 1320 - 1420

Organiser:
Mentor Graphics
Moderator:
Jean-Marie Saint-Paul, Mentor Graphics, FR

Microelectronics is opening new vistas in our lives by changing the way we interact with our environment. Speech recognition, Drones and Robots are not only advanced research topics, these are surrounding our daily activities, sharing our lives and may induce a much larger transformation of our life style than we could have imagined 10 years ago. This session will bring together high profile products and vision to show the ongoing transformation.

1320 NEW LIFE STYLES BEYOND YOUR DREAMS
Thierry Collette, CEA-Leti, FR

1330 DRONES THAT FLY FOR YOU
Nicolas Besnard, Parrot, FR

1350 ROBOTS THAT LIVE WITH YOU
Rodolphe Gelin, Aldebaran, FR

1410 QUESTIONS FROM THE AUDIENCE

1600 COFFEE BREAK IN EXHIBITION AREA
3.1 Executive Panel - Extending Moore’s Law & Heterogeneous Integration

Salle Oisans 1430 - 1600
Organiser: Yervant Zorian, Synopsys, US

Systemic scaling in today’s new applications is dramatically impacting the semiconductor industry. As a result, certain applications are moving to new advanced semiconductor nodes and others are adopting heterogeneous integration using multi-die modules. In addition to the technical challenges in each case, these solutions significantly affect the dependency between ecosystem players necessitating smooth interdependency between them. The executives in this session will discuss the solutions in the semiconductor industry and their impact on the eco system players.

1430 PANELISTS
Ivo Bolsens, Senior VP & CTO, Xilinx, US
Antun Domic, Executive VP, Design Group, Synopsys, US
Rudy Lauwereins, VP, IMEC, BE
Maria Merced, President, TSMC Europe, NL

1600 COFFEE BREAK IN EXHIBITION AREA

3.2 Passive Implementation Attacks and Countermeasures

Belle-Etoile 1430 - 1600
Chair: Francesco Regazzoni, Alari, CH
Co-Chair: Francois-Xavier Standaert, UCL, BE

Passive implementation attacks are a major security threat for embedded systems. This session focuses on improving side-channel analysis considering reliable key extraction, information leakage of static power consumption, and processor instructions. It also presents a monitor to defeat write-back attacks on caches.

1430 RELIABLE INFORMATION EXTRACTION FOR SINGLE TRACE ATTACKS
Valentina Banciu, Elisabeth Oswald and Carolyn Whitnall, University of Bristol, GB

1500 SCANDALEE: A SIDE-CHANNEL-BASED DISASSEMBLER USING LOCAL ELECTROMAGNETIC EMANATIONS
Baeliyun Strobel, Florian Bache, David Oswald, Falk Schellenberg and Christof Paar, Horst Görtz Institute for IT-Security, Ruhr-University Bochum, DE

1530 SIDE-CHANNEL ATTACKS FROM STATIC POWER: WHEN SHOULD WE CARE?
Santos Merino del Pozo1, Francois-Xavier Standaert2, Dina Kamel1 and Amir Moradi3
1UCL Crypto Group, BE; 2Ruhr University Bochum, DE

1545 EXTRAX: SECURITY EXTENSION TO EXTRACT CACHE RESIDENT INFORMATION FOR SNOOP-BASED EXTERNAL MONITORS
Jinyong Lee1, Yongje Lee2, Hyungon Moon3, Ingoo Heo1 and Yunheung Paek1
1Seoul National University, KR; 2Seoul National University, Samsung Electronics Co., Ltd., KR

1600 COFFEE BREAK IN EXHIBITION AREA

3.3 Loop Acceleration

Stendhal 1430 - 1600
Chair: Jürgen Teich, FAU Erlangen, DE
Co-Chair: Benjamin Schafer, Hong Kong Polytechnic University, HK

This session reveals novel loop optimization techniques in high-level synthesis for resolving area overhead and communication bottlenecks in nested loops and/or multidimensional arrays. The first talk leverages loop-array dependencies for loop partitioning to reduce the dimension of the design space in order to ease the design complexity. The second talk quantifies a relationship between loop unrolling and partitioning, based on which area reduction methods are proposed by controlling the degree of loop unrolling. The third talk then resolves communication bottlenecks in embedded accelerators through inter-tile data reuse on loop optimizations.

1430 EXPLOITING LOOP-ARRAY DEPENDENCIES TO ACCELERATE THE DESIGN SPACE EXPLORATION WITH HIGH LEVEL SYNTHESIS
Nam Khanh Pham1, Amit Kumar Singh2, Akash Kumar3 and Mi Mi Aung Khin4
1ECCE Department, National University of Singapore, SG; 2University of York, GB; 3National University of Singapore, SG; 4Data Storage Institute (DSI), A*STAR, Singapore, SG

1500 INTERPLAY OF LOOP UNROLLING AND MULTIDIMENSIONAL MEMORY PARTITIONING IN HLS
Alessandro Cilardo and Luca Gallo, University of Naples Federico II, IT

1530 INTER-TILE REUSE OPTIMIZATION APPLIED TO BANDWIDTH CONSTRAINED EMBEDDED ACCELERATORS
Maurice Peemen, Bart Mesman and Henk Corporaal, Eindhoven University of Technology, NL

1600 COFFEE BREAK IN EXHIBITION AREA

3.4 Tackling Memory Walls with Emerging Architectures and Technologies

Chartreuse 1430 - 1600
Chair: Akash Kumar, NUS, SG
Co-Chair: Cristina Silvano, Politecnico di Milano, IT

This session focuses on various aspects of memory system design including non-volatile reconfigurable cache design, cache directory design, shared DRAM access, and writeback policies for stacked-die caches.

1430 SELECTDIRECTORY: A SELECTIVE DIRECTORY FOR CACHE COHERENCE IN MANY-CORE ARCHITECTURES
Yuan Yao1, Guanzhua Wang2, Zhiguo Ge1, Tulika Mitra3, Wenzhi Chen1 and Naxin Zhang1
1Zhejiang University, CN; 2National University of Singapore, SG; 3Huawei, SG

1500 DYRECTAPE: A DYNAMICALLY RECONFIGURABLE CACHE USING DOMAIN WALL MEMORY TAPES
Ashish Ranjan1, Shankar Ganesh Ramsasubramanian1, Rangharajan Venkatesan1, Vijay Pai2, Kaushik Roy3 and Anand Raghunathan1
1Purdue University, US; 2University of York, GB; 3Czech Technical University in Prague, CZ

1530 COOPERATIVELY MANAGING DYNAMIC WRITEBACK AND INSERTION POLICIES IN A LAST-LEVEL DRAM CACHE
Shouyi Yin1, Jiakun Li1, Yuan Yao1, Leibo Liu2, Shaojun Wei1 and Yike Guo3
1Tsinghua University, CN; 2Institute of Microelectronics and The National Lab for Information Science and Technology, Tsinghua University, CN; 3Imperial College, London, GB

1545 A GENERIC, SCALABLE AND GLOBALLY ARBITRATED MEMORY TREE FOR SHARED DRAM ACCESS IN REAL-TIME SYSTEMS
Manil Dev Gomony1, Jamie Garside2, Benny Akessson3, Neil Audsley4 and Kees Goossens5
1Eindhoven University of Technology, NL; 2University of York, GB; 3Czech Technical University in Prague, CZ

1600 COFFEE BREAK IN EXHIBITION AREA
Breaking Simulation Boundaries

Chair: Elena Ioana Vatajelu, Politecnico di Torino, IT
Co-Chair: Florian Letombe, Synopsys, FR

Faster, faster, faster ... that's all you expect when you are simulating your designs. This session takes you through a journey of super fast simulation techniques at different abstraction levels.

1430

VARIATION-AWARE EVALUATION OF MPSoC TASK ALLOCATION AND SCHEDULING STRATEGIES USING STATISTICAL MODEL CHECKING
Mingsong Chen1, Daian Yue1, Xiaoke Qin2, Xin Fu3 and Prabhat Mishra2
1East China Normal University, CN; 2University of Florida, US; 3University of Houston, US

1500

A FAST PARALLEL SPARSE SOLVER FOR SPICE-BASED CIRCUIT SIMULATORS
Xiaoming Chen, Yu Wang and Huazhong Yang, Tsinghua University, CN

1530

MRP: MIX REAL CORES AND PSEUDO CORES FOR FPGA-BASED CHIP-MULTIPROCESSOR SIMULATION
Xinke Chen1, Guangfei Zhang2, Huandong Wang2, Ruiyang Wu1, Peng Wu1 and Longbing Zhang1
1Institute of Computing Technology, CAS, CN; 2Shannon Laboratory, Huawei Technologies Co., Ltd, CN; 3Loongson Technology Corporation Limited, CN

1545

SOURCE LEVEL PERFORMANCE SIMULATION OF GPU CORES
Christoph Gerum1, Oliver Bringmann2 and Wolfgang Rosenstiel1
1University of Tuebingen, DE; 2University of Tuebingen / FZI, DE

1600

COFFEE BREAK IN EXHIBITION AREA

3.6

Hot Topic - Memristor based Computation-in-Memory Architecture for Data-Intensive Applications

Organisers: Said Hamdioui, TU Delft, NL
Koen Bertels, TU Delft, NL

In today’s data-intensive applications (known as Big Data problems), such as healthcare (e.g., use of genetic information to diagnose and treat diseases), social media, engineering (e.g. large scientific experiments), the primary goal is to increase the understanding of processes in order to extract so much potential and highly useful information hidden in the huge volume of data, which in turn can be used to increase the productivity. As the speed of information growth exceeds Moore’s Law at the beginning of this century, excessive data is making great troubles to human beings. At the same time, Big Data arises with many challenges, such as data capture, data storage, data analysis and data visualization. Performing data analysis within economically affordable time and energy is the pillar to solve big data problems, and therefore extract extremely valuable information. The increase of the data size has already surpassed the capabilities of today’s computation architectures which suffer from communication bottleneck due to limited bandwidth. For instance, the transfer of 1 petabytes data at a rate of 1000MB/second will cost 12.5 days! Communication and memory access does not only kill the performance, but also energy/power (more than between 70% and 90% such applications). Even the CMOS technology used to implement today’s architectures contributes to such power due to the higher leakage; not to mention the limited scalability (as it is becoming very costly), reduced reliability (as it degrades faster), etc. In conclusion, today’s CMOS based architecture are not able to provide the computation capability needed for data-intensive applications. New architectures based new technologies are therefore needed. This Hot-Topic Session will address the concept of “Computing-in-memory (CIM)” and discuss a new Memristor Based Architecture Paradigm for Data-Intensive applications, as an alternative architecture. The concept is based on performing the storage and computation in the same crossbar topology (non Von-Neumann architecture) where the key device is the non-volatile resistive switching element (memristor). CIM architecture is able significantly push the “memory wall”, while the memristor device is able to reduce the static power to practically zero.

1430

DATA-INTENSIVE APPLICATIONS- A MAJOR CHALLENGE AHEAD
Jan van Lunteren, IBM Research, CH

1500

CIM ARCHITECTURE- BEYOND VON NEUMANN
Koen Bertels1 and Henk Coorporal2
1Delft University of Technology, NL; 2Eindhoven University of Technology, NL

1530

MEMRISTIVE DEVICES - THE KEY ENABLER FOR CIM ARCHITECTURE IMPLEMENTATION
Eike Linn, RWTH Aachen University, DE

1600

COFFEE BREAK IN EXHIBITION AREA

3.7

Model-based Analysis and Verification

Chair: Saddek Bensalem, Université Joseph Fourier, FR
Co-Chair: Linh Thi Xuan Phan, University of Pennsylvania, US

This session focuses on the analysis and verification in model-based design of embedded systems. It has four regular papers: The first paper presents a delay analysis method for a general graph based workload model. The second one presents a new formal approach to verifying Interrupt-driven software-based verification and (arguably) implementation) of real-time systems, where the original model is expressed as a network of UPPAAL timed automata (PIM). The fourth one presents a generic method to automatically generate a symbolic executor for a given hardware architecture specified by some Architecture Description Language, which is used to verify program properties regarding the binary code level. In this session we have also an IP paper, which presents a technique for estimating non-functional requirements using a Knowledge Discovery in Databases (KDD) approach.

1430

DELAY ANALYSIS OF STRUCTURAL REAL-TIME WORKLOAD
Nan Guan1, Yue Tang1, Yang Wang2 and Wang Yi3
1Uppsala University, SE; 2Northeastern University, CN; 3Uppsala University, CN

1500

EFFECTIVE VERIFICATION OF LOW-LEVEL SOFTWARE WITH NESTED INTERRUPTS
Daniel Kroening1, Lihao Liang1, Tom Melham1, Peter Schrammel1 and Michael Tautschnig1
1University of Oxford, GB; 2Queen Mary, University of London, GB

1530

PLATFORM-SPECIFIC TIMING VERIFICATION FRAMEWORK IN MODEL-BASED IMPLEMENTATION
Baek Gyoo Kim, Lu Feng, Linh T.X. Phan, Oleg Sokolsky and Inskip Lee, University of Pennsylvania, US

1545

ARCHITECTURE DESCRIPTION LANGUAGE BASED RETARGETABLE SYMBOLIC EXECUTION
Andreas Ibing, TU München, DE

1600

COFFEE BREAK IN EXHIBITION AREA
IP1-5

INDUCTOR OPTIMIZATION FOR ACTIVE CELL BALANCING USING GEOMETRIC PROGRAMMING
Matthias Kauer1, Swaminathan Narayanaswamy1, Martin Lukasiewycz1, Sebastian Steinhorst1 and Samarjit Chakraborty1
1TU Munich, DE

IP1-6

LIGHTWEIGHT AUTHENTICATION FOR SECURE AUTOMOTIVE NETWORKS
Philipp Mundhenk1, Sebastian Steinhorst1, Martin Lukasiewycz1, Suhaib A. Fahmy2 and Samarjit Chakraborty1
1TUM CREATE, SG; 2School of Computer Engineering, Nanyang Technological University, Singapore; 3TU Munich, DE

IP1-7

MINIMIZING THE NUMBER OF PROCESS CORNER SIMULATIONS DURING DESIGN VERIFICATION
Michael Shoniker, Bruce Cockburn, Jie Han and Witold Pedrycz, University of Alberta, CA

IP1-8

AN APPROXIMATE VOTING SCHEME FOR RELIABLE COMPUTING
Ke Chen1, Jie Han2 and Fabrizio Lombardi1
1Northeastern University, US; 2University of Alberta, CA

IP1-9

FLINT: LAYOUT-ORIENTED FPGA-BASED METHODOLOGY FOR FAULT TOLERANT ASIC DESIGN
Rochus Nowosiesliski, Lukas Gerlach, Stephan Bieband, Guillermo Paya-Vaya and Holger Blume, Leibniz Universität Hannover, Institute of Microelectronic Systems, DE

IP1-10

A UNIFIED HARDWARE/SOFTWARE MPSoC SYSTEM CONSTRUCTION AND RUN-TIME FRAMEWORK
Sam Skalicky1, Andrew Schmidt2, Matthew French3 and Sonia Lopez4
1Rochester Institute of Technology, US; 2USC/ISI, US

IP1-11

(AS)^2: ACCELERATOR SYNTHESIS USING ALGORITHMIC SKELETONS FOR RAPID DESIGN SPACE EXPLORATION
Shakthi Fernando1, Mark Wijtviertel2, Lentric Nugteren3, Akash Kumar4 and Henk Corporaal2
1Eindhoven University of Technology, NL; 2National University of Singapore, Singapore; 3TU/e (Eindhoven University of Technology), NL

IP1-12

ASSISTED GENERATION OF FRAME CONDITIONS FOR FORMAL MODELS
Philipp Niemann, Frank Hilken, Martin Gogolla and Robert Wille, University of Bremen, DE

IP1-13

TOWARDS A META-LANGUAGE FOR THE CONCURRENCY CONCERN IN DSLS
Julien Deantoni1, Papa Issa Dillay2, Ciprian Teodorov2, Joel Champeau2 and Benoit Combemale3
1Eindhoven University of Technology, NL; 2National University of Singapore, Singapore; 3TU/e (Eindhoven University of Technology), NL

IP1-14

FAST AND ACCURATE BRANCH PREDICTOR SIMULATION
Antoine Faravelon, Nicolas Fournet and Frederic Pétrot, TIMA Laboratory, Université de Grenoble-Alpes/CNRS, FR

IP1-15

COMPARATIVE STUDY OF TEST GENERATION METHODS FOR SIMULATION ACCELERATORS
Wisam Kadry1, Dimitry Krestyashyn2, Arkady Morgenstern1, Amir Nahir1, Vitali Sokhin1, Jae Cheol Son2, Wookyeong Jeong2, Sung-Boem Park2 and Jin Sung Park2
1IBM Research - Haifa, IL; 2Samsung, KR

IP1-16

USING STRUCTURAL RELATIONS FOR CHECKING COMBINATIONALITY OF CYCLIC CIRCUITS
Wan-Chen Weng1, Yung-Chih Chen2, Ju-Hung Chen3, Ching-Yi Huang1 and Chun-Yao Wang1
1National Tsing Hua University, TW; 2Yuan Ze University, TW

IP1-17

NFRS EARLY ESTIMATION THROUGH SOFTWARE METRICS
Andres Vieira1, Pedro Faustino1, Luigi Carro2 and Erika Cota3
1Federal University of Rio Grande do Sul (UFRGS), BR; 2Federal University of Rio Grande do Sul (UFRGS),
Executive Panel - Trends and Challenges in Today’s Automotive Semiconductors

Salle Disans 1700 - 1830

Organiser: Yervant Zorian, Synopsys, US

While the new chips in the automotive industry keep growing both in functionality and numbers, the complexity level and robustness requirements remain crucial, as always, given their safety critical application. The speakers in this executive session will address the current trends and challenges in the automotive semiconductor industry.

Implementation and Verification of Security Components

Belle-Étoile 1700 - 1830

Chair: Assia Tria, CEA, FR
Co-Chair: Wieland Fischer, Infineon Technologies AG, DE

System designers need secure building blocks for robust security devices. This session presents novel implementation and verification strategies for hardware circuits, post-quantum cryptography schemes and true random number generators.

Privacy-preserving Functional IP Verification Utilizing Fully Homomorphic Encryption

Charalambos Konstantinou1 and Michail Maniatakos2
1New York University Polytechnic School of Engineering, US; 2New York University Abu Dhabi, AE

This session targets architectural solutions for energy-efficient and reliable memories and processors.

Efficient Software Implementation of Ring-LWE Encryption

Ruan de Clercq, Sujoy Sinha Roy, Frederik Verscauteren and Ingrid Verbauwhede, KU Leuven - COSIC, BE

This session presents novel implementation and verification strategies for hardware circuits, post-quantum cryptography schemes and true random number generators.

Embedded HW/SW Platform for On-The-Fly Testing of True Random Number Generators

Bohan Yang1, Vladimiro Rozic1, Nele Mentens1, V. Dehaene2 and Ingrid Verbauwhede1
1ESAT/COSIC and iMinds, KU Leuven, BE; 2ESAT-MICAS, KU Leuven, BE

This session presents novel implementation and verification strategies for hardware circuits, post-quantum cryptography schemes and true random number generators.

Multi-/Manycore Scheduling

Stendhal 1700 - 1830

Chair: Luciano Lavagno, Politecnico di Torino, IT
Co-Chair: Aviral Shrivastava, Arizona State University, US

This session tackles various issues in realistic, complex task scheduling/assignment methods in 2D and 3D multi-/many-core systems. The first talk introduces an intra/inter-cores switching method in multi-core scheduling problem for efficient power saving under throughput constraint. The second talk studies thermal-pattern-aware task assignment for 3D multi-core processors, where hotspot is a critical issue, for improving reliability and lifetime. The third talk effectively combines logic solver and background theory solver to synthesize satisfiability modulo theories (SMT)-based systems.

An Online Thermal-Constrained Task Scheduler for 3D Multi-Core Processors

Chien-Hui Liao, Hung-Pin Wen1 and Krishnendu Chakrabarty2
1National Chiao Tung University, TW; 2Duke University, US

A Symbolic System Synthesis Approach for Hard Real-Time Systems Based on Coordinated SMT-Solving

Alexander Bleuer1, Benjamin Andres2, Jens Gladigau1, Torsten Schaub2 and Christian Haubelt1
1Robert Bosch GmbH, DE; 2University of Potsdam, DE

This session presents novel implementation and verification strategies for hardware circuits, post-quantum cryptography schemes and true random number generators.

Industrial Test and Validation Experiments

Meije 1700 - 1830

Chair: Dan Alexandrescu, iRoC, FR
Co-Chair: Emmanuel Simeu, TIMA, FR

This session targets architectural solutions for energy-efficient and reliable memories and processors.

Soft-Error Reliability and Power Co-Optimization for GPGPUs Register File Using Resistive Memory

Jingweijia Tan1, Zhi Li2 and Xin Fu1
1University of Houston, US; 2University of Kansas, US

Energy-Efficient Cache Design in Emerging Mobile Platforms: The Implications and Optimizations

Kaige Yang and Xin Fu, University of Houston, US

Exploiting Dynamic Timing Margins in Microprocessors for Frequency-Over-Scaling with Instruction-Based Clock Adjustment

Jeremy Constantin1, Kai Wang2, Georgios Karakostantis3, Anupam Chattopadhyay4 and Andreas Burg1
1École Polytechnique Fédérale de Lausanne (EPFL), CH; 2RWTH Aachen, DE; 3Queen’s University, GB

Variability-Aware Dark Silicon Management in On-Chip Many-Core Systems

Muhammad Shafique1, Dennis Gnad1, Siddharth Garg2 and Joerg Henkel1
1Karlsruhe Institute of Technology (KIT), DE; 2University of Waterloo, CA

Systematic Application of the ISO 26262 on a SoECO Support by Applying a Systematic Reuse Approach

Alejandra Ruiz1, Alberto Melzi1 and Tim Kelly1
1ETN ALIA, ES; 2Centro Ricerche FIAT, IT; 3University of York, GB

Timing Analysis of an Avionics Case Study on Complex Hardware/Software Platforms

Franck Wartel1, Leonidas Kosmidis2, Adriana Gogonel3, Andrea Baldovin4, Zoe Stephenson5, Benoit Triquet6, Eduardo Quinones6, Code Lo7, Enrico Mezzetti8, Ian Broster5, Jaume Abella8, Liliana Cucu-Grosjean3, Tullio Vardanega9 and Francisco Cazorla3
1Airbus, FR; 2Barcelona Supercomputing Center and Universitat Politècnica de Catalunya, ES; 3INRIA, FR; 4University of Padova, IT; 5Rapita Systems, Ltd., GB; 6Barcelona Supercomputing Center, ES; 7University of Padua, IT; 8Barcelona Supercomputing Center (BSC-CNS), ES; 9Barcelona Supercomputing Center and IIIAS-CISIC, ES

Silicon Proof of the Intelligent Analog IP Design Flow for Flexible Automotive Components

Torsten Reich, H. D. Benjamin Prautsch, Uwe Eichler and René Buhl, Fraunhofer Institute for Integrated Circuits IIS, Design Automation Division EAS, DE
Tuesday 10 March, 2015

1745 FAST OPTICAL SIMULATION FROM A REDUCED SET OF IMPULSE RESPONSES USING SYSTEMIC AMS
Fabien Teyssseyre¹, David Navarro², Ian O’Connor², Francesco Cascio², Fabio Cenni² and Olivier Guillaume³
¹École Centrale de Lyon, FR; ²STMicroelectronics, FR

1800 DESIGNER-LEVEL VERIFICATION -- AN INDUSTRIAL EXPERIENCE STORY
Stephen Bergman¹, Gabor Bobok¹, Walter Kowalski³, Shlomit Koyfman², Shiri Moran², Ziv Nevo², Avigail Orni², Viresh Paruthi¹, Wolfgang Roesner¹, Gil Shurek² and Vasantha Vuyyuru³
¹IBM, US; ²IBM, IL

1815 MINIMUM CURRENT CONSUMPTION TRANSITION TIME OPTIMIZATION METHODOLOGY FOR LOW POWER CTS
Vibhu Sharma, NXP Research, NL

4.6 Online Testing and Reliable Memories
Bayard 1700 - 1830
Chair: Mihalis Psarakis, University of Piraeus, GR
Co-Chair: Cristiana Bolchini, Politecnico di Milano, IT

Temperature- and power-aware solutions are proposed for self- and on-line testing, together with innovative fault detection and reconfiguration schemes for caches and emerging memory technologies.

1700 TEMPERATURE-AWARE SOFTWARE-BASED SELF-TESTING FOR LOW-VCCMIN DVFS-ENABLED SYSTEMS
Michail Mavropoulos, Georgios Keramidas and Dimitris Nikolos, University of Patras, GR

1730 TEMPERATURE-AWARE DEMONSTRATION BASED SELF-TESTING FOR DELAY FAULTS
Ying Zhang¹, Zebo Peng¹, Jianhui Jiang¹, Huawei Li³ and Masahiro Fujita³
¹Tongji University, Shanghai, China, CN; ²Embedded Systems Lab, Linköping University, SE; ³School of Software Engineering, Tongji University, CN;
²Institute of Computing Technology, Chinese Academy of Sciences, CN;
³VLSI Design and Education Center, University of Tokyo, JP

1800 OPERATIONAL FAULT DETECTION AND MONITORING OF A MEMRISTOR-BASED LUT
Nandha kumar Thulasiraman¹, Haider A.F. Almurib¹ and Fabrizio Lombardi²
¹The University of Nottingham, MY; ²Northeastern University, US

1815 POWER-AWARE ONLINE TESTING OF MANYCORE SYSTEMS IN THE DARK SILICON ERA
Mohammad-Hashem Haqhbayan¹, Amir-Mohammad Rahmani², Mohammad Fattahi³, Pasi Liljeberg³, Juha Plosila¹, Hannu Tenhunen² and Zainalabedin Navabi³
¹University of Turku, FI; ²KTH Royal Institute of Technology, SE; ³Worcester Polytechnic Institute, US

4.7 How Resilient Are Emerging Technologies?
Les Bans 1700 - 1830
Chair: Vikas Chandra, ARM, US
Co-Chair: Mehdi Tahoori, KIT, DE

Many new technologies are being proposed as alternatives to conventional CMOS design. Resilience, including robustness, reliability and fault modeling, will be a key factor in their success. This session includes results on several of these, as well as IP presentations on two others.

1700 DIGITAL CIRCUITS RELIABILITY WITH IN-SITU MONITORS IN 28NM FULLY DEPLETED SOI
Marine Saliva¹, Florian Cacho¹, Vincent Huard¹, Xavier Federspiel¹, Damien Angot¹, Ahmed Benhashain¹, Alain Bravaix‡ and Lorena Anghel³
¹STMicroelectronics, FR; ²IM2NP-ISEN, FR; ³TIMA, FR

1730 READ/WRITE ROBUSTNESS ESTIMATION METRICS FOR SPIN TRANSFER TORQUE (STT) MRAM CELL
Elena Ioana Vatajelu¹, Rosa Rodriguez-Montañés², Marco Indaco¹, Michel Renovell³, Paolo Prinetto¹ and Joan Figueras²
¹Politecnico di Torino, IT; ² Universitat Politecnica de Catalunya, ES;
³LIRMM-CNRS,

1800 FAULT MODELING IN CONTROLLABLE POLARITY SILICON NANOWIRE CIRCUITS
Hassan Ghasemzadeh Mohammadi¹, Pierre-Emmanuel Gaillardon² and Giovanni De Micheli²

IPS
IP2-3, IP2-4

4.8 Strength by Interdisciplinary Research: The Cadence Academic Network
Salle Lesdiguières 1700 - 1830
Organiser: Patrick Haspel, Cadence Academic Network, US
Chair: Jürgen Haase, edacentrum GmbH, DE

The Academic Network was launched by Cadence in 2007. The aim was to promote the proliferation of leading-edge technologies and methodologies at universities renowned for their engineering and design excellence. A knowledge network among selected universities, research institutes, industry advisors and Cadence was established to facilitate the sharing of technology expertise in the areas of verification, design and implementation of microelectronic systems.

Specific examples of research directions in the cadence academic network will be given in three talks.

1700 INTRODUCTION TO THE ACADEMIC NETWORK
Patrick Haspel, Cadence Academic Network, US

1715 DEPENDABILITY AND DESIGN-FOR-TESTABILITY
Said Hamdoui, Delft University of Technology, NL

1740 DIGITAL SYSTEM DESIGN
Mladen Berekovic, TU Braunschweig, DE

1805 SYSTEM LEVEL DEVELOPMENT USING VIRTUAL PROTOTYPING
Michael Hübner, Ruhr-University Bochum, DE

1830 EXHIBITION RECEPTION
Several serving points inside the Exhibition Area

The Exhibition Reception will take place on Tuesday, March 10, 2015, from 1830-1930 in the exhibition area of the congress center, where free drinks for all conference delegates and exhibition visitors will be offered.
SPECIAL DAY Hot Topic: Applications of IoT

5.1

Organisers: Ahmed Jerraya, CEA, FR
Co-Chair: Viktor Fischer, University of Bremen/DFKI GmbH, DE
Chair: Gabriela Nicolescu, École Polytechnique Montreal, CA
Co-Chair: Ahmed Jerraya, CEA, FR

Internet of things (IoT) applications is changing the landscape of the whole society and even non-traditional ICT intensive domains. More products in all market segments are emerging every day and is changing the way human and machines are interacting. This represents a great opportunity for innovators in industry and new vistas of research for academia. This session overview several application domains already impacted by this IoT wave.

0830 IOT FOR HEALTHCARE
Giovanni De Micheli, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH

0852 IOT FOR SMART HOME
Sylvain Paineau, Schneider Electric, FR

0914 IOT FOR AUTOMOTIVE
Juergen Hornung, Bosch, DE

0936 IOT FOR SMART CITIES
Levent Guregen, CEA/LETI, FR

1000 COFFEE BREAK IN EXHIBITION AREA

5.2

Hardware Trojan and Active Implementation Attacks

Chair: Paolo Maistri, TIMA, FR
Co-Chair: Viktor Fischer, Hubert Curien Laboratory, FR

This session proposes novel techniques to detect hardware Trojans inserted at gate level and presents improvements and novel targets for fault attacks.

0830 IMPROVED PRACTICAL DIFFERENTIAL FAULT ANALYSIS OF GRAIN-128
Prakash Dey1, Abhishek Chakraborty2, Avishek Adhikari1 and Debdeep Mukhopadhyay2
1Department of Pure Mathematics, University of Calcutta, Kolkata-700019, IN; 2Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721302, IN

0900 A SCORE-BASED CLASSIFICATION METHOD FOR IDENTIFYING HARDWARE-TROJANS AT GATE-LEVEL NETLISTS
Masaru Oya, Yoshua Shi, Masao Yanagisawa and Nozomu Togawa, Waseda University, JP

0930 HARDWARE TROJAN DETECTION FOR GATE-LEVEL ICS USING SIGNAL CORRELATION BASED CLUSTERING
Burcin Cakir and Sharad Malik, Princeton University, US

1000 COFFEE BREAK IN EXHIBITION AREA

5.3

Variability Challenges in Nanoscale Circuits

Chair: Pablo Garcia del Valle, École Polytechnique Fédérale de Lausanne (EPFL), CH
Co-Chair: Muhammad Shafique, Karlsruhe Institute of Technology, DE

This session proposes new techniques to address variability related challenges in nanoscale chips. The topics addressed include retention time variations in DRAM and variations in the power delivery network.

0830 EXPLOITING DRAM RESTORE TIME VARIATIONS IN DEEP SUB-MICRON SCALING
Xianwei Zhang1, Youtao Zhang2, Bruce Childers3 and Jun Yang3
1Department of Computer Science, University of Pittsburgh, US; 2Electrical and Computer Engineering Department, University of Pittsburgh, US

0900 ADAPTIVELY TOLERATE POWER-GATING-INDUCED POWER/GROUND NOISE UNDER PROCESS VARIATIONS
Zhe Wang, Xuan Wang, Jiang Xu, Xiaowen Wu, Zhehui Wang, Peng Yang, Luan H. K. Duong, Haoran Li, Rafael K. V. Maeda and Zhifei Wang, HKUST, HK

0930 ENERGY VERSUS DATA INTEGRITY TRADE-OFFS IN EMBEDDED HIGH-DENSITY-LOGIC COMPATIBLE DYNAMIC MEMORIES
Adam Ieama1, Georgios Karakostantis2, Robert Giterman3, Pascal Meinerzhagen4 and Andreas Burg1
1École Polytechnique Fédérale de Lausanne (EPFL), CH; 2Queen’s University, CH; 3Ben-Gurion University, IL; 4Eindhoven University of Technology, NL

1000 COFFEE BREAK IN EXHIBITION AREA

5.4

Emerging Technologies for NoCs

Chair: Ian O’Connor, University of Lyon, FR
Co-Chair: Davide Bertozzi, University of Ferrara, IT

Several new technologies are enabling capabilities for NoCs. In this session, we demonstrate how to leverage optical, 3D and wireless methodologies to improve your NoCs. The first paper explores crosstalk mitigation techniques in optical NoCs. The second paper explores TSV minimization through virtual channels and the final paper deals with dynamic calibration in wireless NoCs.

0830 COHERENT CROSSTALK NOISE ANALYSES IN RING-BASED OPTICAL INTERCONNECTS
Luan H.K. Duong1, Mahdi Nikdast2, Jiang Xu1, Zhehui Wang1, Yvain Thonnart2, Sébastien Le Beux2, Peng Yang1, Xiaowen Wu1 and Zhifei Wang2
1The Hong Kong University of Science and Technology, HK; 2École Polytechnique de Montréal, Montréal, CA; 3CEA-Leti, FR; 4Lyon Institute of Nanotechnology, Ecole Centrale de Lyon, FR

0900 ENABLING VERTICAL WORMHOLE SWITCHING IN 3D NOC-BUS HYBRID SYSTEMS
Changlin Chen, Marius Enachescu and Sorin Cotofana, Delft University of Technology, NL

0930 A CLOSED LOOP TRANSMITTING POWER SELF-CALIBRATION SCHEME FOR ENERGY EFFICIENT WINOC ARCHITECTURES
Andrea Mineo1, Mohd Shahriar Rusli2, Maurizio Palesi3, Giuseppe Ascia1, Vincenzo Catania1 and M. N. Marsono2
1University of Catania, IT; 2Universiti Teknologi Malaysia, MY; 3Kore University, IT

1000 COFFEE BREAK IN EXHIBITION AREA
Wednesday 11 March, 2015

Critical Embedded Systems

Chair: Lothar Thiele, Swiss Federal Institute of Technology Zurich, CH
Co-Chair: Iain Bate, University of York, GB

The papers in this session focus on design concerns for safety-critical embedded systems. Topics include scheduling for engine-control tasks, fault tolerance, real-time communication, and safety and security in embedded systems.

0830 SUFFICIENT RESPONSE TIME ANALYSIS CONSIDERING DEPENDENCIES BETWEEN RATE-DEPENDENT TASKS
Timo Feld1 and Frank Slomka2
1Institute of Embedded Systems / Real-Time Systems Ulm University, DE;
2Ulm University, DE

0900 ENGINE CONTROL: TASK MODELLING AND ANALYSIS
Alessandro Biondi and Giorgio Butttazzo, Scuola Superiore Sant’Anna, IT

0930 EVALUATION OF DIVERSE COMPILING FOR SOFTWARE-FAULT TOLERANCE
Andrea Höller1, Nermin Kajtazovic2, Tobias Rauter2, Kay Römer2 and Christian Kreiner2
1TU Graz, AT; 2Graz University of Technology, AT

0945 WORST-CASE COMMUNICATION TIME ANALYSIS OF NETWORKS-ON-CHIP WITH SHARED VIRTUAL CHANNELS
Eberle A Rambo and Rolf Ernst, TU Braunschweig, DE

1000 COFFEE BREAK IN EXHIBITION AREA

Analyzing and Improving Memories

Chair: Bartomeu Alorda, Balearic Islands University, ES
Co-Chair: Panagiota Papavramidou, IMAG, FR

Memories are a driving force behind virtually all IC designs. This session describes methods of improving memory architecture, robustness, and lifetime.

0830 ON THE STATISTICAL MEMORY ARCHITECTURE EXPLORATION AND OPTIMIZATION
Charalampos Antoniadis1, Georgios Karakonstantis2, Nestoras Evmorfopoulos1, Andreas Burg1 and George Stamoulis1
1University of Thessaly, GR; 2Queen’s University, GB; 3École Polytechnique Fédérale de Lausanne (EPFL), CH

0900 ECRIPSE: AN EFFICIENT METHOD FOR CALCULATING RTN-INDUCED FAILURE PROBABILITY OF AN SRAM CELL
Hiromitsu Awano, Masayuki Hiromoto and Takashi Sato, Kyoto University, JP

0930 SUBPAGE PROGRAMMING FOR EXTENDING THE LIFETIME OF NAND FLASH MEMORY
Jung-Hoon Kim1, Sang-Hoon Kim2 and Jin-Soo Kim3
1Samsung Electronics Corp., KR; 2KAIST, KR; 3Sungkyunkwan University, KR

1000 COFFEE BREAK IN EXHIBITION AREA

Architectures and Design for Cyber-Physical Systems

Chair: Christian Haubelt, University of Rostock, DE
Co-Chair: Andy D. Pimentel, University of Amsterdam, NL

The session covers architectures for non-volatile processors, mixed-criticality, reliable and self-aware systems, and design optimisation issues such as system synthesis for reliability and cost, online scheduling and FPGA acceleration.

0830 OPTIMIZED SELECTION OF RELIABLE AND COST-EFFECTIVE CYBER-PHYSICAL SYSTEM ARCHITECTURES
Nikunj Bajaj1, Pierluigi Nuzzo2, Michael Masin2 and Alberto Sangiovanni-Vincentile2
1University of California at Berkeley, US; 2IBM Haifa Research Lab, IL

0900 SOFTWARE ASSISTED NON-VOLATILE REGISTER REDUCTION FOR ENERGY HARVESTING BASED CYBER-PHYSICAL SYSTEM
Mengying Zhao1, Qing Lin2, Mimi Xie1, Yongpan Liu3, Jingtong Hu2 and Jason Xue3
1City University of Hong Kong, HK; 2Wuhan University & City University of Hong Kong, CN; 3Tsinghua University, CN

0930 A RE-ENTRANT FLOWSHOP HEURISTIC FOR ONLINE SCHEDULING OF THE PAPER PATH IN A LARGE SCALE PRINTER
Umar Waqas1, Marc Geilen1, Jack Kandelaars2, Lou Somers3, Twan Basten1, Sander Stuijk1, Patrick Vestjens2 and Henk Corporaal1
1Eindhoven University of Technology, NL; 2Oce Technologies, NL; 3Oce technologies, NL

0945 MPIOV: SCALING HARDWARE-BASED I/O VIRTUALIZATION FOR MIXED-CRITICALITY EMBEDDED REAL-TIME SYSTEMS USING NON TRANSPARENT BRIDGES TO (MULTI-CORE) MULTI-PROCESSOR SYSTEMS
Daniel Muench1, Michael Paulitsch1, Oliver Hanka2 and Andreas Herkersdorf2
1Airbus Group Innovation, DE; 2TU Munich, DE

1000 COFFEE BREAK IN EXHIBITION AREA

Hot Topic - The Next Generation of Virtual Prototyping: Ultra-fast yet Accurate Simulation of HW/SW Systems

Chair: Daniel Müller-Gritschneder, Technische Universität München, DE
Co-Chair: Daniel Muench1, Michael Paulitsch1, Oliver Hanka2 and Andreas Herkersdorf2
1University of Tübingen, DE

This session addresses leading-edge solutions in the field of virtual prototyping. Employing techniques such as source-level software simulation, host-compiled firmware, OS and processor modeling, as well as abstract communication and peripheral models, it is possible to reach very high simulation speeds. With intelligent new out-of-order modeling, synchronization and temporal decoupling techniques, such ultra-fast simulation can be achieved while also maintaining a very high accuracy.

0830 ULTRA-FAST SOURCE-LEVEL TIMING SIMULATION – HIGH ACCURACY NEEDS EXACT CODE MATCHING
Oliver Bringmann, University of Tuebingen / FZI, DE

0852 HOST-COMPiled OPERATING SYSTEM AND PROCESSOR MODELING
Andreas Gerstlauer, The University of Texas at Austin, US
WEDNESDAY 11 MARCH, 2015

IP2

Interactive Presentations, sponsored by Cadence Academic Network
1000 - 1030

Interactive Presentations run simultaneously during a 30-minute slot. A poster associated to the IP paper is on display throughout the morning. Additionally, each IP paper is briefly introduced in a one-minute presentation in a corresponding regular session, prior to the actual Interactive Presentation.

IP2-1
COMPARISON OF MULTI-PURPOSE CORES OF KECCAK AND AES
Panasayya Yalla, Ekawat HomSirikamol and Jens-Peter Kaps, George Mason University, US

IP2-2
ON-LINE PREDICTION OF NBTI-INDUCED AGING RATES
Rafal Baranowski1, Farshad Firouzi2, Saman Kiamehr3, Chang Liu4, Hans-Joachim Wunderlich1 and Mehdi Tahoori2
1Stuttgart University, DE; 2Karlsruhe Institute of Technology (KIT), DE

IP2-3
RETRAINING BASED TIMING ERROR MITIGATION FOR HARDWARE NEURAL NETWORKS
Jiachao Deng1, Yuntan Fang1, Zidong Du1, Ying Wang1, Huawei Li1, Olivier Temam2, Paolo Ienne1, David Novo1, Xiaowei Li1, Yunji Chen1 and Chengyong Wu1
1State Key Laboratory of Computer Architecture, ICT, CAS, Beijing, China; 2University College London, GB

IP2-4
DICTIONARY-BASED SPARSE REPRESENTATION FOR RESOLUTION IMPROVEMENT IN LASER VOLTAGE IMAGING OF CMOS INTEGRATED CIRCUITS
Tenzile Berkin Cilingiroglu, Mahmoud Zangeneh, Aydan Uyar, W. Clem Karl, Janusz Konrad, Ajay Joshi, Bennett B. Goldberg and M. Selim Uluk
1State Key Laboratory of Computer Architecture, ICT, CAS, Beijing, China; 2University College London, GB

IP2-5
FAULT-BASED ATTACKS ON THE BEL-T BLOCK CIPHER FAMILY
Philipp Jovanovic and Ilia Pollan, University of Passau, DE

IP2-6
ON THE PREMISES AND PROSPECTS OF TIMING SPECULATION
Kong Ye1, Feng Yuan2, Jie Zhang2 and Qiang Xu2
1Imperial College, GB; 2The Chinese University of Hong Kong, HK

IP2-7
IMPACT OF INTERCONNECT MULTIPLE-PATTERNING VARIABILITY ON SRAMS
Ioannis Karageorgos1, Michele Stucchi2, Praveen Raghavan2, Julien Ryckaert2, Zsolt Tokei2, Diederik Verkest2, Rogier Baert2, Sushil Sakhare2 and Wim Dehaene3
1imec, BE; 2IMEC, BE; 3KU Leuven, imec, BE

IP2-8
COHERENCE BASED MESSAGE PREDICTION FOR OPTICALLY INTERCONNECTED CHIP MULTIPROCESSORS
Anouk Van Laer1, Chengyi Elawalai1, Muhammad Ridwan Madarbu1, Timothy M. Jones2 and Philip M. Watts1
1University College London, GB; 2University of Cambridge, GB

WEDNESDAY 11 MARCH, 2015

IP2-9
OPENMP AND TIMING PREDICTABILITY: A POSSIBLE UNION?
Roberto Vargas1, Eduardo Quinones2 and Andrea Marongiu3
1Barcelona Supercomputing Center (BSC) and Technical University of Catalonia (UPC), ES; 2Barcelona Supercomputing Center (BSC), ES; 3Swiss Federal Institute of Technology in Zurich (ETHZ), CH

IP2-10
SAHARA: A SECURITY-AWARE HAZARD AND RISK ANALYSIS METHOD
Georg Macher1, Harald Sporer1, Reinhard Bertach1, Eric Armengaud2 and Christian Klein1
1Graz University of Technology, AT; 2AVL List GmbH, AT

IP2-11
CYBERPHYSICAL-SYSTEM-ON-CHIP (CPSOC) - A SELF-AWARE MPSOC PARADIGM WITH CROSS-LAYER VIRTUAL SENSING AND ACTUATION
Nikil Dutt1, Puneet Gupta2, Nalini Venkatasubramani2 and Alex Nicolau1
1University of California Irvine, US; 2University of California Los Angeles, US

IP2-12
OCCUPANCY DETECTION VIA IBEACON ON ANDROID DEVICES FOR SMART BUILDING MANAGEMENT
Andrea Corno, Lorenzo Fontana, Alessandro Antonio Nacci and Donatella Sciuto, Politecnico di Milano, IT

IP2-13
A NEURAL MACHINE INTERFACE ARCHITECTURE FOR REAL-TIME ARTIFICIAL LOWER LIMB CONTROL
Jason Kane, Qing Yang, Robert Hernandez, Willard Simoneau and Matthew Seaton, University of Rhode Island, US

1230
LUNCH BREAK,
in front of the session room Salle Oisans and in the exhibition area
Keynote lectures from 1250 – 1420 (Room Oisans)

6.1
SPECIAL Day Hot Topic: Platforms for the IoT

Salle Oisans 1100 - 1230

Organisers:
Christoph Grimm, TU Kaiserslautern, DE
Rolf Drechsler, University of Bremen/DFKI GmbH, DE

Chair:
Christoph Grimm, TU Kaiserslautern, DE

Co-Chair:
Marie-Minerve Louerat, University of Paris, FR

The pervasive networking of embedded systems enables the vision of the "Internet of Things". Appliances are built on top of and using hardware, software, and communication platforms. The presentations in this session cover the new and challenging requirements: The first presentation gives a visionary overview of how platforms will be used in an open, dynamic and organic way. To make these visions happen right now, technical challenges are addressed: in the second presentation, energy-awareness electronic platforms are in the focus. In the third presentation, an overview of software architectures for the IoT is given. Last but not least, standardized networking at semantic level is required to enable machine-to-machine (M2M) communication and intelligent service discovery.

1100
THE HUMAN INTRANET: WHERE SWARMS AND HUMANS MEET
Jan Rabaey, UC Berkeley, US

1122
ENERGY EFFICIENT ELECTRONICS FOR THE INTERNET OF THINGS
Stefan Heinen, RWTH Aachen, DE

1144
SOFTWARE ARCHITECTURES FOR THE INTERNET OF THINGS
Mario Trapp, FhG IESE, DE

1206
ONEM2M – A STANDARD FOR AN OPEN AND INTEROPERABLE M2M PLATFORM, THANKS TO SEMANTIC WEB TOOLS
Marylin Arndt-Vincent, Orange Labs, FR

1230
LUNCH BREAK,
in front of the session room Salle Oisans and in the exhibition area
Keynote lectures from 1250 – 1420 (Room Oisans)
WEDNESDAY 11 MARCH, 2015

6.2 Physical Unclonable Functions

Belle-Etoile 1100 - 1230

Chair: Ingrid Verbauwhede, KUL, BE
Co-Chair: Tim Güneysu, Ruhr University Bochum, DE

Physically Unclonable Functions (PUF) have received much attention for fingerprinting and as secret key provider in electronic devices. This session presents novel constructions and attacks on Arbiter, Ring-Oscillator and DRAM PUF.

1100
EFFICIENT ATTACKS ON ROBUST RING OSCILLATOR PUF WITH ENHANCED CHALLENGE-RESPONSE SET
Phuong Ha Nguyen, Durga Prasad Sahoo, Rajat Subhra Chakraborty and Debdip Mukhopadhhyay, Indian Institute of Technology Kharagpur, IN

1130
A ROBUST AUTHENTICATION METHODOLOGY USING PHYSICALLY UNCLONABLE FUNCTIONS IN DRAM ARRAYS
Maryam S. Hashemian1, Bhanu Singh1, Francis Wolff1, Chris Papachristou1, Steve Clay2 and Daniel Weyer2
1Case Western Reserve University, US; 2Rockwell Automation, US

1200
A NOVEL MODELING ATTACK RESISTANT PUF DESIGN BASED ON NON-LINEAR VOLTAGE TRANSFER CHARACTERISTICS
Arunkumar Vijayakumar and Sandip Kundu, Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, US

1230
LUNCH BREAK,
in front of the session room Salle Oisans and in the exhibition area
Keynote lectures from 1250 – 1420 (Room Oisans)

6.3 Emerging Low Power Techniques

Stendhal 1100 - 1230

Chair: Guillermo Payá Vayá, Leibniz Universität Hannover, DE
Co-Chair: Alberto Garcia-Ortiz, U. Bremen, DE

Technology improvements towards the nanometric era are inducing new challenges which need to be addressed at all the abstraction levels. This section focuses on the latest emerging approaches to cope with those challenges, as for example approximate computing, compressed sensing, asymmetric underlapped FinFET, etc.

1100
ASYMMETRIC UNDERLAPPED FINFET BASED ROBUST SRAM DESIGN AT 7NM NODE
Arun Goud Akkala1, Rangharajan Venkatesan2, Anand Raghunathan1 and Kaushik Roy1
1Purdue University, US; 2NVIDIA Corporation, US

1130
QUALITY CONFIGURABLE REDUCE-AND-RANK FOR ENERGY EFFICIENT APPROXIMATE COMPUTING
Arnab Raha, Swagath Venkataramani, Vijay Raghunathan and Anand Raghunathan, Purdue University, US

1200
ULTRA-LOW-POWER ECG FRONT-END DESIGN BASED ON COMPRESSED SENSING
Hossein Mamaghanian1 and Pierre Vanderghynst2
1EPFL, CH; 2École Polytechnique Fédérale de Lausanne (EPFL), CH

1215
GTFUZZ: A NOVEL ALGORITHM FOR ROBUST DYNAMIC POWER OPTIMIZATION VIA GATE SIZING WITH FUZZY GAMES
Tony Lasagrande and Nagarajan Ranganathan, University of South Florida, US

1230
LUNCH BREAK,
in front of the session room Salle Oisans and in the exhibition area
Keynote lectures from 1250 – 1420 (Room Oisans)

6.4 Bridging the Moore's Law Gap with Application-Specific Architectures

Chartreuse 1100 - 1230

Chair: Cristina Silvano, Politecnico di Milano, IT
Co-Chair: Lars Bauer, KIT, DE

This session focuses on approximation, low-power, and high-performance optimization techniques for application-specific architectures, including neural networks, multicore and GPUs.

1100
A ULTRA-LOW-ENERGY CONVOLUTION ENGINE FOR FAST BRAIN-INSPIRED VISION IN MULTICORE CLUSTERS
Francesco Conti1 and Luca Benini2
1Università di Bologna, IT; 2Università di Bologna / ETH Zürich, IT

1130
ELIMINATING INTRA-WARP CONFLICT MISSES IN GPU
Bin Wang, Zhuo Liu, Xinning Wang and Weikun Yu, Auburn University, US

1200
RNA: A RECONFIGURABLE ARCHITECTURE FOR HARDWARE NEURAL ACCELERATION
Fengbin Tu1, Shouyi Yin1, Peng Ouyang1, Leibo Liu2 and Shaqjun Wei1
1Tsinghua University, CN; 2Institute of Microelectronics and The National Lab for Information Science and Technology, Tsinghua University, CN

1215
APPROXANN: AN APPROXIMATE COMPUTING FRAMEWORK FOR ARTIFICIAL NEURAL NETWORK
Qian Zhang, Ting Wang, Ye Tian, Peng Yuan and Qiang Xu, The Chinese University of Hong Kong, HK

1230
LUNCH BREAK,
in front of the session room Salle Oisans and in the exhibition area
Keynote lectures from 1250 – 1420 (Room Oisans)

6.5 Multimedia and Consumer Electronics

Meije 1100 - 1230

Chair: Marcello Coppola, University of Cyprus, CY
Co-Chair: Marcello Coppola, STMicroelectronics, FR

This session presents hardware and software architectures that enable effective implementations of multimedia and consumer electronics systems.

1100
DRAM OR NO-DRAM? EXPLORING LINEAR SOLVER ARCHITECTURES FOR IMAGE DOMAIN WARPING IN 28 NM CMOS
Michael Schaffner1, Frank K. Gürkaynak1, Aljoscha Smolic2 and Luca Benini3
1Swiss Federal Institute of Technology in Zurich (ETHZ), CH; 2Disney Research Zurich, CH; 3Università di Bologna / Swiss Federal Institute of Technology in Zurich (ETHZ), CH

1130
A SMALL NON-VOLATILE WRITE BUFFER TO REDUCE STORAGE WRITES IN SMARTPHONES
Mungyu Son1, Sunghwak Lee1, Kyungho Kim2, Sungjoo Yoo1 and Sunggu Lee1
1POSTECH, KR; 2Samsung Electronics, KR

1200
CLUSTERING-BASED MULTI-TOUCH ALGORITHM FRAMEWORK FOR THE TRACKING PROBLEM WITH A LARGE NUMBER OF POINTS
Shih-Lun Huang, Sheng-Yi Hung and Chung-Ping Chen, Graduate Institute of Electronics Engineering, National Taiwan University, TW

1215
A LOW ENERGY 2D ADAPTIVE MEDIAN FILTER HARDWARE
Ercan Kalali and Ilker Hamzaoglu, Sabanci University, TR

1230
LUNCH BREAK,
in front of the session room Salle Oisans and in the exhibition area
Keynote lectures from 1250 – 1420 (Room Oisans)
6.6 Panel - The Future of Electronics, Semiconductor, and Design in Europe
Bayard 1100 - 1230
Organiser: Marco Casale-Rossi, Synopsys, US
Chair: Giovanni De Micheli, École Polytechnique Fédérale de Lausanne (EPFL), CH

For more than a decade, Europe has been the wireless continent; today, wireless has almost completely shifted to the U.S. and Asia. This shift has had a profound impact on the electronic, semiconductor, and design ecosystem: long-time leaders have disappeared, or have abandoned the wireless business/market. Europe needs to re-invent itself once again. Is there a future for electronics, and IC design and manufacturing in Europe? If so, what are the applications, and the technologies that will bring Europe back to the top of the world leadership? This panel session will gather executives from the semiconductor, IP, and R&D sectors to discuss the prospects of our industry in Europe.

1100 PANELISTS
Giovanni De Micheli, École Polytechnique Fédérale de Lausanne (EPFL), CH
Jalal Bagherli, Dialog Semiconductor, US
Thierry Collette, LETI, France, FR
Antun Domic, Synopsys, US
Horst Symanzik, Bosch Sensortec, DE
Sir Hossein Yassaye, Imagination Technologies, US

1230 LUNCH BREAK,
in front of the session room Salle Oisans and in the exhibition area
Keynote lectures from 1250 – 1420 (Room Oisans)

6.7 Application-Mapping Strategies for Many-Cores
Les Bains 1100 - 1230
Chair: Amit Kumar Singh, University of York, GB
Co-Chair: Marc Geilen, Eindhoven University of Technology, NL

This session deals with application performance. The first paper proposes a performance model to guide run-time mapping. The other two papers optimize performance, one by mapping tasks to match the parallelism of the underlying architecture, and the other by identifying shared memory sections to facilitate parallel execution.

1100 ADAPTIVE ON-THE-FLY APPLICATION PERFORMANCE MODELING FOR MANY CORES
Sebastian Kobbe, Lars Bauer and Joerg Henkel, Karlsruhe Institute of Technology (KIT), DE

1300 CUSTOMIZATION OF OPENCL APPLICATIONS FOR EFFICIENT TASK MAPPING UNDER HETEROGENEOUS PLATFORM CONSTRAINTS
Eduardo Pasone1, Francesco Robino1, Gianluca Palermo1, Vittorio Zaccaria1, Ingo Sander2 and Cristina Silvano1
1Politecnico di Milano, IT; 2KTH Royal Institute of Technology, SE

1200 ENABLING MULTI-THREADED APPLICATIONS ON HYBRID SHARED MEMORY MANYCORE ARCHITECTURES
Tushar Rawat and Aviral Shrivastava, Arizona State University, US

IPS IP3-8, IP3-9

1230 LUNCH BREAK,
in front of the session room Salle Oisans and in the exhibition area
Keynote lectures from 1250 – 1420 (Room Oisans)
7.2 Hot Topic - Trading Accuracy for Efficient Computing

Belle-Etoile 1430 - 1600

Organisers: Anand Raghunathan, Purdue University, US
Akash Kumar, National University of Singapore, SG

Chair: Muhammad Shafique, KIT: Karlsruhe Institute of Technology, DE

Co-Chair: Marc Geilen, Eindhoven University of Technology, NL

This session will introduce inexact or approximate computing, a promising direction to improve the feasibility of computing in the face of diminishing benefits from scaling. Speakers will discuss the key challenges in the field and provide a vision for bringing these technologies to the mainstream. The session will cover approximate hardware, system level inexactness, and memory models. An application of the design principles to weather simulation will also be presented.

1430 COMPUTING APPROXIMATELY, AND EFFICIENTLY
Swagath Venkataramani1, Srimat T. Chakradhar2, Kaushik Roy3 and Anand Raghunathan4
1Purdue University, US; 2NEC Laboratories America, US

1452 NOVEL INEXACTNESS AWARE ALGORITHM CO-DESIGN FOR ENERGY EFFICIENT COMPUTATION
Guru Prakash Arumugam1, Ayush Bhargava2, Prashanth Srikantan1, Sreelatha Yenugula3, John Augustine1, Eli Upfal2 and Krishna Palem3
1Indian Institute of Technology Madras, IN; 2Brown University, US; 3Rice University, US

1515 DESIGNING INEXACT SYSTEMS EFFICIENTLY USING ELIMINATION HEURISTICS
Shyamsundar Venkataraman1, Akash Kumar2, Jeremy Schlachter1 and Christian Enz2
1National University of Singapore, SG; 2École Polytechnique Fédérale de Lausanne (EPFL), CH

1537 OPPORTUNITIES FOR ENERGY EFFICIENT COMPUTING: A STUDY OF INEXACT GENERAL PURPOSE PROCESSORS FOR HIGH-PERFORMANCE AND BIG-DATA APPLICATIONS
Peter Duben1, Jeremy Schlachter1, Parshkri2, Sreelatha Yenugula3, John Augustine1, Christian Enz2, K. Palem3 and T. N. Palmer3
1Oxford University, GB; 2École Polytechnique Fédérale de Lausanne (EPFL), CH; 3Indian Institute of Technology Madras, IN; 4Brown University, US; 5University of Oxford, GB

1600 COFFEE BREAK IN EXHIBITION AREA

7.3 Hot Topic - Advances in Hardware Trojans Detection

Stendhal 1430 - 1600

Organiser: Julien Francq, Airbus Defence & Space -- CyberSecurity, FR

Chair: Giorgio Di Natale, LIRMM, CNRS/University of Montpellier, FR

Hardware Trojans (HTs) are malicious modifications of an Integrated Circuit (IC) during its design flow. These added transistors could induce in the infected IC some malicious effects. Complete trust in ICs has been now lost because of the outsourcing of the fabrication of the ICs and the complexity of the IC design flow. This special session will present some advances in HT detection developed in French funded research project HOMERE.

1430 INTRODUCTION TO HARDWARE TROJAN DETECTION METHODS
Julien Francq1 and Florian Frick2
1Cassidian, FR; 2University of Stuttgart, DE

1445 NEW TESTING PROCEDURE FOR FINDING INSERTION SITES OF STEALTHY HARDWARE TROJANS
Sophie Dupuis, Papa-Sidy Ba, Marie-Lise Flottes, Giorgio Di Natale and Bruno Rouzeyle, LIRMM, FR

7.4 Routing Advances for Fault-tolerant and Multicast NoCs

Chartreuse 1430 - 1600

Chair: Fabien Clermidy, CEA, FR

Co-Chair: Masoud Daneshタル, University of Turku, FI

NoCs are migrating into large-scale multicore systems which lead to new issues to be solved. In this session, we see how NoCs can tackle both faulty behaviors and performance bottlenecks. The first paper demonstrates low overhead multicast using surface-wave communication. The two other papers deal with low-overhead and low-latency fault-tolerance.

1430 MIXED WIRE AND SURFACE-WAVE COMMUNICATION FABRICS FOR DECENTRALIZED ON-CHIP MULTICASTING
Ammar Karkan1, Kin-Pai Tong1, Terrence Mak2 and Alex Yakovlev3
1School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne, GB; 2Department of Electrical and Electronic Engineering, UCL, London, GB; 3Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, CN

1537 SYNERGISTIC USE OF MULTIPLE ON-CHIP NETWORKS FOR ULTRA-LOW LATENCY AND SCALABLE DISTRIBUTED ROUTING RECONFIGURATION
Marco Balboni4, Jose Flich3 and Davide Bertozzi5
4University of Ferrara, IT; 5Associate Professor, Universitat Politècnica de València, ES

1600 COFFEE BREAK IN EXHIBITION AREA

7.5 System Reliability: from Runtime to Design Languages

Meije 1430 - 1600

Chair: Dirk Stroobandt, University of Gent, BE

Co-Chair: Diane Goehringer, University of Bochum, DE

Over the last few years, reliability has become an increasingly relevant consideration for electronic systems. This session will address system reliability from design flow to run-time in both digital as well as analog systems.

1430 AXILOG: LANGUAGE SUPPORT FOR APPROXIMATE HARDWARE DESIGN
Amir Yazdankhah1, Divya Mahajan1, Bradley Thwaites1, Jongse Park1, Anandhavel Nagendrakumar1, Srinath Suthan1, Kartik Ramkrishnan2, Nishanthi Ravindran2, Rudra Jariwala1, Abbas Rahimi1, Hadi Esmailzadeh1 and Kia Bazargan2
1Georgia Institute of Technology, US; 2University of Minnesota, US; 3University of San Diego, US
WEDNESDAY 11 MARCH, 2015

1500
Improving MPSOC Reliability Through Adapting Runtime Task Schedule Based on Time-Correlated Fault Behavior
Laura A. Rozo Duque¹, Jose Monsalve² and Chengmo Yang²
¹University of Delaware, US; ²University of Delaware, CO

1530
ACSEM: Accuracy-Configurable Fast Soft Error Masking Analysis in Combinatorial Circuits
Florian Kriebel, Semeen Rehman, Duo Sun, Pau Vilimeis Aceituno, Muhammad Shaﬁque and Joerg Henkel, Karlsruhe Institute of Technology (KIT), DE

1545
Energy Minimization for Fault Tolerant Scheduling of Periodic Fixed-Priority Applications on Multiprocessor Platforms
Qiushi Han¹, Ming Fan¹, Linwei Niu² and Gang Quan¹
¹Florida International University, US; ²West Virginia State University, US

1600
Coffee Break in Exhibition Area

1430
Technology-Design Co-Optimization of Resistive Cross-Point Array for Accelerating Learning Algorithms on Chip
Fai-Yu Chen, Deepak Kadetotad, Zihan Xu, Abinash Mohanty, Binbin Lin, Jieping Ye, Sarma Vrudhula, Jae-sun Seo, Yu Cao and Shimeng Yu, Arizona State University, US

1500
Spiking Neural Network with RRAM: Can We Use It for Real-World Application?
Tianqi Tang¹, Lixue Xia¹, Boxun Li¹, Rong Luo¹, Yiran Chen², Yu Wang¹ and Huazhong Yang¹
¹Tsinghua University, CN; ²University of Pittsburgh, US

1530
Comparative Study of Power-Gating Architectures for Nonvolatile FinFET-SRAM Using Spintronics-Based Retention Technology
Yusuke Shuto¹, Shuichiro Yamamoto¹ and Satoshi Sugahara²
¹Tokyo Institute of Technology, JP; ²Tokyo Institute of Technology, US

1600
Coffee Break in Exhibition Area

7.6 Test Power and 3-D Fault Tolerance
Bayard 1430 - 1600

Chair: Juergen Schloeffel, Mentor, DE
Co-Chair: Sybille Hellebrand, Universität Paderborn, DE

The section presents low power solutions for scan-based test and a new redundant TSV architecture for 3-D ICs

1430
DP-FILL: A Dynamic Programming Approach to X-Filling for Minimizing Peak Test Power in Scan Tests
Satya A. Trinadh¹, Sobhan Babu Ch.¹, Shiv Govind Singh¹, Seetal Potluri² and Kamakoti V³
¹Indian Institute of Technology Hyderabad, IN; ²Indian Institute of Technology Madras, IN

1500
A Scan Partitioning Algorithm for Reducing Capture Power of Delay-Fault LBIST
Nan Li¹, Elena Dubrova¹ and Gunnar Carlsson³
²Royal Institute of Technology, SE; ³Ericsson AB/Royal Institute of Technology - KTH, SE; ³Development Unit Radio, Ericsson AB, SE

1530
Architecture of Ring-Based Redundant TSV for Clustered Faults
Wei-Hen Lo, Kang Chi and TingTing Hwang, National Tsing Hua University, TW

1600
Coffee Break in Exhibition Area

7.7 Energy-efficient Computing
Les Bans 1430 - 1600

Chair: Damien Querlioz, CNRS-IEF, FR
Co-Chair: Swaroop Ghosh, University of South Florida, US

The papers in this session are all focused on energy efficient computing. In the first talk, the authors present approaches for accelerating learning algorithms for resistive cross-point arrays. The next paper considers what training schemes are most suitable when RRAM arrays are used to realize spiking neural networks. Finally, the last presentation will discuss how devices that offer the potential for non-volatile state retention can be employed in power gating architectures.
WEDNESDAY 11 MARCH, 2015

IP3 Interactive Presentations, sponsored by Cadence Academic Network

1600 - 1630

Interactive Presentations run simultaneously during a 30-minute slot. A poster associated to the IP paper is on display throughout the afternoon. Additionally, each IP paper is briefly introduced in a one-minute presentation in a corresponding regular session, prior to the actual Interactive Presentation.

IP3-1 STT MRAM-BASED PUFs
Elena Ioana Vatajelu1, Giorgio Di Natale2, Marco Indaco1 and Paolo Prinetto1
1Politecnico di Torino, IT; 2LIRMM, FR

IP3-2 SPATIAL AND TEMPORAL GRANULARITY LIMITS OF BODY BIASING IN UTBB-FDSOI
Johannes Maximilian Kühn1, Dustin Peterson1, Hideharu Amano2, Oliver Bringmann1 and Wolfgang Rosenstiel1
1Eberhard Karls Universität Tübingen, DE; 2Keio University, JP

IP3-3 A HARDWARE IMPLEMENTATION OF A RADIAL BASIS FUNCTION NEURAL NETWORK USING STOCHASTIC LOGIC
Yuan Ji1, Feng Ran1, Long Ma2 and David Litja1
1Shanghai University, CN; 2University of Minnesota - Twin Cities, US

IP3-4 SODA: SOFTWARE DEFINED FPGA BASED ACCELERATORS FOR BIG DATA
Chao Wang, Xi Li and Xuehai Zhou, University of Science and Technology of China, CN

IP3-5 DYNAMIC RECONFIGURABLE PUNCTURING FOR SECURE WIRELESS COMMUNICATION
Liang Tang1, Jude Angelo Ambrose2, Akash Kumar2 and Sri Parameswaran2
1National University of Singapore, SG; 2University of New South Wales, AU

IP3-6 QR-DECOMPOSITION ARCHITECTURE BASED ON TWO-VARIABLE NUMERIC FUNCTION APPROXIMATION
Jochen Rust, Frank Ludwig and Steffen Paul, University of Bremen, DE

IP3-7 IN-PLACE MEMORY MAPPING APPROACH FOR OPTIMIZED PARALLEL HARDWARE INTERLEAVER ARCHITECTURES
Saeed Ur Rehman1, Cyrille Chavet2, Philippe Coussy2 and Awais Sani1
1Lab-STICC / Université de Bretagne Sud, PK; 2Lab-STICC / Université de Bretagne Sud, FR

IP3-8 MAXIMIZING COMMON IDLE TIME ON MULTI-CORE PROCESSORS WITH SHARED MEMORY
Chenchen Fu1, Yingchao Zhao2, Minming Li3 and Jason Xue3
1Department of Computer Science, City University of Hong Kong, HK; 2Department of Computer Science, Caritas Institute of Higher Education, Hong Kong, HK; 3City University of Hong Kong, HK

IP3-9 MAXIMIZING IO PERFORMANCE VIA CONFLICT REDUCTION FOR FLASH MEMORY STORAGE SYSTEMS
Qiao Li1, Liang Shi1, Congming Gao2, Kaijie Wu3, Jason Chun Xue3, Qinfeng Zhuge1 and H.-M. Edwin Sha2
1Chongqing University, CN; 2College of Computer Science, Chongqing University, CN; 3City University of Hong Kong, HK; 4Chongqing University and University of Texas at Dallas, CN

IP3-10 A HYBRID PACKET/CIRCUIT-SWITCHED ROUTER TO ACCELERATE MEMORY ACCESS IN NOC-BASED CHIP MULTIPROCESSORS
Yassin Mazloumi and Mehdi Modarressi, University of Tehran, IR

IP3-11 SEMIAUTOMATIC IMPLEMENTATION OF A BIOINSPIRED RELIABLE ANALOG TASK DISTRIBUTION ARCHITECTURE FOR MULTIPLE ANALOG CORES
Julius von Rosen1, Markus Melssner1 and Lars Hedrich7
1Goethe Universität Frankfurt, DE; 2Goethe-Universität Frankfurt a. M., DE

8.1 SPECIAL DAY Panel: Security and Verification for the IoT

Salle Oisans 1700 - 1830

Organisers: Dominique Borrione, TIMA Lab, UGA, FR
Rolf Drechsler, University of Bremen/DFKI GmbH, DE

Chair: Dominique Borrione, TIMA Lab, UGA, FR
Co-Chair: Guy Gogniat, Lab-STICC, Université de Bretagne-Sud, Lorient, FR

1700

PANELISTS
Erdinc Oztuerk, Ticaet University, TR
Guido Bertoni, STMicroelectronics, IT
Francois-Xavier Standaert, Université Catholique de Louvain, BE
Christoph Grimm, TU Kaiserslautern, DE
Sandip Kundu, University of Massachusetts Amherst, US

1930 DATE PARTY

in Museum of Grenoble (Musée de Grenoble, 5 Place de Lavalette, 38000 Grenoble, France)
8.2 Flash Memories & Numerical Approximation

Belle-Etoile 1700 - 1830
Chair: Philippe Coussy, Universite de Bretagne-Sud, FR
Co-Chair: Zili Shao, HongKong Polytechnic University, HK

This session presents papers on flash memories and numerical approximations. The first paper presents a new flash memory management scheme to extend the product lifetime of SSDs. The second paper describes a hardware accelerator approach for solving linear equations. The third paper describes an approach for automatically synthesizing non-linear 2D function approximations without requiring costly, and power-hungry, multipliers. Finally, the session ends with two interactive presentations that address progressive wear-leveling for flash memories, and security threats and countermeasures for solid-state drives.

1700 HLC: SOFTWARE-BASED HALF-LEVEL-CELL FLASH MEMORY
Han-Yi Lin and Jen-Wei Hsieh
1 National Taiwan University, TW; 2 National Taiwan University of Science and Technology, TW

1730 AHEAD: AUTOMATED FRAMEWORK FOR HARDWARE ACCELERATED ITERATIVE DATA ANALYSIS
Ebrahim M. Songhori, Xuyang Lu and Farinaz Koushanfar, Rice University, US

1800 DESIGN METHOD FOR MULTIPLIER-LESS TWO-VARIABLE NUMERIC FUNCTION APPROXIMATION
Jochen Rust and Steffen Paul, University of Bremen, DE

IPS IP4-1, IP4-2
1930 DATE PARTY
in Museum of Grenoble (Musée de Grenoble, 5 Place de Lavalette, 38000 Grenoble, France)

8.3 Dynamic Thermal Management for Multi-cores

Stendhal 1700 - 1830
Chair: Georgios Karakonstantis, Queen’s University, GB
Co-Chair: José Luis Ayala, Complutense University of Madrid, ES

This session covers the state-of-the-art in dynamic thermal management techniques for multi-core platforms in the mobile and high-performance computing domains. The issues addressed include thermal stress, thermal modeling and emerging cooling solutions.

1700 A THERMAL STRESS-AWARE ALGORITHM FOR POWER AND TEMPERATURE MANAGEMENT OF MPSoCs
Mehdi Kamal, Arman Iranfar, Ali Aفزali-Xuha and Massoud Pedram
1 University of Tehran, IR; 2 University of Southern California, US

1730 PREDICTIVE DYNAMIC THERMAL AND POWER MANAGEMENT FOR HETEROGENEOUS MOBILE PLATFORMS
Gaurav Singla, Gurinderjit Kaur, Ali Unver and Umit Y Ogras
1 Arizona State University, US; 2 Intel Corporation, US

1800 POWER-EFFICIENT CONTROL OF THERMOELECTRIC COOLERS CONSIDERING DISTRIBUTED HOT SPOTS
Mohammad Javad Dousti and Massoud Pedram, University of Southern California, US

IPS IP4-3, IP4-4
1930 DATE PARTY
in Museum of Grenoble (Musée de Grenoble, 5 Place de Lavalette, 38000 Grenoble, France)

8.4 Industrial System Design Opportunities

Champagne 1700 - 1830
Chair: Wehn Norbert, University of Kaiserslautern, DE
Co-Chair: David Raphael, CEA-LIST, FR

This session introduces innovative experiments from Industry that address the challenges of system design. Each experiment presents a demonstrator and shows a substantial measurable economic and/or strategic impact.

1700 DSP BASED PROGRAMMABLE FHD HEVC DECODER
Sangjo Lee, Joohoong Won, Chang Joon Kim, DooHyun Kim and Shihwa Lee
1 SAMSUNG Electronics, KR; 2 Samsung Electronics, Korea

1715 ACCELERATING COMPLEX BRAIN-MODEL SIMULATIONS ON GPU PLATFORMS
HoangAnh DuNguyen, Zaid Al-Ars, Georgios Samarakos and Christos Stydis
1 Delft University of Technology, NL; 2 Erasmus Medical Center, NL

1730 A PACKET-SWIITCHED INTERCONNECT FOR CONTROL APPLICATIONS ON ZYNQ WITH BEST-EFFORT AND REAL-TIME SERVICES
Runan Ma, Axel Jantsch and Zhida Hui
1 Fudan University, CN; 2 Vienna University of Technology, AT; 3 Memcom.Soc Microelectronics Ltd, CN

1745 REDUCING TRACE SIZE IN MULTIMEDIA APPLICATIONS ENDURANCE TESTS
Serge Vladimír Emteu Tchagou, Alexandre Termier, Jean-François Méhaut, Brice Videau, Miguel Santana and René Quiniou
1 University of Grenoble Alpes, STMicroelectronics, FR; 2 University of Rennes 1, FR; 3 University of Grenoble Alpes, FR; 4 STMicroelectronics, FR; 5 INRIA Rennes, FR

1800 EXPLORATION AND DESIGN OF EMBEDDED SYSTEMS INCLUDING NEURAL ALGORITHMS
Jean-Marc Philippe, Alexandre Carbon, Olivier Brousse and Michel Paindavoine
1 CEA LIST, FR; 2 Global Sensing Technologies, FR

1815 A NEW DISTRIBUTED FRAMEWORK FOR INTEGRATION OF DISTRICT ENERGY DATA FROM HETEROGENEOUS DEVICES
Francesco Gavino Brundo, Edoardo Patti, Andrea Acquaviva, Michelangelo Grosso, Gaetano Rasconà, Salvatore Rinaudo and Enrico Macii
1 Politecnico di Torino, IT; 2 ST-Polito s.c.ar.l., IT; 3 Memcom.Soc Microelectronics Ltd, CN

1930 DATE PARTY
in Museum of Grenoble (Musée de Grenoble, 5 Place de Lavalette, 38000 Grenoble, France)

8.5 Hot Topic - Spintronics based Computing

Meije 1700 - 1830
Organisers: Weisheng Zhao, University Paris-Sud/CNRS, FR
Lionel Torres, LIRMM, CNRS/University of Montpellier, FR
Chair: Weisheng Zhao, University Paris-Sud/CNRS, FR
Co-Chair: Lionel Torres, LIRMM, CNRS/University of Montpellier, FR

This topic is under intense study from device to system levels by both academics and industries. This session brings together the worldwide leading experts to share their recent results and discuss future challenges.
Wednesday 11 March, 2015

1700 SPINTRONIC DEVICES AS KEY-ELEMENTS FOR ENERGY-EFFICIENT NEUROINSPIRED ARCHITECTURES
Nicolas Locatelli1, Adrien F. Vincent2, Alice Mirzadeh3, Joseph S. Friedman2, Damir Vodencaravic2, Joo-Von Kim2, Jacques-Olivier Klein2, Weisheng Zhao3, Julie Grollier4 and Damien Querlioz5
1Institut d’Electronique Fondamentale, Univ. Paris-Sud, CNRS, FR; 2Institut d’Electronique Fondamentale, Univ. Paris-Sud, CNRS, FR; 3Spintronic Interdisciplinary Center, Beihang University, Beijing, CN; 4Unite Mixte de Physique CNRS/Thales and Universite Paris-Sud, FR

1720 GIANT SPIN HALL EFFECT (GSHE) LOGIC DESIGN FOR LOW POWER APPLICATION
Yaojun Zhang1, Bonan Yan1, Wenqing Wu2, Hai Li3 and Yiran Chen1
1University of Pittsburgh, US; 2Qualcomm Incorporated, US

1740 SPINTRONICS-BASED NONVOLATILE LOGIC-IN-MEMORY ARCHITECTURE TOWARDS AN ULTRA-Low-Power AND HIGHLY RELIABLE VLSI COMPUTING PARADIGM
Takahiro Hanya1, Daisuke Suzuki1, Naoya Onizawa1, Shoun Matsunaga1, Masanori Natsu1 and Akira Mochizuki1
1Tohoku University, JP; 2AC Technologies Co., Ltd., JP

1800 POTENTIAL APPLICATIONS BASED ON NVM EMERGING TECHNOLOGIES
Sophiane Senni1, Raphael Martins Brum1, Lionel Torres2, Gilles Sassatelli1, Abdoulaye Gamatie1 and Bruno Mussard1
1LIRMM, FR; 2LIRMM, CNRS/University of Montpellier, FR; 3Crocus technology, FR

1815 FROM DEVICE TO SYSTEM: CROSS-LAYER DESIGN EXPLORATION OF RACETRACK MEMORY
Guangyu Sun1, Chao Zhang2, Hehe Li1, Yue Zhang1, Weiqi Zhang1, Yizi Gu3, Yinan Sun2, Jacques-Olivier Klein2, Dafine Revelosona1, Yongpan Liu2, Weisheng Zhao2 and Huazhong Yang2
1Peking University, CN; 2Tsinghua University, CN; 3Univ. Paris-Sud, FR; 4Beihang University, CN

1930 DATE PARTY
in Museum of Grenoble (Musée de Grenoble, 5 Place de Lavalette, 38000 Grenoble, France)

8.6 Statistical Answers to Analog/Mixed Signal Design and Test Problems
Bayard 1700 - 1830
Chair: Jacob Abraham, Univ. Texas Austin, US
Co-Chair: Michel Renovell, LIRMM/CNRS, FR
The session will demonstrate applications of Bayesian model fusion, machine learning classifiers, feature selection, virtual probe, and Quasi Monte Carlo for solving challenging design and test problems for analog and mixed signal circuits.

1700 EFFICIENT BIT ERROR RATE ESTIMATION FOR HIGH-SPEED LINK BY BAYESIAN MODEL FUSION
Chenlei Fang1, Qicheng Huang1, Fan Yang1, Xuan Zeng1, Xin Li2 and Chenjie Gu1
1Fudan University, CN; 2Carnegie Mellon University and Fudan University, US; 3Strategic CAD Labs, Intel Corporation, US

1730 FAST DEPLOYMENT OF ALTERNATE ANALOG TEST USING BAYESIAN MODEL FUSION
John Liaperdos1, Haralampos Stratigopoulo1, Louay Abdallah2, Yiorgos Tsiatouhas2, Angela Arapoyanni2 and Xin Li3
1Technological Educational Institute of Peloponnese, GR; 2TIMA Laboratory, Université de Grenoble-Alpes/CNRS, FR; 3University of Ioannina, GR; 4National and Kapodistrian University of Athens, GR; 5Carnegie Mellon University, US

8.7 Compilers and Tools for Performance
Les Bans 1700 - 1830
Chair: Frank Hannig, Erlangen University, DE
Co-Chair: Christian Haubelt, University of Rostock, DE
This session introduces different aspects of optimizing compiler technology in the context of embedded systems. The first paper shows that the performance of Android applications can be significantly improved by ahead-of-time compilation to C. The second paper shows how to generate efficient vector code from domain-specific (linear algebra) specifications. The first interactive presentation presents a technique to speed up the QEMU machine emulator by dynamic binary translation of vector instructions. The second one proposes a trace-based reuse distance profiler to help improving the memory profile of applications.

1700 BYTESTECCODE-TO-C AHEAD-OF-TIME COMPILATION FOR ANDROID DALVIK VIRTUAL MACHINE
Hyeong-Seok Oh, Ji Hwan Yeo and Soo-Mook Moon, Seoul National University, KR

1800 A BASIC LINEAR ALGEBRA COMPILER FOR EMBEDDED PROCESSORS
Nikolaos Kyritsas, Daniele Giuseppe Spampinato and Markus Püschel, Swiss Federal Institute of Technology in Zurich (ETHZ), CH

1815 VARSHA: VARIATION AND RELIABILITY-AWARE APPLICATION SCHEDULING WITH ADAPTIVE PARALELLISM IN THE DARK-SILICON ERA
Nishit Kapadia and Sudeep Pasricha, Colorado State University, US

1930 DATE PARTY
in Museum of Grenoble (Musée de Grenoble, 5 Place de Lavalette, 38000 Grenoble, France)
8.8 Share a Fab - Multi Project Wafers Enable Your Innovations
Salle Lesdiguières 1700 - 1830
Moderator: Jürgen Haase, edacentrum GmbH, DE

Today most innovations in the major industries include the use of dedicated chips. However, extremely high IC fabrication costs and foundries accepting only orders with high quantities are substantial obstacles for innovations developed from SMEs, start-ups, universities and research organisations.

The solution is that many of these innovators team up and share a fab run by using the opportunities offered by Multi Project Wavers (MPWs). European service providers like Europractice and CMP provide the access to MPW runs as well as the required know-how and tooling.

In the tutorial part of this session first-time users as well as experienced users will be provided with comprehensive information about the available semiconductor technologies, new design methodologies and possible applications. In the best practice part of the session users of such services will share their experience with the MPW concept with the audience and present projects and products realized by utilizing MPW opportunities.

1700 INTRODUCTION
Jürgen Haase, edacentrum GmbH, DE

1705 THE EUROPRACTICE MPW SERVICE AS AN ENABLER FOR LOW COST ASIC PROTOTYPING FOR R&D AND PRODUCT DEVELOPMENT
Carl Das, IMEC/Europractice, BE

1725 CMP MPW SERVICES FOR IC PROTOTYPING AND LOW VOLUME PRODUCTION
Jean-Christophe Ceblier, CMP, FR

1745 THE ASSOCIATIVE MEMORY ASIC DEVELOPMENT FOR HIGH ENERGY PHYSICS SINCE 2003 TO 2015, IMPORTANCE OF IMEC SUPPORT
Alberto Annoi, INFN Pisa, IT
Paola Giannetti, INFN Pisa, IT

1800 A FEEDBACK FROM MPW USER
Paul Hyland, Microelectronic Circuit Centre Ireland (MCCI), IE

1815 DISCUSSION

1930 DATE PARTY
in Museum of Grenoble (Musée de Grenoble, 5 Place de Lavalette, 38000 Grenoble, France)

9.1 SPECIAL DAY Hot Topic: Game-changing Innovative Technology Platforms for Health Care
Salle Oisans 0830 - 1000
Organiser: Jo De Boeck, IMEC, BE
Chair: Jo De Boeck, IMEC, BE

After an introductory talk on the future impact of electronics in health care innovation, the panel of experts from industry will discuss the main trends they see and the challenges this presents for technology and care providers.

0830 GAME CHANGING INNOVATION IN TECHNOLOGY AND DESIGN FOR EFFECTIVE HEALTH CARE
Chris Van Hoof, IMEC, BE

0900 ADVANCED SELF-POWERED SYSTEMS OF INTEGRATED SENSORS AND TECHNOLOGIES
Veena Misra, ASSIST, NC State University, US

0930 HEALTHCARE IN AN INTEGRATED DIGITAL WORLD
Jean-Paul Linnartz, Philips, NL

1000 COFFEE BREAK IN EXHIBITION AREA
nothern approach to traffic isolation, the second paper deals with power-saving technique exploration and the final paper develops customized NoCs for emerging biomedical applications.

0830 **PHASENOc: TDM SCHEDULING AT THE VIRTUAL-CHANNEL LEVEL FOR EFFICIENT NETWORK TRAFFIC ISOLATION**
Anastasios Psaras¹, Ioannis Seitanidis¹, Chryssostomos Nicopoulous² and Giorgios Dimitrakopoulos³
¹Democritus University of Thrace, GR; ²University of Cyprus, CY

0900 **RATE-BASED VS DELAY-BASED CONTROL FOR DVFS IN NOC**
Mario R. Casu and Paolo Giaccone, Politecnico di Torino, Department of Electronics and Telecommunications, IT

0930 **NOC-ENABLED MULTICORE ARCHITECTURES FOR STOCHASTIC ANALYSIS OF BIOMOLECULAR REACTIONS**
Turbo Majumder¹, Xian Li¹, Paul Bogdan² and Partha Pande³
¹Indian Institute of Technology Delhi, IN; ²Washington State University, US; ³University of Southern California, US

IPS **IP4-9, IP4-10**

1000 **COFFEE BREAK IN EXHIBITION AREA**

9.4 Advanced Trends in Alternative Technologies

Chartreuse 0830 - 1000

Chair: Martin Trefzer, University of York, GB
Co-Chair: Yvain Thonnart, CEA-Leti, FR

As technology evolves, “information” is no longer limited to charge-based representations of 1s and 0s. In this session, the first paper presented discusses work where qubits are stored as the internal states of an atomic ion. The second presentation considers labs on chip — where reagents are moved through valves and channels to solve problems such as protein analysis, disease diagnosis, etc. Finally, the last presentation discusses the use of neural networks to move data from point-to-point, thus eliminating higher latency electrical interconnect.

0830 **OPTIMIZATION OF QUANTUM COMPUTER ARCHITECTURE USING A RESOURCE-PERFORMANCE SIMULATOR**
Muhammad Ahsan and Jungsang Kim, Duke University, US

0900 **VOLUME-ORIENTED SAMPLE PREPARATION FOR REACTANT MINIMIZATION ON FLOW-BASED MICROFLUIDIC BIOCHIPS WITH MULTI-SEGMENT MIXERS**
Chi-Mei Huang¹, Chia-Hung Liu² and Juin-Dar Huang³
¹Department of Electronics Engineering, National Chiao Tung University, TW; ²National Chiao Tung University, TW

0930 **THERMAL AWARE DESIGN METHOD FOR VCSEL-BASED ON-CHIP OPTICAL INTERCONNECT**
Hui Li¹, Alain Fournigue³, Sébastien Le Beux¹, Xavier Letartre¹, Ian O'Connor¹ and Gabriela Nicolescu⁷
¹Ecole Centrale de Lyon, FR; ²Ecole Polytechnique de Montréal, CA

IPS **IP4-11, IP4-12**

1000 **COFFEE BREAK IN EXHIBITION AREA**

9.5 Modeling and Simulation of Extra-Functional Properties

Meije 0830 - 1000

Chair: Sylvain Kaiser, DICEA, Power, FR
Co-Chair: Sander Stuijk, TU Eindhoven, NL

This session deals with modeling and simulating extra-functional system properties. The first paper presents a framework to accurately model the power and timing of hardware models without requiring a full micro-architectural simulation of the hardware model to extract signal transitions. The second paper presents a method to extend Design Space Exploration (DSE) of systems with Out-of-Order execution by accurately predicting the performance of CPUs with different cache configurations within reasonable time. The third paper is about an approach that constructs a learning-based thermal model for a given (black-box) multi-core processor running a given application mix.

0830 **DYNAMIC POWER AND PERFORMANCE BACK-ANNOTATION FOR FAST AND ACCURATE FUNCTIONAL HARDWARE SIMULATION**
Dongwook Lee, Lizy Kurian John and Andreas Gerstlauer, The University of Texas at Austin, US

0900 **FAST AND PRECISE CACHE PERFORMANCE ESTIMATION FOR OUT-OF-ORDER EXECUTION**
Roeland Douma, Sebastian Altmeier and Andy Pimentel, University of Amsterdam, NL

0930 **A CALIBRATION BASED THERMAL MODELING TECHNIQUE FOR COMPLEX MULTICORE SYSTEMS**
Devendra Rai and Lothar Thiele, Swiss Federal Institute of Technology in Zurich (ETHZ), CH

1000 **COFFEE BREAK IN EXHIBITION AREA**

9.6 Design, Synthesis and Validation of Analog Circuits

Bayard 0830 - 1000

Chair: Marie-Minerve Louerat, LIP6-CNRS, FR
Co-Chair: Georges Gielen, ESAT - KU Leuven, BE

The session presents new synthesis and validation approaches to analog circuit design. Two designs present a novel approach to traffic isolation, the second paper deals with power-saving technique exploration and the final paper develops customized NoCs for emerging biomedical applications.

0830 **TEST GENERATION, FAULT SIMULATION AND DIAGNOSIS**
Les Bans, The University of Texas at Austin, US

0900 **A CNN-INSPIRED MIXED SIGNAL PROCESSOR BASED ON TUNNEL TRANSISTORS**
Behnam Sedighi, Indranil Palit, Xiaobo Sharon Hu and Michael Niemier, University of Notre Dame, US

0930 **LAYOUT-AWARE SIZING OF ANALOG ICS USING FLOORPLAN & ROUTING ESTIMATES FOR PARASITIC EXTRACTION**
Nuno Lourencos, Ricardo Martins and Nuno Horta, Instituto de Telecomunicacoes, Instituto Superior Tecnico – TU Lisbon, PT

0945 **INITIAL TRANSIENT RESPONSE OF OSCILLATORS WITH LONG SETTLING TIME**
Hans-Georg Brachtendorf and Bittner Kai, University of Applied Sciences of Upper Austria, AT

IPS **IP4-14, IP4-15, IP4-16, IP4-17**

1000 **COFFEE BREAK IN EXHIBITION AREA**

9.7 Test Generation, Fault Simulation and Diagnosis

Les Bans 0830 - 1000

Chair: Jacob Abraham, The University of Texas at Austin, US
Co-Chair: Bernd Becker, University Freiburg, DE

Speeding-up the test process is crucial from a technical and economical point of view. Novel methods are presented to accelerate silicon debug, fault simulation, test generation and diagnosis.
IP4

Interactive Presentations, sponsored by Cadence Academic Network

1000 - 1030

Interactive Presentations run simultaneously during a 30-minute slot. A poster associated to the IP paper is on display throughout the morning. Additionally, each IP paper is briefly introduced in a one-minute presentation in a corresponding regular session, prior to the actual Interactive Presentation.

IP4-1

PWL: A PROGRESSIVE WEAR LEVELING TO MINIMIZE DATA MIGRATION OVERHEADS FOR NAND FLASH DEVICES

Fu-Hsin Chen¹, Ming-Chang Yang², Yuan-Hao Chang¹ and Tei-Wei Ku⁴

¹Department of Computer Science and Information Engineering, National Taiwan University, TW; ²Graduate Institute of Networking and Multimedia, National Taiwan University, TW; ³Institute of Information Science, Academia Sinica, TW; ⁴Academia Sinica & National Taiwan University, TW

IP4-2

TOWARDS TRUSTABLE STORAGE USING SSDS WITH PROPRIETARY FTL

Xiaotong Cui¹, Minhui Zou², Liang Shi² and Kajjje Wu¹

¹Chongqing University, CN; ²College of Computer Science, Chongqing University, CN

IP4-3

USER-SPECIFIC SKIN TEMPERATURE-AWARE DVFS FOR SMARTPHONES

Begüm Birsen Egilmez¹, Gökhan Memik¹, Seda Ögrençi-Memik¹ and Oğuz Ergin¹

¹Northwestern University, US; ²TOBB University of Economics and Technology, TR

IP4-4

FORMAL PROBABILISTIC ANALYSIS OF DISTRIBUTED DYNAMIC THERMAL MANAGEMENT

Shafaq Izetdar¹, Osman Hasan², Muhammad Shafique³ and Joerg Henkel³

¹National University of Sciences and Technology (NUST), Islamabad, PK; ²National University of Sciences and Technology (NUST), Islamabad, ; ³Karlsruhe Institute of Technology (KIT), DE

IP4-5

A HYBRID QUASI MONTE CARLO METHOD FOR YIELD AWARE ANALOG CIRCUIT SIZING TOOL

Engin Afacan, Günhan Dündar, Gonenc Berkol, Ali Emre Pusane and İsmail Fik Bahsakay, Bogazici University, TR

IP4-6

FEATURE SELECTION FOR ALTERNATE TEST USING WRAPPERS: APPLICATION TO AN RF LNA CASE STUDY

Manuel Barragan¹ and Sildas Legers²

¹TIMA Laboratory, FR; ²Istituto di Microelettronica de Sevilla, IMSE-CNM, (CSIC - Universidad de Sevilla), ES

IP4-7

IMPROVING SIMD CODE GENERATION IN QEMU

Sheng-Yu Fu¹, Jen-Jan Wu² and Wei-Chung Hsu³

¹Department of Computer Science National Taiwan University, TW; ²Institute of Information Science Academia Sinica, TW

IP4-8

REUSE DISTANCE ANALYSIS FOR LOCALITY OPTIMIZATION IN LOOP-DOMINATED APPLICATIONS

Christakis Lezos, Grigoris Dimitroulakos and Konstantinos Masselos, University of Peloponese, GR

IP4-9

TAPP: TEMPERATURE-AWARE APPLICATION MAPPING FOR NOC-BASED MANY-CORE PROCESSORS

Di Zhu, Lichong Chen, Timothy Pinkston and Massoud Pedram, University of Southern California, US

IP4-10

MALLEABLE NOC: DARK SILICON INSPIRED ADAPTABLE NETWORK ON CHIP

Haseeb Bokhari¹, Haris Javaid², Muhammad Shafique¹, Joerg Henkel³ and Sri Parameswaran³

¹University of New South Wales, AU; ²Google Inc., ; ³Karlsruhe Institute of Technology (KIT), DE

IP4-11

TOPOLOGY IDENTIFICATION FOR SMART CELLS IN MODULAR BATTERIES

Sebastian Steinhorst and Martin Lukasiewycz, TUM CREATE, SG
THURSDAY 12 MARCH, 2015

1100 MOBILE HEALTH MONITORING: ADOPTION AND SYSTEM CHALLENGES
David Shanes, BioTelemetry, Inc., US

1130 WEARABLE DEVICE FOR PHYSICAL AND EMOTIONAL HEALTH MONITORING
Srinivasan Murali, SmartCardia, CH

1200 GAIT ANALYSIS FOR FALL PREDICTION USING HIERARCHICAL TEXTILE-BASED CAPACITIVE SENSOR ARRAYS
Rebecca Baldwin, University of Maryland, Baltimore County, US
Rebecca Baldwin, Stanislav Bobovych, Ryan Robucci, Nilanjan Banerjee and Chintant Patel, University of Maryland, Baltimore County, US

1230 LUNCH BREAK,
in Les Écrins
Keynote lecture from 1320 - 1350 (Room Oisans)

10.1 SPECIAL DAY Hot Topic: Wearable Medical Applications

Organiser: Jo De Boeck, IMEC, BE
Chair: Renzo Dal Molin, Sorin Group, FR
Co-Chair: Chris Van Hoon, IMEC, BE

Wearable devices are hot. This session will treat opportunities in technology and application for devices that assist in prevention and monitoring in selected cases.

1100 MOBILE HEALTH MONITORING: ADOPTION AND SYSTEM CHALLENGES
David Shanes, BioTelemetry, Inc., US

10.2 Emerging Memory Architectures

Belle-Etoile 1100 - 1230
Chair: Luca Perniola, IMEC, BE
Co-Chair: Pierre-Emmanuel Gaillardon, École Polytechnique Fédérale de Lausanne (EPFL), CH

Memories are of utmost importance in modern electronic systems. Emerging memory technologies hold a lot of promise to further integration density and performance levels, while reducing energy consumption. In this session, the first two papers introduce innovative solutions for better control of the endurance limitations of novel memories, while the last two papers investigate the gains in performance metrics from a system-level perspective.

1200 SYSTEM LEVEL EXPLORATION OF A STT-MRAM BASED LEVEL 1 DATA-CACHE
Manu Komalan, University of Bologna, IT and Luca Benini, École Polytechnique Fédérale de Lausanne, CH

1215 HIGH PERFORMANCE AXI-4.0 BASED INTERCONNECT FOR EXTENSIBLE SMART MEMORY CUBES
Erfan Azarkhish, Amirali Ghofrani and Kwang-Ting Cheng, University of Waterloo, CA

1230 LUNCH BREAK,
in Les Écrins
Keynote lecture from 1320 - 1350 (Room Oisans)

10.3 Modern Architectures for Real-Time Systems

Stendhal 1100 - 1230
Chair: Benny Åkesson, Czech Technical University in Prague, CZ
Co-Chair: Rodolfo Pellizzoni, University of Waterloo, CA

Introducing modern architectures, such as multicore platforms, in real-time systems is challenging. The papers in this session make a contribution in this direction by discussing new scheduling techniques for parallel real-time tasks, multicore architectures, and mixed-criticality systems.
Thursday 12 March, 2015

1100 THE FEDERATED SCHEDULING OF CONSTRAINED-DEADLINE SPORADIC DAG TASK SYSTEMS
Sanjoy Baruah, The University of North Carolina at Chapel Hill, US

1130 RUN AND BE SAFE: MIXED-CRITICALITY SCHEDULING WITH TEMPORARY PROCESSOR SPEEDUP
Pengcheng Huang, Pratyush Kumar, Georgia Giannopoulou and Lothar Thiele, Swiss Federal Institute of Technology in Zurich (ETHZ), CH

1200 MULTI-CORE FIXED-PRIORITY SCHEDULING OF REAL-TIME TASKS WITH STATISTICAL DEADLINE GUARANTEE
Tianyi Wang¹, Linwei Niu², Shaolei Ren¹ and Gang Quan¹
¹Florida International University, US; ²West Virginia State University, US

1230 LUNCH BREAK,
in Les Écrins
Keynote lecture from 1320 - 1350 (Room Oisans)

10.4 Energy Aware Data Center: Design and Management

Chair: Carlo Cavazzoni, Cineca, IT
Co-Chair: Andreas Burg, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH

The session covers various topics in improving data center energy efficiency, from hardware acceleration, scheduling to cooling.

1100 MEMORY FAST-FORWARD: A LOW COST SPECIAL FUNCTION UNIT TO ENHANCE ENERGY EFFICIENCY IN GPU FOR BIG DATA PROCESSING
Eunhyeok Park¹, Junwahn Ahn², Sungpack Hong³, Sungjoo Yoo¹ and Sunggu Lee¹
¹POSTECH, KR; ²SNU, KR; ³Oracle, US

1130 POWER MINIMIZATION FOR DATA CENTER WITH GUARANTEED QOS
Shuo Liu¹, Soamar Homsi¹, Ming Fan¹, Shaolei Ren¹, Gang Quan¹ and Shangping Ren¹
¹Florida International University, US; ²Illinois Institute of Technology, US

1200 ENERGY-AWARE COOLING FOR HOT-WATER COOLED SUPERCOMPUTERS
Christian Conlon¹, Andrea Bartolini², Andrea Tili², Gianpietro Tecchiolli³ and Luca Benini³
¹Università di Bologna, IT; ²Università di Bologna / ETH Zürich, IT; ³Eurotech, IT

1230 LUNCH BREAK,
in Les Écrins
Keynote lecture from 1320 - 1350 (Room Oisans)

10.5 Reconfigurable Architectures and Applications

Chair: Meije³
Co-Chair: Christian Plessl, University of Paderborn, DE
Enno Lübers, Intel Labs Europe, DE

Reconfigurable computing has vast potential for enhancing the performance of applications especially when using architectural optimizations. This session has two papers that focus on architectural enhancements while the third demonstrates a hardware accelerated bioinformatics application.

1100 HYBRID ADAPTIVE CLOCK MANAGEMENT FOR FPGA PROCESSOR ACCELERATION
Alexandru Gheolbanoiu¹, Lucian Petrica² and Sorin Cotofana²
¹University POLITEHNICA of Bucharest, RO; ²Delft University of Technology, NL

1130 A SCALABLE AND HIGH-DENSITY FPGA ARCHITECTURE WITH MULTI-LAYER PHASE CHANGE MEMORY
Chunau Wei, Ashutosh Dhar and Deming Chen, University of Illinois, Urbana-Champaign, US

1200 FPGA ACCELERATED DNA ERROR CORRECTION
Anand Ramachandran, Yun Heo, Wen-mei Hwu, Jian Ma and Deming Chen, University of Illinois at Urbana-Champaign, US

1230 LUNCH BREAK,
in Les Écrins
Keynote lecture from 1320 - 1350 (Room Oisans)

10.6 Circuit Design and Test: From Characterization to Measurement

Chair: Salvador Mir, TIMA/CNRS, FR
Co-Chair: Christoph Grimm, TU Kaiserslautern, DE

This session covers eye-diagram analysis for high-speed circuits, statistical digital library characterization, test orbital testing in the context of multi-site testing, and estimation of defect detection probability of analog test.

1100 FAST EYE DIAGRAM ANALYSIS FOR HIGH-SPEED CMOS CIRCUITS
Seyed Nematollah Ahmadyan¹, Chenjie Gu², Suriyaprapaksh Natarajan³, Eli Chiprout⁴ and Shobha Vasudevan⁵
¹University of Illinois at Urbana-Champaign, US; ²Intel, US

1130 STATISTICAL LIBRARY CHARACTERIZATION USING BELIEF PROPAGATION ACROSS MULTIPLE TECHNOLOGY NODES
Li Yu¹, Sharad Saxena², Christopher Hess³, Ibrahim Elfadel³, Dimitri Antoniadis¹ and Duane Boning¹
¹Massachusetts Institute of Technology, US; ²PDF Solutions, Inc, US; ³Masdar Institute of Science and Technology, AE

1200 COMBINING ADAPTIVE ALTERNATE TEST AND MULTI-SITE TESTING
Gildas Leger, Instituto de Microelectronica de Sevilla, IMSE-CNMTL (CSIC - Universidad de Sevilla), ES

1215 A METHOD FOR THE ESTIMATION OF DEFECT DETECTION PROBABILITY OF ANALOG/RF DEFECT-ORIENTED TESTS
John Liapergos¹, Angela Arapayanni² and Yiorgos Tsiotouhas³
¹Technological Educational Institute of Peloponne, Dept of Computer Engineering, GR; ²National and Kapodistrian University of Athens, Dept. of Informatics and Telecommunications, GR; ³University of Ioannina, GR

1230 LUNCH BREAK,
in Les Écrins
Keynote lecture from 1320 - 1350 (Room Oisans)

10.7 Expanding the Applicability of Formal Methods

Chair: Barbara Jobstmann, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH
Co-Chair: Christoph Scholl, University Freiburg, DE

The first two papers propose improved solutions for error diagnosis and software bounded model checking. The next two papers are devoted to abstraction and synthesis techniques between RTL and high-level models of on-chip communication networks. Then the first IP expands the applicability of equivalence checkers to asynchronous circuits. The last two IPs present emerging applications of model checking.

1100 FUNCTIONAL STATE-SPACE UNREACHABILITY
Sanjoy Baruah, The University of North Carolina at Chapel Hill, US

1130 AUTOMATED RECTIFICATION METHODOLOGIES TO FUNCTIONAL STATE-SPACE UNREACHABILITY
Ryan Berryhill and Andreas Veneris, University of Toronto, CA
Thursday 12 March, 2015

1130 OVER-APPROXIMATING LOOPS TO PROVE PROPERTIES USING BOUNDED MODEL CHECKING
Priyanka Darke, Bharti Chidtalyavar, Venkatesh R, Ulka Shroti and Ravindra Metta, TCS, IN

1200 AUTOMATIC EXTRACTION OF MICRO-ARCHITECTURAL MODELS OF COMMUNICATION FABRICS FROM REGISTER TRANSFER LEVEL DESIGNS
Sebastiaan Joosten and Julien Schmalzt, Eindhoven University of Technology, NL

1215 GALS SYNTHESIS AND VERIFICATION FOR XMAS MODELS
Frank Burns, Danil Sokolov and Alex Yakovlev, Newcastle University, GB

IPS
IP5-7, IP5-8, IP5-9

1230 LUNCH BREAK,
in Les Écrins
Keynote lecture from 1320 - 1350 (Room Oisans)

10.8 From IP to EDA Tools Enterprise Management: What is so special?
Salle Leadiguières 1100 - 1230
Moderator: Gabrièle Saucier, Design and Reuse, FR
Panelists: Huy-Nam Nguyen, Bull S.A.S., FR
Philippe Quinio, STMicroelectronics International, CH

IPs are today part of any Electronic Systems and it is more and more urgent to trace, monitor and more generally “manage” IPs in systems or products. The key feature of such a management is its multidisciplinary facet implying multiple management views and actors (IP Engineering, IP Sourcing, IP Procurement...).

Today an IP management platform needs to be a next generation web application hosted on an intranet server and receiving data from multiple sources (Design DB, IP Delivery DB, Product Shipment DB, Legal and Financial reports...). It aims at providing a reliable follow up to all of these departments such as IP Entry, IP Delivery, IP tracing in products... It delivers results (fee and royalty calculation for instance) as well as expertise for decision making (planning the future in terms of IP expenses, cost per product...).

The introductory talk will show how such a portal can be configured to fulfill the needs of an enterprise and what are the required “special” technical & features missing in management tools presently available on the market.

Specific views namely Engineering view and Legal aspects will be commented by 2 speakers from companies veteran in IP management.

It will also be demonstrated that an amazing and straightforward extension concerns EDA Tool license management and optimization including integrated license monitoring. Such an extension aims at optimizing the tool cost for large enterprises using extensively and at a large scale a variety of development tools and gives an unique corporate global view on IP and Tools.

1100 IP AND EDA TOOL NEXT GENERATION MANAGEMENT PLATFORM: WHAT ARE THE FEATURES REQUIRED?
Gabrièle Saucier, Design and Reuse, FR

1130 BEST PRACTICE: THE IP QUALIFICATION VIEW
Huy-Nam Nguyen, Bull S.A.S., FR

1145 BUSINESS AND LEGAL: THE SOURCING RISK
Philippe Quinio, STMicroelectronics International, CH

1205 QUESTIONS AND AUDIENCE COMMENTS

1230 LUNCH BREAK,
in Les Écrins
Keynote lecture from 1320 - 1350 (Room Oisans)

Thursday 12 March, 2015

11.0 SPECIAL DAY Keynote
1315 - 1350
Chair: Jo De Boeck, IMEC, BE
Co-Chair: Refet Firat Yazicioglu, IMEC, BE

BEST IP AWARD PRESENTATION
1320
Oliver Bringmann, University of Tuebingen / FZI, DE

11.1 SPECIAL DAY Hot Topic: Implantable Medical Applications
Salle Oisans 1400 - 1530
Organiser: Jo De Boeck, IMEC, BE
Chair: Edith Beigne, CEA-Leti, FR
Co-Chair: Jean-Paul Linnartz, Philips, NL

Implantable devices obviously have stringent technical requirements dictated by the specific functionality in the body. This session brings expert views from industry leaders in the field and insight in the challenges for integrated circuits in emerging biomedical devices.

1400 ACTIVE IMPLANTABLE MEDICAL DEVICES
Renzo Dal Molin, Sorin Group, FR

1430 TOWARDS NEXT GENERATION DEEP BRAIN STIMULATION
Michael Decré, Medtronic Eindhoven Design Center, NL

1500 INTEGRATED CIRCUITS AND MICROSYSTEMS FOR EMERGING BIOMEDICAL DEVICES
Minkyu Je, DGIST, Daegu Gyeongbuk Institute of Science and Technology, KR

1530 COFFEE BREAK IN EXHIBITION AREA

11.2 Variability and Robustness for Emerging Technologies
Belle Étoile 1400 - 1530
Chair: Edith Beigne, CEA-Leti, FR
Co-Chair: Andy Tyrrell, University of York, GB

Issues relating to smaller device sizing and novel technologies require more consideration of variability when designing systems and the related robustness of such systems. The first paper in this session considers the modelling of resistive switching random access memory and used in a number of designs to illustrate various properties and characteristics of such devices, including speed-power performance, variability and a neuromorphic computing application. The second paper introduces methods for improving the performance of Spin-Torque Transfer RAM (STTRAM) to reduce worst-case write latency and improve power over more global methods. The third paper proposes a joint optimization of the reliability at device circuit and architecture level. The device level is mainly considered through the energy barrier, circuit level through the transistor controlling the writing current and the architecture level through the error code correction scheme complexity. The final paper in the session compare sub-10nm node TFETs against the projected FinFETs of the same node at 0.25V in both inverter chains and in synthesizing a LEON3 processor.

1400 VARIATION-AWARE, RELIABILITY-EMPHASIZED DESIGN AND OPTIMIZATION OF RRAM USING SPICE MODEL
Haitong Li1, Zichen Jiang2, Peng Huang3, Yi Wu3, Hong-Yu Chen2, Bin Gao1, Xiaoyan Liu1, Jinfeng Kang1 and H.-S. Philip Wong2
1Stanford University & Peking University, ; 2Stanford University, ; 3Peking University,
Thursday 12 March, 2015

1430 IMPACT OF PROCESS-VARIATIONS IN STTRAM AND ADAPTIVE BOOSTING FOR ROBUSTNESS
Seyedhamidreza Motaman, Swaroop Ghosh and Nitin Rathi, University of South Florida, US

1500 DEVICE/CIRCUIT/ARCHITECTURE CO-DESIGN OF RELIABLE STT-MRAM
Zoha Pajouhi, Xuanyao Fong and Kaushik Roy, Purdue University, US

1515 SUB-10 NM FINFETS AND TUNNEL-FETS: FROM DEVICES TO SYSTEMS
Ankit Sharma, Arun Goud Akkala and Kaushik Roy, Purdue University, US

IPS IP5-10, IP5-11

1530 COFFEE BREAK IN EXHIBITION AREA

11.3 Hot Topic - Multi/Many-Core Programming: Where Are We Standing?
Stendhal 1400 - 1530
Organisers: Jeronimo Castrillon, Technische Universität Dresden, DE
Rainer Leupers, RWTH Aachen, DE
Chair: Norbert Wehn, Technische Universität Kaiserslautern, DE
Co-Chair: Ayse K. Coskun, Boston University, US

Multi-processor systems have been in wide use for about ten years. During this time, several programming models have appeared in different domains. In particular, the academic community has been active in devising methods, often model-driven, to program heterogeneous embedded multi-processor platforms. This session analyzes the current standing from different perspectives, namely, from researchers working in methods in academia, from companies offering solutions and from companies requiring solutions.

1400 5% OR 5X? THE PERFORMANCE GAP IN SIMD OPTIMIZATION, AND POSSIBLE SOLUTIONS
Ben Juurlink, TU Berlin, DE

1415 MODEL-BASED DESIGN OF REAL-TIME SYSTEMS
Lothar Thiele, Swiss Federal Institute of Technology in Zurich (ETHZ), CH

1430 PROGRAMMING ADAPTIVE AND ENERGY-EFFICIENT MANY-CORES
Jeronimo Castrillon, Technische Universität Dresden, DE

1445 CONFIDENCE IN THE USE OF SOFTWARE TOOLS ACCORDING TO THE ISO 26262 IN AUTOMOTIVE MULTICORE APPLICATIONS
Ralph Jessenberger, BeOne Frankfurt GmbH, DE

1500 AUTOMOTIVE MULTICORE MICROCONTROLLER SIMULATION, DEBUGGING AND ANALYSIS USING VIRTUAL PROTOTYPES
Victor Reyes, Synopsys Inc., US

1515 APPLYING MULTICORE COMPILER RESEARCH INTO INDUSTRIAL PRACTICES: AN EARLY EXPERIENCE REPORT
Weihua Sheng, Silexica Software Solutions GmbH, DE

1530 COFFEE BREAK IN EXHIBITION AREA

11.4 Logic Synthesis: the Faithful, the Approximate and the Stochastic
Chartreuse 1400 - 1530
Chair: Alex Yakovlev, University of Newcastle, GB
Co-Chair: Mohamed Sabry, Stanford University, US

Logic synthesis is evolving from traditional frameworks with fully-defined Boolean functions to account for the flexibilities afforded by observability don’t cares, to generate smaller circuits through approximation and improve power-performance tradeoffs by taming stochastic computation.

1400 A NEW APPROXIMATE ADDER WITH LOW RELATIVE ERROR AND CORRECT SIGN CALCULATION
Junjun Hu1 and Weikang Qian1
1Shanghai Jiao Tong University, CN; 2Shanghai Jiao Tong University (SJTU), CN

1430 TOWARDS BINARY CIRCUIT MODELS THAT FAITHFULLY CAPTURE PHYSICAL SOLVABILITY
Matthias Fuegger*, Robert Najviri1, Thomas Nowak2 and Ulrich Schmid1
1TU Wien, AT; 2École Normale Superieure, FR

1500 A COUPLING AREA REDUCTION TECHNIQUE APPLYING ODC SHIFTING
Yi Diao1, Tak-Kei Lam2, Xing Wei1 and Yu-Liang Wu2
1The Chinese University of Hong Kong, CN; 2The Chinese University of Hong Kong, HK

1515 A GENERAL DESIGN OF STOCHASTIC CIRCUIT AND ITS SYNTHESIS
Zheng Zhao and Weikang Qian, Shanghai Jiao Tong University (SJTU), CN

IPS IP5-12, IP5-13, IP5-14

1530 COFFEE BREAK IN EXHIBITION AREA

11.5 Ultra-low Power Devices for Health and Rehabilitation
Meije 1400 - 1530
Chair: Georgios Karakonstantis, Queen’s University, GB
Co-Chair: José M. Moya, Technical University of Madrid, ES

The session addresses scientific contribution in the field of ultra-low power devices and communication for medical, health and rehabilitation application. The first paper presents an innovative wearable device to assist writing rehabilitation. The next two papers cover different key aspects related to signal processing approaches for wireless compression and low-power coding for future Internet-of-Things (IoT) devices.

1400 PAPER, PEN AND INK: AN INNOVATIVE SYSTEM AND SOFTWARE FRAMEWORK TO ASSIST WRITING REHABILITATION
Leonardo Guardati1, Filippo Casamassima1, Elisabetta Farella2 and Luca Benini3
1University of Bologna, IT; 2Fondazione Bruno Kessler, IT; 3Università di Bologna / Swiss Federal Institute of Technology in Zurich (ETHZ), CH

1430 AN ALL-DIGITAL SPIKE-BASED ULTRA-LOW-POWER IR-UWB DYNAMIC AVERAGE THRESHOLD CROSSING SCHEME FOR MUSCLE FORCE WIRELESS TRANSMISSION
Amirhossein Shahshahani1, Masoud Shahshahani2, Maurizio Martina1, Guido Masera1, Davide Demarchi1, Marco Crepaldi1, Paolo Motto Ros1 and Alberto Bonanno1
1Politecnico di Torino, IT; 2Politecnico di Torino / Istituto Italiano di Tecnologia@PoliTo, IT

1500 A PULSED-INDEX TECHNIQUE FOR SINGLE-CHANNEL, LOW-POWER, DYNAMIC SIGNALING
Shahzad Muzaffar, Jerald Yoo, Ayman Shabra and Ibrahim (Abe) Elfadel, Masdar Institute of Science and Technology, AE

1530 COFFEE BREAK IN EXHIBITION AREA

11.6 Video Architectures for Multimedia and Communications
Bayard 1400 - 1530
Chair: Frederic Petro, TIMA, FR
Co-Chair: Marcello Coppola, STMicroelectronics, FR

This session presents innovative work in video architectures and algorithms used in multimedia and communication systems.
11.7 Exploiting Dark Silicon

Les Bans 1400 - 1530

Chair: Olivier Heron, CEA LIST, FR
Co-Chair: Domenik Helms, OFFIS, DE

The advent of the dark silicon area raises the need for accurately, yet effectively regarding thermal properties of the system. Employing advanced power gating techniques will additionally raise the achievable gain. Both will be presented in this session.

1400 MATEX: EFFICIENT TRANSIENT AND PEAK TEMPERATURE COMPUTATION FOR COMPACT THERMAL MODELS

Santiago Pagani1, Jian-Jia Chen1, Muhammad Shafique1 and Joerg Henkel1
1Karlsruhe Institute of Technology (KIT), DE; 2TU Dortmund, DE

1430 DISTRIBUTED REINFORCEMENT LEARNING FOR POWER LIMITED MANY-CORE SYSTEM PERFORMANCE OPTIMIZATION

Zhao Chen and Diana Marculescu, Carnegie Mellon University, US

1500 AN ENERGY-EFFICIENT VIRTUAL CHANNEL POWER-GATING MECHANISM FOR ON-CHIP NETWORKS

Amirhossein Mirhosseini1, Mohammad Sadrosadati1, Ali Fakhrzadehgan1, Mehdi Modarressi1 and Hamid Sarbazi-Azad1
1Sharif University of Technology, IR; 2University of Texas at Austin, US; 3University of Tehran, IR

1515 M-DTM: MIGRATION-BASED DYNAMIC THERMAL MANAGEMENT FOR HETEROGENEOUS MOBILE MULTI-CORE PROCESSORS

Young Geun Kim, Minyong Kim, Jae Min Kim and Sung Woo Chung, Korea University, KR

1530 COFFEE BREAK IN EXHIBITION AREA
Interactive Presentations, sponsored by Cadence Academic Network

1530 - 1600

Interactive Presentations run simultaneously during a 30-minute slot. A poster associated to the IP paper is on display throughout the morning. Additionally, each IP paper is briefly introduced in a one-minute presentation in a corresponding regular session, prior to the actual Interactive Presentation.

TOWARDS SYSTEMATIC DESIGN OF 3D PNML LAYOUTS
Robert Perricone1, Yining Zhu2, Katherine Sanders1, X. Sharon Hu1 and Michael Niemier2
1University of Notre Dame, US; 2Zhejiang University, CN

DESTINY: A TOOL FOR MODELING EMERGING 3D NVM AND EDRAM CACHES
Matt Poremba1, Sparsh Mittal2, Dong Li1, Jeffrey Vetter3 and Yuan Xie1
1Pennsylvania State University, US; 2Oak Ridge National Lab, US; 3Oak Ridge National Lab and Georgia Institute of Technology, US; 4University of California, Santa Barbara, US

BIG-DATA STREAMING APPLICATIONS SCHEDULING WITH ONLINE LEARNING AND CONCEPT DRIFT DETECTION
Karim Kanoun1 and Mihaela van der Schaar2
1École Polytechnique Fédérale de Lausanne (EPFL), CH; 2University of California, Los Angeles, US

DESIGN FLOW AND RUN-TIME MANAGEMENT FOR COMPRESSED FPGA CONFIGURATIONS
Christophe Huriaux1, Antoine Courty1 and Olivier Sentieux2
1University of Rennes 1 - IRISA, FR; 2INRIA, FR

EMPIRICAL MODELLING OF FDSOI CMOS INVERTER FOR SIGNAL/POWER INTEGRITY SIMULATION
Wael Dghais and Jonathan Rodriguez, Instituto de Telecomunicaciones, PT

ON-CHIP MEASUREMENT OF BANDGAP REFERENCE VOLTAGE USING A SMALL FORM FACTOR VCO BASED ZOOM-IN ADC
Osmar Erol1, Sule Ozev1, Chandra K. H. Suresh2, Rubin Parekhji3 and Lakshmanan Balasubramanian1
1ASU, US; 2NYU-Abu Dhabi, AE; 3TI, IN

LOGICAL EQUIVALENCE CHECKING OF ASYNCHRONOUS CIRCUITS USING COMMERCIAL TOOLS
Arash Saifhashemi1, Hsin-Ho Huang2, Priyanka Bhalaria3 and Peter Beerel2
1Intel, US; 2University of Southern California, US; 3Texas A&M University, College Station, US

MAY-HAPPEN-IN-PARALLEL ANALYSIS OF ELECTRONIC SYSTEM LEVEL MODELS USING UPPAAL MODEL CHECKING
Che-Wei Chang and Rainer Doemer, University of California Irvine, US

VERIFYING SYNCHRONOUS REACTIVE SYSTEMS USING LAZY ABSTRACTION
Kumar Madhusak1, Mandayam Srivas2, Bjorn Wachter3, Daniel Kroening4 and Ravindra Metta1
1Tata Research Development and Design Center, IN; 2Chennai Mathematical Institute, IN; 3Chennai Mathematical Institute, IN; 4University of Oxford, GB

SPINTASTIC: SPIN-BASED STOCHASTIC LOGIC FOR ENERGY-EFFICIENT COMPUTING
Rangharajan Venkatesan1, Swagath Venkataramani2, Xuan Yao Fong3, Kaushik Roy1 and Anand Raghunathan1
1NVIDIA Corporation, US; 2Purdue University, US

LEAKAGE POWER REDUCTION FOR DEEPLY-SCALED FINFET CIRCUITS OPERATING IN MULTIPLE VOLTAGE REGIMES USING FINE-GRAINED GATE-LENGTH BIASING TECHNIQUE
Ji Li, Qing Xie, Yanzhi Wang, Shahin Nazarian and Massoud Pedram, University of Southern California, US

SPECIAL DAY Hot Topic: Technology and Design Platforms for Diagnostics
Salle Oisans 1600 - 1730

Organiser: Jo De Boeck, IMEC, BE
Chair: Chris Van Hoof, IMEC, BE
Co-Chair: Liesbet Lagae, IMEC, BE

Key to an efficient and effective treatment is early, fast and precise diagnosis. This session showcases some of the recent advances and future potential of technologies that help enable the above mentioned requirements for patient centric care.

ULTRAFLEXIBLE INTEGRATED CIRCUITS FOR IMPERCEPTIBLE BIO-SENSORS
Teppel Araki, University of Tokyo, JP

NANO-ELECTRONICS FOR DISRUPTIVE DIAGNOSTIC PLATFORMS
Liesbet Lagae, IMEC, BE

AN ULTRA-LOW POWER DUAL-MODE ECG MONITOR FOR HEALTHCARE AND WELLNESS
Daniele Bortolotti, University of Bologna, IT
THURSDAY 12 MARCH, 2015

12.2 Solver Advances and Emerging Applications
Belle-Etoile 1600 - 1730
Chair: Julian Schmaltz, Eindhoven University of Technology, NL
Co-Chair: Gianpiero Cabodi, Politecnico di Torino, IT
The first three papers of this session present strong advances to the scalability of Boolean and arithmetic solvers.

1600 SOLVING DQBF THROUGH QUANTIFIER ELIMINATION
Karina Gitina, Ralf Wimmer, Sven Reimer, Matthias Sauer, Christoph Scholl and Bernd Becker, University of Freiburg, DE

1630 FORMAL VERIFICATION OF SEQUENTIAL GALOIS FIELD ARITHMETIC CIRCUITS USING ALGEBRAIC GEOMETRY
Xiaojun Sun1, Priyank Kalla2, Tim Pruss3 and Florian Enescu4
1University of Utah, US; 2University of Utah, US; 3Georgia State University, US

1700 A UNIVERSAL MACRO BLOCK MAPPING SCHEME FOR ARITHMETIC CIRCUITS
Xing Wei, Yi Diao, Tak-Kei Lam and Yu-Liang Wu, The Chinese University of Hong Kong, HK

1715 TOWARDS AN ACCURATE RELIABILITY, AVAILABILITY AND MAINTAINABILITY ANALYSIS APPROACH FOR SATELLITE SYSTEMS BASED ON PROBABILISTIC MODEL CHECKING
Khaza Anuarul Hoque1, Omnane Ait Mohamed1 and Yvon Savaria2
1Concordia University, CA; 2Polytechnique Montreal, CA

12.3 Patterning, Pairing, Placement and Packing
Stendhal 1600 - 1730
Chair: Dirk Stroobandt, Ghent University, BE
Co-Chair: Patrick Groeneveld, Synopsys, US
Place-and-route remain at the core of physical design, but must address a variety of important objectives, constraints and concerns. They can be addressed by standard-cell design to improve routing congestion while keeping area small.

1600 AN EFFECTIVE TRIPLE PATTERNING AWARE GRID-BASED DETAILED ROUTING APPROACH
Zhijing Liu, Chuangwen Liu and Evangeline Young, The Chinese University of Hong Kong, HK

1630 SIMULTANEOUS TRANSISTOR PAIRING AND PLACEMENT FOR CMOS STANDARD CELLS
Ang Lu, Hsu-Hsu Lu, En-Jang Jang, Yu-Po Lin, Chun-Hsiang Hung, Chun-Chih Chuang and Rung-Bin Lin, Yuan Ze University, TW

1700 A TSV NOISE-AWARE 3-D PLACER
Yu-min Lee, Chun Chen, Jia-xing Song and Kuan-te Pan, National Chiao Tung University, TW

1715 IDENTIFYING REDUNDANT INTER-CELL MARGINS AND ITS APPLICATION TO REDUCING ROUTING CONGESTION
Woohyun Chung, Seongbo Shim and Youngsoo Shin, Korea Advanced Institute of Science and Technology, KR

12.4 High-Level Specifications and Models
Chartreuse 1600 - 1730
Chair: Marc Geilen, TU Eindhoven, NL
Co-Chair: Laurence Pierre, TIMA Lab, FR
This session presents different aspects of high-level specifications and models. The first paper introduces a new model of computation, fixed-priority process networks to address the need of determinism for multiprocessor applications. The second paper proposes an approach to detect and resolve potential synchronization problems between a discrete event simulation and timed dataflow simulation. The third paper presents a framework for checking the logical consistency of requirements in specifications written in a subset of natural language.

1600 MODELS FOR DETERMINISTIC EXECUTION OF REAL-TIME MULTIPROCESSOR APPLICATIONS
Peter Poplavko1, Dario Socci2, Paraskevas Bourgos3, Marius Bozga4 and Saddek Bensalem5
1Univesite Joseph Fourier / Verimag, FR; 2Verimag, ; 3Verimag, FR

1630 PRE-SIMULATION SYMBOLIC ANALYSIS OF SYNCHRONIZATION ISSUES BETWEEN DISCRETE EVENT AND TIMED DATA FLOW MODELS OF COMPUTATION
Litlana Andrade1, Torsten Maehne2, Alain Vachoux3, Cédric Ben Aoun1, François Pechoux1 and Marie-Minerve Louerat2
1Pierre et Marie Curie University, LIP6, FR; 2École Polytechnique Fédérale de Lausanne (EPFL), CH; 3University Pierre et Marie Curie, FR

1700 FORMAL CONSISTENCY CHECKING OVER SPECIFICATIONS IN NATURAL LANGUAGES
Ronjiie Yan1, Chih-Hong Cheng2 and Yesheng Chai3
1Institute of Software, Chinese Academy of Sciences, CN; 2ABB Corporate Research, DE; 3School of Computer Science & Technology, Soochow University, CN

12.5 New Perspectives in Next-Generation Medical Systems
Meije 1600 - 1730
Chair: Martin Rajman, École Polytechnique Fédérale de Lausanne (EPFL), CH
Co-Chair: Giovanni De Micheli, École Polytechnique Fédérale de Lausanne (EPFL), CH

1600 TACKLING THE BOTTLENECK OF DELAY TABLES IN 3D ULTRASOUND IMAGING
Aya Ibrahim1, Pascal Hager2, Andrea Bartolini1, Federico Angiolini1, Marcel Ardit1, Luca Berini1 and Giovanni De Micheli1
1École Polytechnique Fédérale de Lausanne (EPFL), CH; 2Swiss Federal Institute of Technology in Zurich (ETHZ), CH; 3Università di Bologna / ETH Zürich, IT; 4EPFL, CH

1630 INTEGRATED CMOS RECEIVER FOR WEARABLE COIL ARRAYS IN MRI APPLICATIONS
Benjamin Sporrer1, Luca Bettini2, Christian Vogt3, Andreas Mehmans4, Jonas Reber1, Josip Marjanovic1, Thomas Burger2, David Brunner3, Gerhard Tröster2, Klaus P. Prüssmann1 and Guting Huang1
1Integrated Systems Laboratory, Swiss Federal Institute of Technology (ETH), CH; 2Swiss Federal Institute of Technology in Zurich (ETHZ), CH; 3Swiss Federal Institute of Technology in Zurich (ETHZ) / University of Zurich (UZH), CH

1700 TACTILE PROSTHETICS IN WISESKIN
John Farserotu1, Jean-Dominique Decotignie1, Vladimir Kopta1, Daniel Camilo Rojas Quiróz2, Pierre-Nicolas Volpe1, Jacek Baborowski3, Christian Enz2, Stéphanie Lacour2, Hadrien Michaud2, Roberto Martuzzi2, Volker Koch2, Huaqi Huang2, Tao Li and Christian Antfolk4
1CSEM, CH; 2École Polytechnique Fédérale de Lausanne (EPFL), CH; 3BFH, CH; 4Lund University, SE

12.6 Medical Design Automation: Is All That Simulation and Model Reduction Getting Into Your "Head"?
Bayard 1600 - 1730
Organisers: Luca Daniel, MIT, US
Luis Miguel Silveira, INESC-ID, PT
Chair: Luca Daniel, MIT, US
Co-Chair: Luis Miguel Silveira, INESC-ID, PT
Tools and techniques originally developed by the Electronic Design Automation community for parasitic extraction, model reduction, or circuit simulation are having deep impact in alternative - and exiting fields outside of the

www.date-conference.com
Thursday 12 March, 2015

Circuit world. In particular, this session shows several applications of such techniques to analyzing the functionality of the brain and of the nervous system, as well aiding the design of biomedical and medical instrumentation and diagnostics.

1600 THE OLD, THE NEW, AND THE RECYCLED – EDA ALGORITHMS IN CONNECTOMIC
Lou Scheffer, Howard Hughes Medical Institute, US

1630 COMPUTATIONAL MODELING AND SIMULATION OF SYNCHRONIZED FIRING BEHAVIORS OF THE BRAIN
Peng Li, Texas A&M, US

1700 ELECTROMAGNETIC POWER DEPOSITION ANALYSIS TOOL FOR HIGH RESOLUTION MAGNETIC RESONANCE IMAGING BRAIN SCANS
Jorge F. Villena1, Athanasios G. Polimeridis1, Lawrence L. Wald2, Elfar Adalsteinsson3, Jakob K. White4 and Luca Daniel1
1Massachusetts Institute of Technology, US; 2Massachusetts General Hospital, Harvard Medical School, US

Brain Health and Mental Disorders: new challenges for electronic engineers

Les Bans 1600 - 1730
Organiser: Jo De Boeck, IMEC, US
Chair: Pablo Laguna, CIBER-BBN, ES
Co-Chair: Josep Maria Haro, Parc Sanitari Sant Joan de Deu, ES

Taking well-known biomarkers of mental disorders together with some other indicators from physiological signals, a multiparametric marker can be elaborated from these constellations of individual data. This session will highlight the relevance of this kind of disorders, the proposed approach and where future opportunities lie for the broad DATE community.

1600 TOWARDS A QUANTITATIVE MEASUREMENT OF MENTAL DISORDERS
Jordi Aguilló, CIBER-BBN, Centro Nacional de Microelectrónica, Universitat Autònoma de Barcelona, ES

1615 IMPROVING THE MONITORING AND THE UNDERSTANDING OF MENTAL DISORDERS
Giovanni de Girolamo1 and Josep Maria Haro2
1IRCCS Fatebenefratelli, IT; 2Parc Sanitari Sant Joan de Deu, ES

1640 WORLD ANALYSIS OF NON-INVASIVE CARDIOVASCULAR SIGNALS FOR THE MONITORING OF PSYCHOPHYSIOLOGICAL STATES
Michele Orini1 and Pablo Laguna2
1Institute of Cardiovascular Science, University College London, GB; 2CIBER-BBN, ES

1705 HEALTHCARE IN AN INTEGRATED DIGITAL WORLD
Arsen Merkoçi, Catalan Institution for Research and Advanced Studies (ICREA) and Institut Català de Nanociència i Nanotecnologia (ICN2), ES

Panelists: Suzanne Lesecq and Anca Molnos, CEA-Leti, FR

March 9 – 13, 2015, Grenoble, France

Please note: The last two sessions are not described in the document.
0930 - 1000
Regular Paper: Power-Proportional Modelling Fidelity
- Ashur Rafiev, Fei Xia, Alexei Iliasov, Rem Gensh, Ali Aalsaud, Alexander Romanovsky, and Alex Yakovlev
- Newcastle University, GB; University of Newcastle upon Tyne, GB

1000 - 1030
Regular Paper: Implementation-Aware Buffer-Throughput Tradeoff in Embedded Stream Applications
- Kamyar Mirazad Barjough, Matin Hashemi, Volodymyr Khibin, and Soheil Ghiasi
- Sharif University of Technology, IR; University of California, Davis, US

1030 - 1100
Coffee Break

1100 - 1130
Session 2: SOC Design-Flows for Fast Platform Prototyping
- Eugenio Villar, University of Cantabria, ES, Contact: Eugenio Villar

1130 - 1200
- Vania Joloboff, Jean-François Morin, and Xiaomo Shi
- INRIA, FR; University of Grenoble, FR

1200 - 1230
Lunch Break

1300 - 1345
Session 3: Verification and Implementation of Embedded Systems from High-Level Models
- Vania Joloboff, INRIA, FR

1345 - 1415
Regular Paper: Analysis and Implementation of Embedded System Mode
- Saddek Bensalem, Université Joseph Fourier, FR

1415 - 1500
Demo and Poster Session
- Julien Mottin, CEA-Leti, FR

Venue:
- Friday 13 March, 2015
- Monday 16 March, 2015,双向, France

Contact:
- Eugenio Villar
- University of Cantabria, ES
- Contact: Eugenio Villar
1300 MODELING ISSUES FOR BATTERY PACKS: ACCURACY VS. SIMULATION COMPLEXITY
Speaker: Massimo Poncino, Politecnico di Torino, IT

1330 MULTIPHYSICS, MULTISCALE SIMULATION OF A COMPLETE LI-ION BATTERY PACK AND SUB-SYSTEMS
Speaker: Vincent Delafosse, ANSYS, US

1400 CORRELATED STATISTICAL MODEL OF BATTERY CAPACITY AND RESISTANCE AND MANAGEMENT OF CELL-TO-CELL VARIATION IN MULTIPLE-CELL BATTERY PACK
Speaker: Donghwa Shin, Yeungnam University, KR

1430 BATTERY SIMULATION IN THE ETAS LABCAR ENVIRONMENT
Speaker: Ingo Altmann, ETAS, DE

1500 POSTER SESSION / COFFEE BREAK

W03 2nd International Workshop on Neuromorphic and Brain-Based Computing Systems (NeuComp 2015)

Stendhal 0830 — 1630

General Co-Chairs
Philippe Coussy, Universite de Bretagne Sud / Lab-STICC, FR
Nikil Dutt, University of California, Irvine, US

Programme Committee Co-Chairs
Jeff Krichmar, University of California, US
Philippe Coussy, Universite de Bretagne Sud / Lab-STICC, FR

Programme Committee Members
Romain Brette, ENS, FR
Yiran Chen, Dept. of Electrical and Computer Engineering University of Pittsburgh, US
Jorg Conradt, Technische Universitat Munchen, DE
Nikil Dutt, University of California, Irvine, US
Kartheinz Meier, Heidelberg University, DE
Vijaykrishnan Narayanan, Pennsylvania State University, US
Steve Furber, University of Manchester, GB
Narayan Srinivasa, HRL, US

Speakers
Todd Hylton, Brain Corporation, US
Giacomo Indiveri, ETHZ, CH
Romain Brette, ENS, FR
Rajit Manohar, Cornell University, US
Jorg Conradt, Technische Universitat Munchen, DE
Steve Furber, University of Manchester, GB
Anders Lansner, KTH, SE
Kristofo Carlson, University of California – Irvine, US

Biological neural systems are well known for their robust and power-efficient operation in highly noisy environments. Biological circuits are made up of low-precision, unreliable and massively parallel neural elements with highly reconfigurable and plastic connections. Two of the most interesting properties of the neural systems are its self-organizing capabilities and its template architecture. Recent research in biologically-plausible neural networks has demonstrated interesting principles about learning and neural computation. Understanding and applying these principles to practical problems is only possible if large-scale neural simulators or circuits can be constructed. This workshop will outline key modelling abstractions for the brain and focus on recent neural network models. Aspects of neuronal processing and computational issues related to modelling these processes will be discussed. Hardware and software solutions readily usable by neuroscientists and computer scientists and efficient enough to construct very large networks comparable to brain networks will be presented.

NeuComp 2015 is the second edition of a DATE workshop designed to attract both newcomers to neuromorphic computing, as well as neuromorphic researchers who wish to interact with the DATE community to stimulate new ideas, topics and collaborations. Since this is a hot area but one that is probably new to a large segment of the DATE community, half of the workshop will be devoted to a comprehensive introduction to Neuromorphic and Brain-Based Computing, where the audience will be exposed to basic definitions, key concepts, abstractions, design flows, and design constraints; also some highly visible research projects will be presented as exemplars to provide an overview of existing and emerging solutions in this domain. The other half of the event will create a forum for interactive discussion and exchange of ideas and experiences between researchers through posters and demonstrations, with the goal of highlighting details on applicability, performance, and strengths of current solutions. Our aim is for attendees to learn about emerging Neuromorphic and Brain-Based computing techniques, highlight publicly available modelling and simulation tools, and view directions for longer term research.

Topics of interest
– Authors are invited to submit original unpublished works on topics from a wide range of Neuromorphic and Brain-Based computing areas, including but not limited to:
– Formal models
– Hardware architectures
– Software tools
– Systems and applications
– Simulation Infrastructures
<table>
<thead>
<tr>
<th>Time</th>
<th>Session/Activity</th>
</tr>
</thead>
</table>
| 0830 | Session 0: Neuromorphic Computing and the Brain: Insights, Challenges and Misunderstandings
 Speaker: Todd Hylton, Brain Corporation, US |
| 0900 | Session 1: On-line Learning in Real-Time Behaving Neuromorphic Systems
 Speaker: Giacomo Indiveri, ETHZ, CH |
| 0930 | The Brain Simulator
 Speaker: Romain Brette, ENS, FR |
| 1000 | Break & Poster/Demo Session 1 |
| 1100 | Session 2: Digital Neuromorphic Systems
 Speaker: Rajit Manohar, Cornell Univ., US |
| 1130 | Computational Neuroscience for Technology: Event-Based Vision Sensors and Information Processing
 Speaker: Jorg Conradt, Technische Universitat Munchen, DE |
| 1300 | Session 3: The Spinnaker Project
 Speaker: Steve Furber, University of Manchester, GB |
| 1330 | Biological Inspiration, Functionality and Hardware Implementation Aspects of BCPNN
 Speaker: Anders Lansner, KTH, SE |
| 1400 | Tools and Frameworks for Constructing Spiking Neural Network Models of Brain Circuits
 Speaker: Kristofor Carlson, University of California – Irvine, US |
| 1430 | Break & Poster/Demo Session 2 |
| 1600 | Wrap-Up & Closing Session |

W04 DUHDe – 2nd Workshop on Design Automation for Understanding Hardware Designs

Berlioz
0830 — 1630

Organisers
Goerschwin Fey, Univ. of Bremen
Emmanuelle Encrenaz-Tiphene, UPMC/LIP6, FR

Programme Committee Members

- Valeria Bertacco, University of Michigan, US
- Lyes Benalycherif, STMicronics, FR
- Jan Harris, University of California Irvine, US
- Masahiro Fujita, University of Tokyo, JP
- Franco Fummi, Universita’ di Verona, IT
- Maksim Jenihhin, Tallinn University of Technology, EE
- Tun Li, National University of Defense Technology, School of Computer, CN
- Eli Arbel, IBM, IL
- Raik Brinkmann, OneSpin Solutions GmbH, DE

Understanding a hardware design is tough. When entering a large team as a new member, when extending a legacy design, or when documenting a new design, lacks in understanding the details of a design are major obstacles for productivity. In software engineering topics like software maintenance, software understanding, reverse engineering are well established in the research community and partially tackled by tools. In the hardware area the re-use of IP-blocks, the growing size of designs and design teams leads to similar problems. Understanding of hardware requires deep insight into concurrently operating units, optimizations to reduce the required area, and specially tailored functional units for a particular use.

The workshop is of interest to practitioners working in circuit design and to researchers interested in design automation.

The aim of the 2nd Workshop on Design Automation for Understanding Hardware Designs (DUHDe) is to gather a community for these topics in electronic design automation. The workshop is not limited to the following topics in design understanding but includes:

- Design descriptions from the ESL down to RTL
- Extraction of high-level properties
- Localization of code implementing particular functionality
- Hardware design evolution: feature integration, feature interactions
- Innovative GUIs for designs
- Managing documentation of hardware designs
- Analysis of interaction between hardware and software
- Formal methods for design understanding
- Scalable approaches to design understanding

OPENING SESSION

Speakers: Goerschwin Fey¹ and Emmanuelle Encrenaz-Tiphene²

¹Univ. of Bremen, DE; ²UPMC/LIP6, FR

INVITED TALK 1

PRACTICAL APPLICATIONS OF HARDWARE DESIGN UNDERSTANDING USING FORMAL METHODS

Speaker: Eli Arbel, IBM Research, Haifa, IL

TECHNICAL SESSION 1

SYSTEMC-BASED LOOSE MODELS: RTL ABSTRACTION FOR DESIGN UNDERSTANDING

Authors: Saif Abrar Syed, Maksim Jenihhin and Jaan Raik, Tallinn University of Technology, EE

ECORE MODEL GENERATION FROM SYSTEMC/C++ IMPLEMENTATIONS

Authors: Jannis Stoppe¹ and Rolf Drechsler²

¹Universität Bremen, DE; ²University of Bremen/DFKI, DE

TOWARDS ANALYSING FEATURE LOCATIONS THROUGH TESTING TRACES WITH BUT4REUSE

Authors: Jabier Martinez¹, Jan Malburg³, Tewfik Ziadi¹ and Goerschwin Fey⁴

¹SnT, University of Luxembourg, LU; ²University of Bremen, DE; ³LIP6, University Pierre and Marie Curie, FR; ⁴Univ. of Bremen, DE

COFFEE BREAK
FRI
FRIDAY 13 MARCH, 2015

1100 INVITED TALK 2

1100 ASSERTION MINING
Speaker: Shobha Vasudevan, University of Illinois at Urbana-Champaign, US

1150 POSTER TEASERS

1200 LUNCH

1313 TECHNICAL SESSION 2

1313 LEARNING GRAMMARS FOR ASSERTION CREATION FROM NATURAL LANGUAGE
Authors: Christopher Harris¹ and Ian Harris²
¹University of California Irvine, US; ²University of California Irvine, US

1325 A BINDING METHOD FOR HIERARCHICAL TESTABILITY USING RESULTS OF TEST ENVIRONMENT GENERATION
Authors: Jun Nishimaki¹, Toshinori Hosokawa² and Hideo Fujiwara³
¹Graduate School of Industrial Technology, Nihon University, JP; ²Nihon University, JP; ³Faculty of Informatics, Osaka Gakuin University, JP

1350 INVITED TALK 3

1350 PARALLELIZATION OF SYSTEMC-TLM SIMULATIONS, AND MODELLING OF TIME AND POWER CONSUMPTION
Speaker: Matthieu Moy, Verimag, Grenoble, FR

1440 POSTER SESSION AND COFFEE BREAK

1530 TECHNICAL SESSION 3

1530 A SIMULATOR TO UNDERSTAND THE EFFECTS OF FAULT INJECTION ATTACKS ON A MICROCONTROLLER
Authors: Nicolas Moro¹, Karine Heydemann², Bruno Robisson³ and Emmanuelle Encrenaz-Tiphene⁴
¹CEA, FR; ²LIP6 / University Pierre et Marie Curie, FR; ³CEA-Leti, FR; ⁴UPMC/LIP6, FR

1555 PANEL

1555 DESIGN UNDERSTANDING - AT WHAT ABSTRACTION LEVEL IS THE PAIN MOST INTENSE?
Panelists: Lyes Benalycherif¹, Dominique Borrione⁴, Franco Fummi¹ and Jaan Raik⁵
¹STMicroelectronics, FR; ²TIMA, FR; ³Università di Verona, IT; ⁴Tallinn University of Technology, Department of Computer Engineering, EE

DATE15
March 9 – 13, 2015, Grenoble, France

0815 SESSION 1: OPENING AND 1ST KEYNOTE
Chair: Pascal VIVET, CEA-Leti, FR

0815 WELCOME ADDRESS
Speaker: Pascal VIVET, CEA-Leti, FR

0820 KEYNOTE: “COMPUTING IN 3D”
Speaker: Paul Franzon, North Carolina State University, US

0900 SPECIAL SESSION: “3D MEMORIES”
Chair: Christian Weis, Microelectronic System Research Group, DE
0900 TSV STACKING DESIGN AND PACKAGING FOR HIGH BANDWIDTH MEMORIES WITH 1GHz SAMPLING DIGITIZED NOISE MONITOR
Speaker: Kazuki Fukuoka, Renesas Electronics, JP

0920 HOW 3D MEMORY IS CHANGING COMPUTING
Speaker: Robert Patti, Tezzaron Semiconductor, US

0940 3D MEMORIES: FACTS AND FICTION
Speaker: Andreas Hansson, ARM Ltd, GB

1000 POSTER SESSION AND COFFEE BREAK

1030 SESSION 2: INVITED TALK AND PANEL
Moderator: Françoise von Trapp, 3D InCites, US

1030 INVITED TALK: “TESTING OF 3D ICS: HYPE, MYTHS, AND REALITIES”
Speaker: Krishnendu Chakrabarty, Duke University, US

1100 PANEL: “WILL 3D INTEGRATION BREAK DOWN MEMORY BANDWIDTH BARRIERS? HOW AND WHEN?”
Brendan Farley¹, Denis Dutoit⁸, Hsien-Hsin S. Lee¹, Geert Van der Plas⁸ and Mustafa Badaroglu¹
¹XILINX, US; ²CEA LETI, FR; ³TSMC, TW; ⁴IMEC, BE; ⁵Qualcomm, US

1200 LUNCH BREAK

1300 SPECIAL SESSION: “DIE-PACKAGE CO-DESIGN BENEFITS AND CHALLENGES”
Chair: Herb Reiter, EDA2ASIC, US

1300 THE 3D-IC ECOSYSTEM TODAY AND HOW TO STRENGTHEN IT FURTHER
Speaker: Herb Reiter, EDA2ASIC, US

1320 DATA HANDLING FOR CHIP-PACKAGE-BOARD CO-DESIGN AND DESIGN RULE CHECK
Speaker: Andy Heinig, Fraunhofer IIS/EAS, DE

1340 SILICON-PACKAGE CO-DESIGN CHALLENGES FROM 2D TO 3D
Speaker: Georg Kimmich, STMicroelectronics, FR

1400 IC DESIGN ASPECTS OF DIE-PACKAGE CO-DESIGN
Speaker: John Ferguson, Mentor Graphics Corp, US

1430 POSTER SESSION AND COFFEE BREAK

1500 SESSION 3: TEST AND TECHNOLOGY CHALLENGES FOR 3D ICS
Chair: Makoto Nagata, Kobe University, JP, Contact Makoto Nagata

1500 IMPACT OF MULTI-VT TECHNIQUE IN ELIMINATING THERMAL RUNAWAY DURING TESTING OF 3D CHIPS
Authors: Seetal Potluri¹, Satya Trinadh Adireddy⁵, S. G. Singh¹, Sobhan Babu Ch.¹ and Kamakoti Veezhinathan¹
¹IIT Madras, IN; ²IIT Hyderabad, IN

1518 3D-IC SESSION-BASED VS SESSION-LESS TEST SCHEDULING: A CASE STUDY
Authors: Marie-Lise Flottes, Joao Azevedo, Giorgio Di Natale and Bruno Rouzeyre, LIRMM, FR

1536 3D IC TEST THROUGH LOW NOISE POWER LINE METHODOLOGY
Authors: Alberto Pagani and Allessandro Motta, STMicroelectronics, IT

1554 BROADBAND METAL-INSULATOR-METAL CAPACITORS ON SILICON INTERPOSER FOR LOW IMPEDANCE POWER DISTRIBUTION NETWORK
Authors: Nao Ueda¹, Cesar Roda Neve², Mikael Detalle², Eric Beyne², Geert Van der Plas² and Makoto Nagata³
¹Kobe University, JP; ²IMEC, BE
Workshop on Manufacturable and Dependable Multicore Architectures at Nanoscale (MEDIAN)

Chartreuse 0830 – 1630

General Co-Chairs
Lorena Anghel, TIMA, FR
Olivier Heron, CEA, FR

Programme Committee Co-Chairs
Elena Gramatova, University of Technology in Bratislava, SK
Maksim Jenihihin, Tallinn University of Technology, EE

Programme Committee Members
Oliver Bringmann, University of Tübingen, DE
Florian Cacho, STMicroelectronics, FR
Luigi Dillillo, LIRMM, FR
Adrian Evans, Iroc, FR
Dimitris Gizopoulos, University of Athens, Department of Informatics & Telecommunications, GR
Said Hamdouli, Delft University of Technology, NL
Domenik Helms, OFFIS, DE
Vlacheslav Izosimov, The Royal Institute of Technology (KTH), SE
Artur Jutman, Testonica Lab, EE
Zdenek Kotasak, FIT VUT in Brno, CZ
Hans Manhaeve, Ridgetop Europe, BE
Alberto Nannarelli, DTU, DK
Ozcan Ozturk, Bilkent University, TR
Zdenek Pšilva, Technical University Liberec, CZ
Salvatore Pontarelli, University of Rome “Tor Vergata”, IT
Dhiraj Pradhan, University of Bristol, GB
Mihalis Psarakis, University of Piraeus, GR
Jaan Raik, Tallinn University of Technology, Department of Computer Engineering, EE
Chiara Sandionigi, CEA, FR
Andreas Steinhofer, Vienna University of Technology, AT
Walter Stechele, Technische Universität München, DE
Viera Stopjakova, FEI STU, SK
Meidl Tahoori, KIT, DE
Elena Vatajelu, Politecnico de Torino, IT
Heinrich T. Vierhaus, BTU Cottbus, DE

Action Chair
Marco Ottavi, University of Roma, IT

Each year, the MEDIAN project Workshops provide an event where ideas are exchanged and discussed, and new cooperations are created. Researchers from the academic and industrial domains share their recent findings, theories and on-going scientific and practical works in the dependable system designs and their applications. Constant advances in manufacturing yield and field reliability are important enabling factors for electronic devices pervading our lives, from medical to consumer electronics, from railways to the automotive and avionics scenarios. At the same time, both technology and architectures are today at a turning point.

In year 2015 the workshop will provide an open forum for presentations and will challenge the participants to think and discuss hot research topics. Prospective authors are encouraged to submit their work regarding the following topics (but not limited to):

- How to address test, fault tolerance and lifetime extension in heterogeneous low-power multicore systems?
- How to tackle cross-layer optimizations for design, test and reliability of multicore systems at nanoscale?
- How to test and verify reliable embedded systems without time and effort explosions?

A wider scope of topics relevant to the workshop includes the following:
- Methodologies/techniques for manufacturing reliable nanoscale devices
- System level design, on-line testing/fault tolerance
- Dependability Evaluation and Validation/Debug Methodologies
- Fault tolerance for space applications
- Fault tolerance for transportation systems
- Fault tolerance for medical devices

A wider scope of topics relevant to the workshop includes the following:
1020 **EXTENDED CHECKERS FOR CONTROL PART OF ROUTERS IN NETWORK-ON-CHIPS**
Authors: Ranganathan Hariharan¹, Behrad Niazmand², Thomas Hollstein³, Jaan Raik¹ and Gert Jervan¹
¹Tallinn UT, EE; ²Tallinn University of Technology, EE

1020 **SIMULATION FRAMEWORK FOR OPTIMIZING SRAM POWER CONSUMPTION UNDER RELIABILITY CONSTRAINT**
Authors: Florian Cacho¹, Erwan Piriou², Olivier Heron¹ and Vincent Huard¹
¹STMicroelectronics, FR; ²CEA LIST, FR; ³CEA, FR

1120 **PAPER SESSION II: VERIFICATION AND TEST TECHNIQUES FOR RELIABLE DESIGN**
Chair: Olivier Heron, CEA, FR, Contact Olivier Heron

1120 **EVALUATION OF FAILURES MASKING ACROSS THE SOFTWARE STACK**
Authors: Thiago Santini¹, Paolo Rech¹, Anderson Luiz Sartor², Ulisses Brisolara Corrêa³, Luigi Carro⁴ and Flavio Wagner⁴
¹Federal University of Rio Grande do Sul, BR; ²Federal University of Rio Grande do Sul (UFRGS), BR; ³Instituto Federal de Educaçao, Ciência e Tecnologia Sul-rio-grandense, BR; ⁴UFRGS, BR

1140 **A NOVEL FORMAL VERIFICATION FRAMEWORK FOR FUTURE MPSoC ARCHITECTURES**
Authors: Christian Schöler¹, René Krenz-Baath¹ and Roman Obermaisser²
¹Hochschule Hamm-Lippstadt, DE; ²University of Siegen, DE

1200 **LUNCH**

1300 **INVITED TALK**
Chair: Maksim Jenihhin, Tallinn University of Technology, EE, Contact Maksim Jenihhin

1300 **TECHNOLOGY SCALING AND RELIABILITY CHALLENGES IN THE MULTICORE ERA**
Speaker: Vincent Huard, STMicroelectronics, FR

1340 **PAPER SESSION III: DEPENDABLE SYSTEMS AND COMPONENTS**
Chair: Maksim Jenihhin, Tallinn University of Technology, EE, Contact Maksim Jenihhin

1340 **EFFICIENT ONLINE TESTING OF AN ARRAY OF RECONFIGURABLE RISC Processors**
Authors: S. Pagliarini¹, Salvatore Pontarelli², Jimson Mathew³, Dhiraj K. Pradhan¹, Ioannis Soudis³, D.A. Khan¹, A. Malek⁴, S. Tzili⁵, Georgios Smaragdos⁶ and Christos Stylianis⁷
¹Univ. of Bristol, GB; ²University of Rome “Tor Vergata”, IT; ³University of Bristol, GB; ⁴Chalmers University of Technology, SE; ⁵Chalmers UT, SE; ⁶Erasmus Medical Center, NL

1400 **MEASURING AND IDENTIFYING AGING-CRITICAL PATHS IN FPGAS**
Authors: Petr Pfeifer¹, Jaan Raik², Maksim Jenihhin², Raimund Ubar³ and Zdenek Pliva¹
¹Technical University Liberec, CZ; ²Tallinn University of Technology, EE

1420 **DYNAMIC VOLTAGE SCALING WITH FAULT-TOLERANCE FOR LIFETIME OPERATION**
Authors: Jorge Semião¹, Carlos Leong¹, Ruben Cabral¹, Marcelino Santos², Isabel Teixeira³ and Paulo Teixeira³
¹Univ. Algarve, PT; ²INESC-ID, PT

1440 **COFFEE BREAK**

1500 **PAPER SESSION IV: DEPENDABLE MULTICORE SYSTEMS AND Processors TESTING AND SELF-REPAIR**
Chair: Lorena Anghel, TIMA, FR, Contact Lorena Anghel

1500 **SOFTWARE-BASED SELF-REPAIR FOR HETEROGENEOUS MULTI-CORE SYSTEMS**
Authors: Sebastian Müller¹ and Mario Schözel²
¹Heinrich Theodor Vierhaus – Brandenburg UT, DE; ²IHP and Univ. Potsdam, DE

1520 **UNIVERSAL PSEUDO-RANDOM GENERATION OF ASSEMBLER CODES FOR PROCESSORS**
Authors: Ondrej Cekan, Marcela Simkova and Zdenek Kotasek, FIT VUT in Brno, CZ

1540 **EXPLORING CHECK-POINTING AND ROLLBACK RECOVERY UNDER SELECTIVE SBST IN CHIP MULTI-PROCESSORS**
Authors: Michael Skitsas¹, Chrysostomos Nicopoulos² and Maria Michael²
¹Univ. Cyprus, CY; ²University of Cyprus, CY

1600 **DISCUSSION AND CLOSING SESSION**
Co-Chairs: Lorena Anghel, TIMA, FR, Contact Lorena Anghel
Olivier Heron, CEA, FR, Contact Olivier Heron
Designing with Uncertainty - Opportunities & Challenges

Salle Lesdiguières 0830 – 1630

General Chairs James Alfred Walker, University of York, GB
 Andy M. Tyrrell, University of York, GB

Programme Committee Chairs
 Martin A. Trefzer, University of York, GB
 Simon J. Bale, University of York, GB

Over the past 20 years, computing devices have rapidly improved in performance and function density enabled by the continuous shrinking of technology sizes. However, as device sizes have now approached atomic scales the statistical nature of intrinsic device variations becomes prevalent. Fabrication yields decrease drastically and failure rates increase significantly as a result, because every physical instance of a design behaves in a stochastically different manner. Despite great efforts and advances in technology and novel materials the laws of Physics and Chemistry will always apply and intrinsic variability, device mismatch and noise will always be present at the lowest levels of any system. Therefore, large complex systems need to be designed taking certain levels of ‘uncertainty’ at lower levels into consideration. In turn, when assembling larger entities from smaller components, a certain amount of ‘uncertainty’ in behaviour needs to be expected. In this vein, it is as much about understanding, modelling and predicting variability and noise, as it is about thinking about ways to ‘embrace intrinsic variations’ and build systems that can robustly function despite these effects.

This workshop aims to highlight and address these challenges. It brings together people from different strands of device and circuit design, and provides a venue to collectively talk about emerging trends and the future development of the field. The technical programme will address a diverse range of research areas related to ‘designing with uncertainty’, such as:

- Variability modelling, prediction, fabrication and solutions
- Predicting future technologies
- Performance Improvement through Reconfiguration
- Designing with unreliable components
- Fault-tolerant design, recovery through reconfiguration
- Electronic design optimisation
- Design for test, built-in self test
- New and emerging devices (biological, carbon, etc.)
- Innovative design techniques (e.g. bio-inspired)

0830 OPENING SESSION
 Speaker: Andy M. Tyrrell, University of York, GB

0840 INVITED KEYNOTE 1
 Chair: Andy M. Tyrrell, University of York, GB

0840 PANDA: PROGRAMMABLE ANALOGUE AND DIGITAL ARRAY
 Speaker: James Alfred Walker, University of York, GB

0920 SESSION 1
 Chair: Andy M. Tyrrell, University of York, GB

0920 THERMAL-AWARE ADAPTIVE ENERGY MINIMIZATION OF OPENMP PARALLEL APPLICATIONS
 Authors: Rishad Shafik, Anup Das, Sheng Yang, Geoff Merrett and Bashir Ali-Hashimi, University of Southampton, GB

0930 CHARACTERIZATION OF RANDOM TELEGRAPH NOISE AND ITS IMPACT ON RELIABILITY OF SRAM SENSE AMPLIFIERS
 Authors: Javier Martin-Martinez1, Javier Diaz Fortuny1, Montserrat Nafia Maqueda1, Xavier Aymerich Humet1, Elisenda Roca Moreno2, Francisco Fernandez3 and Antonio Rubio4
 1Universitat Autònoma de Barcelona (UAB), ES; 2de Microelectrónica de Sevilla, CSIC and University of Seville, ES; 3IMSE. CSIC and University of Seville, ES; 4Universitat Politècnica de Catalunya (UPC), ES

0940 RELIABLE COMPUTATION WITH UNRELIABLE COMPUTERS
 Authors: Kier Dugan1, Andrew D. Brown1, Jeff S. Reeve1, Rob M. Mills1 and Steve Furber1
 1University of Southampton, GB; 2University of Manchester, GB

A MULTI CYCLE CAPTURE TEST GENERATION METHOD FOR LOW CAPTURE POWER DISSIPATION
Authors: Hiroshi Yamazaki1, Jun Nishimaki2, Toshinori Hosokawa3 and Masayoshi Yoshimura3
1Nihon University, JP; 2Graduate School of Industrial Technology, Nihon University, JP; 3Kyoto Sangyo University, JP

PROBABILISTIC ANALYSIS OF POWER AND TEMPERATURE UNDER PROCESS VARIATION FOR ELECTRONIC SYSTEM DESIGN
Authors: Ivan Ukhov, Petru Eles and Zebo Peng, Linköping University, SE

MEASURING THE IMPACT OF VARIABILITY ON THE PANDA ARCHITECTURE
Authors: Simon J. Bale, James Alfred Walker, Pedro Burmester Campos, Martin A. Trefzer and Andy M. Tyrrell, University of York, GB

COFFEE/TEA BREAK

INVITED KEYNOTE 2
Chair: James Alfred Walker, University of York, GB

PREDICTIVE TECHNOLOGY FOR ADVANCED NODE DESIGN EXPLORATION
Speaker: Robert Aitken, ARM, US

SESSION 2
Chair: James Alfred Walker, University of York, GB

ABSTRACTING TCAD MODELS ABOVE THE CIRCUIT LEVEL
Authors: Domenic Helms1, Reef Ellers1, Malte Metzdorf2 and Wolfgang Nebel2
1OFFIS, DE; 2Oldenburg University and OFFIS, DE

ON THE HARDWARE TROJANS DETECTION, USING MIXED-SIGNAL ICS
Authors: Georgina Kalogridou1, Nikos Sklavos2, Andrew W. Moore1 and Odysseas Koufopavlou2
1Computer Laboratory, University of Cambridge, GB; 2Technical Educational Institute of Patras, GR; 3Electrical & Computer Engineering Department, University of Patras, HELLAS, GR

LUNCH BREAK

INVITED KEYNOTE 3
Chair: Simon J. Bale, University of York, GB

FACTORING VARIABILITY IN THE TCAD BASED DESIGN-TECHNOLOGY CO-OPTIMISATION
Speaker: Asen Asenov, University of Glasgow, GB

SESSION 3
Chair: Simon J. Bale, University of York, GB

STATISTICAL LIFETIME ANALYSIS IN MEMRISTIC CROSSBAR
Authors: Peyman Pouyan1, Esteve Amat2 and Antonio Rubio2
1Universitat Politècnica de Catalunya (UPC), Barcelona, ES; 2Universitat Politècnica de Catalunya (UPC), ES

FAST PARAMETRIC FAULT MODELING OF NANOSCALE INTEGRATED CIRCUITS
Authors: Domenik Helms1, Reef Ellers1, Malte Metzdorf1 and Wolfgang Nebel2
1OFFIS, DE; 2Oldenburg University and OFFIS, DE

RELIABILITY ANALYSIS OF COMPARATORS
Authors: Ilhami Mohd Nawi, Basel Halak and Mark Zwolinski, University of Southampton, GB

HIGH-SIGMA PERFORMANCE ANALYSIS USING MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS
Authors: James Alfred Walker, Simon J. Bale, Martin A. Trefzer and Andy M. Tyrrell, University of York, GB

COFFEE BREAK
FRIDAY 13 MARCH, 2015

1500 INVITED KEYNOTE 4
Chair: Martin A. Trefzer, University of York, GB
1500 CONFIGURABLE ANALogue DESIGN: CONquering VARIABILITY IN AN UNCERTAIN WORLD
Speaker: Peter Wilson, University of Southampton, GB
1540 NETWORKING SESSION
Chair: Martin A. Trefzer, University of York, GB
1540 POSTER PRESENTATIONS OF THE SHORT TALKS FROM SESSIONS 1, 2 & 3.
1620 CLOSING SESSION
Speaker: Andy M. Tyrrell, University of York, GB

WO8

WO8 Heterogeneous Architectures and Design Methods for Embedded Image Systems
Sept Laux 4 0830 — 1700

General Co-Chairs
Dietmar Fey, Friedrich-Alexander University Erlangen-Nürnberg, DE
Frank Hannig, Friedrich-Alexander-Universität Erlangen-Nürnberg, DE
Anton Lokhmotov, ARM Research, Cambridge, GB

Programme Committee Members
Albert Cohen, INRIA, FR
Andrew Davison, Imperial College London, GB
Diana Goehringer, Ruhr-University Bochum, DE
Richard Membarth, DFKI, Saarbrücken, DE
Muhammad Shafique, Chair for Embedded Systems (CES), Karlsruhe Institute of Technology (KIT), DE
David Thomas, Imperial College London, GB
Zain Ul-Abdin, Halmstad University, SE
Dong Ping Zhang, AMD, Sunnyvale, CA, US

Mobile devices, such as smartphones and tablets, are ubiquitous in our everyday life. Such gadgets facilitate picture/video recording and playback, offer an almost inexhaustible number of applications using 2D and 3D graphics, and computer vision applications (e.g., face and object recognition, augmented reality). Other application areas of image systems, requiring highest computing capabilities while having stringent resource and power budgets as well as hard real-time constraints, are systems characterized by close-to-sensor processing, such as advanced driver assistance systems, mobile scanners, and smart devices used in medical and industrial imaging.

To scale computing performance in the future, the energy efficiency of image systems has to be significantly improved. This is why systems will be comprised more and more of heterogeneous hardware with specialized and different processor cores based on accelerators e.g., Digital Signal Processors (DSPs), embedded Graphics Processing Units (GPUs), FPGAs, or dedicated hardware. Furthermore, new 3D integrated circuit technologies are an emerging trend and allow for a higher integration of compute cores, memory and sensors to reduce communication latency, improve bandwidth leading to lower energy consumption. However, design and test, as well as parallel programming of such Heterogeneous Image Systems (HIS) are challenging tasks.

On the one hand, methodologies for designing novel hardware technologies and customizable architecture platforms are required. On the other hand, design methods are needed, which concentrate on algorithm development rather than on low level implementation details. Consequently, non-software engineering experts are shielded from the difficulty of parallel heterogeneous programming.

Topics of the workshop include, but are not limited to:
- Heterogeneous architectures of image systems
- 3D architectures and memory chip-stacked systems for image processing
- Architectures for smart cameras, smart sensors and close-to-sensor processing systems
- FPGA cameras, distributed smart camera systems
- Design methods and tools for heterogeneous image processing systems (embedded processors, DSPs, GPUs, FPGAs)
- Algorithm design for heterogeneous image processing
- Domain-specific programming abstractions and parallel patterns

The workshop will also present some of the architectures, tools, and results achieved in the DFG Research Training Group on Heterogeneous Image Systems (http://hbs.fau.de/lang-pref/en/) and the FP7 project CARP (http://carpproject.eu).

0830 WELCOME AND INTRODUCTION
Speakers: Dietmar Fey and Frank Hannig, Friedrich-Alexander-Universität Erlangen-Nürnberg, DE

0845 KEYNOTE SPEECH 1
Speaker: Piotr Dudek, University of Manchester, GB
FRIDAY 13 MARCH, 2015

0930 SESSION 1: SMART VISION ARCHITECTURES AND HETEROGENEOUS MPSoCs
 Chair: François Berry, Université Blaise Pascal Clermont-Ferrand, FR
 INVITED TALK: APPROACHING APPLICATION REQUIREMENTS WITH ADAPTIVE HETEROGENEOUS MPSoC
 Speaker: Diana Goehringer, Ruhr-University Bochum, DE

1000 ESTIMATING THE POTENTIAL SPEEDUP OF COMPUTER VISION APPLICATIONS ON EMBEDDED MULTIPROCESSORS
 Authors: Vítor Schwambach1, Cleyet-Merle Sébastien1, Alain Issard1 and Stéphane Mancini1
 1STMicroelectronics, FR; 2ST Microelectronics, FR; 3TIMA Laboratory, FR

1030 COFFEE BREAK

1100 SESSION 2: DOMAIN-SPECIFIC LANGUAGES AND SCHEDULING TECHNIQUES FOR HETEROGENEOUS COMPUTING
 Chair: Frank Hannig, Friedrich-Alexander-Universität Erlangen-Nürnberg, DE
 INVITED TALK: ANYDSL: A COMPILER-FRAMEWORK FOR DOMAIN-SPECIFIC LIBRARIES & LANGUAGES (DSLLS)
 Speaker: Richard Membarth, DFKI, Saarbrücken, DE

1130 A COMPARATIVE STUDY OF SCHEDULING TECHNIQUES FOR MULTIMEDIA APPLICATIONS ON SIMD PIPELINES
 Authors: Mehmet Ali Arslan, Flavius Gruian and Krzysztof Kuchcinski, Lund University, SE

1200 LUNCH

1300 KEYNOTE SPEECH 2

1300 DREAMCAM: A MODULAR FPGA-BASED SMART CAMERA ARCHITECTURE
 Speaker: François Berry, Université Blaise Pascal Clermont-Ferrand, FR

1345 SESSION 3: CAMERAS AND ACCELERATORS
 Chair: Piotr Dudek, University of Manchester, GB
 INVITED TALK: ACCELERATED IMAGE PROCESSING: EXPERIENCE FROM THE CARP PROJECT
 Speaker: Elnar Hajiyev, Realeyes, GB

1415 AUTOMATIC OPTIMIZATION OF HARDWARE ACCELERATORS FOR IMAGE PROCESSING
 Authors: Oliver Reiche, Konrad Häublein, Marc Reichenbach, Frank Hannig, Jürgen Teich and Dietmar Fey, Friedrich-Alexander-Universität Erlangen-Nürnberg, DE

1445 FAST-FORWARD PRESENTATION OF POSTERS

1445 EFFICIENT IMPLEMENTATION OF GIVENS QR DECOMPOSITION ON VLIW DSP ARCHITECTURE FOR ORTHOGONAL MATCHING PURSUIT IMAGE RECONSTRUCTION
 Authors: Mohamed Najoui, Anas Hatim, Mounir Bahtat and Said Belkouch, University of Cadi Ayyad, Marrakech, MA

1449 A GRAPH-PARTITION BASED SCHEDULING POLICY FOR HETEROGENEOUS ARCHITECTURES
 Authors: Hao Wu, Daniel Lohmann and Wolfgang Schröder-Preikschat, Friedrich-Alexander-Universität Erlangen-Nürnberg, DE

1453 A HOLISTIC APPROACH FOR MODELLING AND SYNTHESIS OF IMAGE PROCESSING APPLICATIONS TO HETEROGENEOUS COMPUTING
 Authors: Christian Hartmann, Anna Yupatova, Marc Reichenbach, Dietmar Fey and Reinhard German, Friedrich-Alexander-Universität Erlangen-Nürnberg, DE

1457 GENERATION AND VALIDATION OF CUSTOM MULTIPLICATION IP BLOCKS FROM THE WEB
 Author: Minas Dasygenis, Department of Informatics and Telecommunications Engineering, University of Western Macedonia, Greece, GR

1500 COFFEE BREAK AND POSTERS

1600 SESSION 4: TECHNOLOGIES FOR SMART SENSORS
 Chair: Dietmar Fey, Friedrich-Alexander-Universität Erlangen-Nürnberg, DE
 INVITED TALK: SMART AND ULTRAFAST CMOS IMAGE SENSORS: THE DREAM COME TRUE WITH 3D HETEROGENEOUS MICROELECTRONIC
 Speaker: Wilfried Uhring, Université de Strasbourg, FR

1630 CONCEPT FOR A CMOS IMAGE SENSOR SUITED FOR ANALOG IMAGE PRE-PROCESSING
 Authors: Lan Shi1, Christopher Soell1, Andreas Baenisch1, Robert Weigel1, Jürgen Seiler1 and Thomas Ussmueller2
 1Friedrich-Alexander-Universität Erlangen-Nürnberg, DE; 2University of Innsbruck, AT

1700 CLOSING
W09 International Workshop on Optical/Photonic Interconnects for Computing Systems (OPTICS Workshop)
Sept Laux 5 0830 – 1630

General Chairs
Gabriela Nicolescu, Polytechnique Montréal, CA
Jiang Xu, Hong Kong University of Science and Technology, CN
Sébastien Le Beux, Lyon Institute of Nanotechnology, Ecole Centrale de
Lyon, FR

Programme Committee Chair
Mahdi Nikdast, Polytechnique Montréal, CA

Invited Speakers
Antonio La Porta, IBM, Zurich Research Laboratory, CH
Davide Bertozzi, University of Ferrara, IT
Fabiano Hessel, PUCRS, BR
Ian O’Connor, Lyon Institute of Nanotechnology, FR
John Ferguson, Mentor Graphics Corp, US
José Flch, Universitat Politècnica de Valencia, ES
Olivier Sentieys, INRIA - University of Rennes 1, FR
Sandro Bartolini, Università di Siena, IT
Sebastien Cremer, STMicroelectronics, FR
Yaoyao Ye, Huawei Technologies Co. Ltd., CN
Yvain Thonnart, CEA, LETI, MINATEC, FR

Multiprocessor System-on-Chip (MPSoC) is becoming the standard for high-performance computing systems. The performance of an MPSoC is determined not only by the performance of its processing cores and memories, but also by how efficiently they collaborate with one another. As the technology advances and allows the integration of many processing cores, metallic interconnects in MPSoCs will consume significant power while imposing high latency and low bandwidth. Shifting to the many-core era necessitates considering an alternative interconnect technology to replace the traditional electrical interconnects. Among such technologies, photonic technology has demonstrated promising potentials to address the aforementioned issues with the metallic interconnects in MPSoCs. In this context, high-performance silicon photonic devices, which are CMOS compatible, are necessary to construct photonic interconnect networks. Furthermore, it is required to explore the feasibility and performance of photonic interconnects as well as the guidelines and design requirements to realize such interconnects.

OPTICS aims at discussing the most recent advances in photonic interconnects for computing systems, covering topics from the device fabrication all the way up to the system-level design. The workshop is of interest to researchers working on silicon photonics and high-performance computing systems. It is comprised of invited talks of the highest caliber in addition to refereed paper presentations. Industry’s and academia’s views on the feasibility and recent progresses of optical interconnects will be discussed during the workshop.

Topics to be discussed in the workshop include (but are not limited to) the following:
- Design Methodology, Modelling and Tools: design space exploration, optimization, thermal-aware design, floor-planning, system level modelling and simulation.
- Applications: high-performance computing, photonics interconnect for memory.
- Silicon Photonics Devices: circuit demonstrator, on-chip lasers, photodetectors, electro-optic modulators, optical switches, athermal devices.
- Silicon Photonics Circuits: Optical switches and routers, high-bandwidth 1/0.

0830 INTRODUCTION
Chair: Gabriela Nicolescu, Ecole Polytechnique de Montreal, CA

0830 INTRODUCTION TO OPTICS WORKSHOP
Speakers: Gabriela Nicolescu1 and Mahdi Nikdast2
1Ecole Polytechnique de Montreal, CA; 2Ecole Polytechnique de Montréal, CA

0840 MORNING SESSION ON SYSTEM DESIGN, ARCHITECTURE, MODELLING, AND APPLICATIONS
Chair: Sébastien Le Beux, Lyon Institute of Nanotechnology, Ecole Centrale de Lyon, FR, Contact Sébastien Le Beux

0840 SCALABLE OPTICAL INTERCONNECTS FOR COMPUTING SYSTEMS AND THE NEED FOR ELECTRO-OPTICAL INTEGRATION
Speaker: Antonio La Porta, IBM, Zurich Research Laboratory, CH

0915 TOWARDS A VERTICALLY INTEGRATED SYNTHESIS FLOW FOR PREDICTABLE DESIGN OF WAVELENGTH-ROUTED OPTICAL NOCS
Speaker: Davide Bertozzi, University of Ferrara, IT

0935 INTER/INTRA-CHIP OPTICAL NETWORKS: OPPORTUNITIES AND CHALLENGES
Speaker: Jiang Xu, Hong Kong University of Science and Technology, CN

0955 A FORCE-DIRECTED PLACEMENT ALGORITHM FOR 3D OPTICAL NETWORKS-ON-CHIP
Authors: Anja von Beuningen and Ulf Schlichtmann, Technische Universität München, DE

1015 SYSTEM-LEVEL DESIGN SPACE EXPLORATION FOR SOCS INTEGRATING OPTICAL NETWORKS ON CHIP
Speaker: Fabiano Hessel, Pontificia Universidade Católica do Rio Grande do Sul, BR

1035 COFFEE BREAK

1100 MEET IN THE MIDDLE: LEVERAGING OPTICAL INTERCONNECTION OPPORTUNITIES IN CHIP MULTI PROCESSORS
Speaker: Sandro Bartolini, Università di Siena, IT

1120 ELECTRONIC VS PHOTONIC NOCS: SHOULD THEY COMPETE OR COLLABORATE?
Speaker: Jose Flch, Universidad Politècnica de Valencia, ES

1140 BANDWIDTH REQUIREMENTS IN MANYCORE ARCHITECTURES: WHAT CAN 3D BRING?
Speaker: Olivier Sentieys, INRIA - University of Rennes 1, FR

1200 LUNCH

1300 AFTERNOON SESSION ON SILICON PHOTONICS DEVICES, CIRCUITS, AND CHALLENGES
Chair: Jiang Xu, Hong Kong University of Science and Technology, CN, jia

1300 BUILDING A SCALABLE DESIGN ENVIRONMENT FOR SILICON PHOTONICS THROUGH PDKS
Speaker: John Ferguson, Mentor Graphics Corp, US

1335 RECENT DEVELOPMENT OF SI-PHOTONICS IN 300MM FAB
Speaker: Sebastien Cremer, STMicroelectronics, FR

1355 SILICON PHOTONICS FOR INTERPOSER
Speaker: Yvain Thonnart, CEA, LETI, MINATEC, FR

1415 THERMAL MANAGEMENT OF OPTICAL INTERCONNECTS
Speaker: Yaoyao Ye, Huawei Technologies Co. Ltd., CN

1435 COFFEE BREAK

1500 PARAMETRIC EXPLORATION OF VERTICAL TAPERED COUPLER FOR 3D OPTICAL INTERCONNECTION
Authors: Romain Schuster1, Alberto Parini2 and Gaetano Bellanca2
1Telecom Bretagne, Campus Brest, FR; 2University of Ferrara, IT

1520 THE LAST MILE? REMAINING CHALLENGES IN OPTICAL INTERCONNECT
Speaker: Ian O’Connor, Lyon Institute of Nanotechnology, FR
FRI

FRIDAY 13 MARCH, 2015

1530 **PANEL**
Moderator: Ian O’Connor, Lyon Institute of Nanotechnology, FR

1530 **PANEL DISCUSSION**
Panelists: John Ferguson¹, Antonio La Porta², Gabriela Nicolescu³, Olivier Sentieys⁴, Davide Bertozzi⁵ and Jiang Xu⁶
¹Mentor Graphics Corp, US; ²IBM, Zurich Research Laboratory, CH; ³Ecole Polytechnique de Montreal, CA; ⁴INRIA - University of Rennes ¹, FR; ⁵University of Ferrara, IT; ⁶Hong Kong University of Science and Technology, CN

1620 **CONCLUDING REMARKS AND CLOSING SESSION**
Chair: Sébastien Le Beux, Lyon Institute of Nanotechnology, Ecole Centrale de Lyon, FR

1620 **CONCLUDING REMARKS**
Speaker: Sébastien Le Beux, Lyon Institute of Nanotechnology, Ecole Centrale de Lyon, FR

1630 **CLOSING**

W10 **TRUDEVICE 2015: Workshop on Trustworthy Manufacturing and Utilization of Secure Devices**

Les Bans **0830 — 1700**

General Chair Giorgio Di Natale, LIRMM, FR

General Vice-Chair Ilia Polian, University of Passau, DE

Programme Committee Chair Bossuet Lilian, University of St. Etienne, FR

Programme Committee Vice-Chair Nicolas Sklavos, Technological Educational Institute of Patras, GR

Hardware security is becoming increasingly important for many embedded systems ranging from small RFID tag to satellites orbiting the earth. While secure applications such as public services, communication, control or healthcare keep growing, hardware devices that implement these applications become the Achilles' heel of such systems.

The TRUDEVICE Workshop will provide an environment for researchers from academic and industrial domains who want to discuss recent findings, theories and on-going work on all aspects of hardware security including design, manufacturing, testing, reliability, validation and utilization. Program will include invited talks, contributed talks and work in progress. Topics of the workshop include but are not limited to:

- Manufacturing test of secure devices
- Trustworthy manufacturing of secure devices
- PUFs and TRNGs
- Hardware Trojans in IPs and ICs
- Reconfigurable devices for secure functions
- Fault attack injection, detection and protection
- Validation, Evaluation

The workshop will be organized in the framework of the COST Action IC1204 (TRUDEVICE). So far, we organized 2 workshops in the same context, the first in Avignon in conjunction with ETS'13 on May 30, 2013; the second as stand-alone event in Freiburg on December 12-13, 2013.

0830 **TRUDEVICE: TRUSTWORTHY MANUFACTURING AND UTILIZATION OF SECURE DEVICES**

Speakers: Giorgio Di Natale¹, Ilia Polian², Bossuet Lilian³ and Nicolas Sklavos⁴
¹LIRMM, FR; ²University of Passau, DE; ³University of St. Etienne, FR; ⁴KNOSOSnet Research Group / Technological Educational Institute of Western Greece, GR

0845 **KEYNOTE TALK 1**

Chair: Giorgio Di Natale, LIRMM, FR, Contact Giorgio Di Natale

0845 **THE PROS AND CONS OF TECHNOLOGICAL DISPERSION FOR SECURITY: PUF, TRNG AND SIDE-CHANNEL COUNTERMEASURES**

Author: Jean-Luc Danger, Télécom ParisTech, FR

0930 **SESSION 1**

Chair: Bossuet Lilian, University of St. Etienne, FR, Contact Bossuet Lilian

0930 **ANALYSIS AND UTILIZATION OF DEVIATIONS IN RO-PUFS UNDER ALTERED FPGA DESIGNS**

Authors: Linus Feiten, Tobias Martin and Bernd Becker, University of Freiburg, DE

0945 **RING OSCILLATORS ANALYSIS FOR FPGA SECURITY PURPOSES**

Authors: Mario Barbareschi¹, Lionel Torres² and Giorgio Di Natale³
¹University of Naples Federico II, IT; ²LIRMM - University Montpellier ², FR; ³LIRMM, FR

1000 **ENHANCED TERO-PUF DESIGN AND CHARACTERIZATION WITH FPGA**

Authors: Cedric Marchand, Abdelkarim Cherkaoui and Bossuet Lilian, University of St. Etienne, FR
1015 IMPLEMENTING RELIABLE MECHANISMS FOR IP PROTECTION ON LOW-END FPGA DEVICES
Authors: Mario Barbaresci, Antonio Mazzea and Pierpaolo Bagnasco,
University of Naples Federico II, IT

1030 POSTER SESSION 1
Chair: Ilia Polian, University of Passau, DE, Contact Ilia Polian

1030 FUNCTIONAL LOCKING MODULES FOR DESIGN PROTECTION OF INTELLECTUAL PROPERTY CORES
Authors: Brice Colombier and Bossuet Lilian, University of St. Etienne, FR

1030 3D-NOC PROTECTION CAPABILITIES AND THREATS: THE TSV RISK
Authors: Martha Johanna Sepulveda1, Guy Gogniat2 and Marius Strum1
1University of São Paulo, BR; 2Universite de Bretagne-Sud / Lab-STIC, FR

1030 HARDWARE TROJANS IN TRNGS
Authors: Honorio Martin1, Pedro Paris-Lopez1, Enrique San Millan1, Juan E. Tapidor1 and Nicolas Sklavos2
1University Carlos III of Madrid, ES; 2KNOSYSnet Research Group / Technological Educational Institute of Western Greece, GR

1030 DEVELOPMENT OF A LAYOUT-LEVEL HARDWARE OBFUSCATION TOOL
Authors: Shweta Matik1, Georg T. Becker2, Christof Paar2 and Wayne P. Burleson3
1University of Massachusetts, US; 2Horst Görtz Institute for IT-Security, Ruhr-University Bochum, DE

1030 GET - PROGRAM FOR THE GENERATION AND ANALYSIS ON NONLINEAR ELEMENTS
Authors: Stjepan Picek1 and Lejla Batina2
1Faculty of Electrical Engineering and Computing, HR; 2Radboud University Nijmegen, NL

1030 WHY YOU SHOULD CARE ABOUT LEADING-EDGE SOFTWARE ENGINEERING?
Author: Tiziana Margaria, University of Limerick (Ireland) and Lero - The Irish Software Research Center, IE

1030 ERROR DETECTION AND CORRECTION FOR LIGHTWEIGHT CRYPTOGRAPHIC ALGORITHMS
Authors: Francesco Regazzoni1, Andrey Bogdanov2, Luca Breveglieri3 and Israel Koren4
1University catholique de Louvain and ALaRI, CH; 2Technical University of Denmark, DK; 3Polimi, IT; 4University of Massachusetts, US

1030 FINE GRAIN PARTIAL RECONFIGURATION FOR FAULT EMULATION AND PRECISE LUT MODIFICATION
Authors: L.A. Cardona1, Bibiana Lorente2 and C. Ferrer3
1IEEC-UAB, ES; 2CNM-CSIC, ES; 3EEC-UAB, ES

1130 SESSION 2
Chair: Nicolas Sklavos, KNOSYSnet Research Group / Technological Educational Institute of Western Greece, GR

1130 HIERARCHICAL SECURE DFT
Authors: Mafalda Cortez1, Said Hamdioui2, Giorgio Di Natale3, Marie-Lise Flottes1 and Bruno Rouzeyre1
1TU Delft, NL; 2Delft University of Technology, NL; 3LIRMM, FR

1200 INTEGRATED SENSORS: A BACKDOOR FOR HARDWARE TROJAN ACTIVATION
Authors: Xuan-Thuy Ngo, Zakaria Najm, Shivam Bhasin, Sylvain Guilley and Jean-Luc Danger, Télécom ParisTech, FR

1300 KEYNOTE TALK 2
Chair: Ilia Polian, University of Passau, DE

1300 PROTECTING CRYPTOGRAPHIC IMPLEMENTATIONS ON RECONFIGURABLE DEVICES
Author: Tim Güneysu, Ruhr University Bochum, DE

1345 SESSION 3
Chair: Bossuet Lilian, University of St. Etienne, FR, Contact Bossuet Lilian

1345 TOWARDS GENERIC COUNTERMEASURES AGAINST FAULT INJECTION ATTACKS
Authors: Pablo Rauzy and Sylvain Guilley, Télécom ParisTech, FR

1400 ANALYSIS OF LASER-INDUCED ERRORS: RTL FAULT MODEL VERSUS LAYOUT LOCALITY CHARACTERISTICS
Authors: Athanasios Papadimitriou1, David Healy2, Vincent Berouille3, Paolo Maistri1 and Regis Leveugle1
1Univers, Grenoble Alpes, LCIS Laboratory, FR; 2Univ. Grenoble Alpes, FR; 3TIMA Laboratory, FR

1415 SENSITIVITY TO FAULT LASER INJECTION: A COMPARISON BETWEEN 28NM BULK AND FD-SOI TECHNOLOGY
Authors: Stephen De Castro and Giorgio Di Natale, LIRMM, FR

1430 DYNAMIC FAULT MODEL FOR LONG DURATION LASER-INDUCED FAULT SIMULATION
Authors: Feng Lu, Giorgio Di Natale, Marie-Lise Flottes and Bruno Rouzeyre3, LIRMM, FR

1430 POSTER SESSION 2
Chair: Nicolas Sklavos, KNOSYSnet Research Group / Technological Educational Institute of Western Greece, GR

1430 A NOVEL SCHEDULING POLICY FOR THWARTING DIFFERENTIAL POWER ANALYSIS ATTACKS
Author: Ke Jiang, Linköping University, SE

1430 CAESAR AND NORX – DEVELOPING THE FUTURE OF AUTHENTICATED ENCRYPTION
Authors: Jean-Philippe Aumasson1, Philipp Jovanovic2 and Samuel Neves3
1Kudelski Security, CH; 2University of Passau, DE; 3University of Coimbra, GR

1430 POWER AND ELECTROMAGNETIC ANALYSIS FOR ONLINE TEMPLATE ATTACKS
Authors: Margaux Dugardin1, Louiza Papachristodoulou2, Zakaria Najm3, Lejla Batina4, Jean-Luc Danger5, Sylvain Guilley5, Jean-Christophe Courrege6, Anne-Sophie Rivemale7 and Carine Theron7
1Télécom ParisTech, FR; 2Radboud University Nijmegen, NL; 3Radboud University Nijmegen, NL; 4Thales Communications & Security, FR

1430 SEARCH STRATEGY FOR FAULT INJECTION USING MEMETIC ALGORITHMS
Authors: Stjepan Picek1, Pieter Buzing2 and Lejla Batina3
1Faculty of Electrical Engineering and Computing, HR; 2Riscure BV, NL; 3Radboud University Nijmegen, NL

1430 TUNING OF RANDOMIZED WINDOWS AGAINST SIMPLE POWER ANALYSIS FOR SCALAR MULTIPLICATION ON ELLIPTIC CURVES
Authors: Simon Pontie1, Paolo Maistri2 and Regis Leveugle2
1University Grenoble Alpes, FR; 2TIMA Laboratory, FR

1500 SESSION 4
Chair: Giorgio Di Natale, LIRMM, FR
FRIDAY 13 MARCH, 2015

1500 PUBLIC KEY CRYPTOGRAPHIC PRIMITIVE DESIGN AND PROTECTION AGAINST FAULT AND POWER ANALYSIS ATTACKS
Authors: Apostolos P. Fournaris and Nicolas Sklavos, KNOSSOSnet Research Group / Technological Educational Institute of Western Greece, GR

1515 ON THE USE OF ERROR DETECTING AND CORRECTING CODES TO BOOST SECURITY IN CACHES AGAINST SIDE CHANNEL ATTACKS.
Authors: Madalin Neagu1, Salvador Manichi and Liniu Miclea2
1Technical University of Cluj-Napoca, RO; 2Universitat Politecnica de Catalunya, ES

1530 A SIDE-CHANNEL ATTACK AGAINST SECRET PERMUTATION ON AN EMBEDDED McELIECE CRYPTOSYSTEM
Authors: Tania Richmond1, Martin Petrivsky2 and Linos Brutarovski2
1Univ. St. Etienne, FR; 2Technical University of Kosic, SK

1545 SESSION 5
Chair: Nicolas Sklavos, KNOSSOSnet Research Group / Technological Educational Institute of Western Greece, GR

1545 INVESTIGATING TERO FOR HARDWARE TROJAN HORSE DETECTION
Authors: Paris Kitsos1 and Artemios G. Voyiatzis2
1Technological Educational Institute of Western Greece, GR; 2IISI, GR

1600 INSERTION AND EVALUATION OF HARDWARE TROJANS IN PROCESSORS
Authors: Ioannis Voyiatzis, Costas Efstatiou and Thanos Milidonis, Technological Educational Institute of Athens, GR

1615 SECURITY OF ICS FROM HARDWARE TROJANS
Authors: Georgina Kalogeridou1, Andrew W. Moore1, Nicolas Sklavos2 and Odysseas Koufopavlou1
1Computer Laboratory, University of Cambridge, GB; 2KNOSSOSnet Research Group / Technological Educational Institute of Western Greece, GR; 2University of Patras, GR

1630 HINT: HOLISTIC APPROACHES FOR INTEGRITY OF ICT-SYSTEMS
Authors: Ingrid Verbauwhede and Dave Singelee, KU Leuven and UCLA, BE

1645 CONCLUSIONS & OUTLOOK: ROUND TABLE
Speakers: Giorgio Di Natale1, Ilia Polian2, Bossuet Lilian3 and Nicolas Sklavos4
1LIRMM, FR; 2University of Passau, DE; 3University of St. Etienne, FR; 4KNOSSOSnet Research Group / Technological Educational Institute of Western Greece, GR

EXHIBITION THEATRE PROGRAMME

Organiser: Jürgen Haase, edacentrum GmbH, DE

In addition to the conference programme during DATE 2015, there will be a presentation theatre as part of the exhibition from Tuesday 10 March to Thursday 12 March 2015. Attendees will benefit from having an industry forum in the midst of Europe’s leading electronic systems design event. The theatre is located in Room Lesdiguières, which is within the exhibition hall and affords easy access for exhibition visitors as well as for conference delegates.

Like in previous years, open Special Conference Sessions from Track 8 (full details are contained in the main conference programme pages) will take place in the Exhibition Theatre. This includes an executive panel session (6.6: The Future of Electronics, Semiconductor, and Design in Europe) and three hot topic sessions (3.8 - Design Methodologies for a Cyber-Physical Systems Approach to Personalized Medicine-on-a-Chip; 5.8 - The next generation of virtual prototyping: Ultra-fast yet accurate simulation of HW/SW systems; 9.8 - Monolithic 3D: A Path to Real 3D Integrated Chips).

In seven special Exhibition Theatre sessions DATE15 exhibition will highlight an Exhibition Keynote from MathWorks (11.8), three Exhibition Panels on FDSIO Technology (2.8, presented by STMicroelectronics and partners), IP Management (7.8, presented by Design&Reuse) and on Systems for the Connected Autonomous Future (11.8, presented by MathWorks), two Best Practice sessions (4.8 on Interdisciplinary Research, presented by Cadence Academic Network; 8.8 on Multi Project Wafers, presented by CMP and IMEC) and a Tutorial on FPGA/ARM System Development (12.8, presented by MathWorks).

The sessions of DATE 2015 Exhibition Theatre are open to conference delegates as well as to exhibition visitors. Please review below information on the Exhibition Theatre sessions. The full programme with all the details of the exhibition sessions is available on the DATE web portal.

Exhibition Theatre

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Title</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8</td>
<td>Facilities for Design and Fabrication for FDSOI IC</td>
<td>TUE 1130-1300</td>
</tr>
<tr>
<td>3.8</td>
<td>Hot Topic – Design Methodologies for a Cyber-Physical Systems Approach to Personalized Medicine-on-a-Chip: Challenges and Opportunities</td>
<td>TUE 1430-1600</td>
</tr>
<tr>
<td>4.8</td>
<td>Strength by Interdisciplinary Research: The Cadence Academic Network</td>
<td>TUE 1700-1830</td>
</tr>
<tr>
<td>5.8</td>
<td>Hot Topic – The Next Generation of Virtual Prototyping: Ultra-fast yet Accurate Simulation of HW/SW Systems</td>
<td>WED 0830-1000</td>
</tr>
<tr>
<td>6.6</td>
<td>Panel – The Future of Electronics, Semiconductor, and Design in Europe</td>
<td>WED 1100-1230</td>
</tr>
<tr>
<td>7.8</td>
<td>Critical Research Areas Driven by Industry Transformations</td>
<td>WED 1430-1600</td>
</tr>
<tr>
<td>8.8</td>
<td>Share a Fab – Multi Project Wafers Enable Your Innovations</td>
<td>WED 1700-1830</td>
</tr>
<tr>
<td>9.8</td>
<td>Hot Topic – Monolithic 3D: A Path to Real 3D Integrated Chips</td>
<td>THU 0830-1000</td>
</tr>
<tr>
<td>10.8</td>
<td>From IP to EDA Tools Enterprise Management: What is so special?</td>
<td>THU 1100-1230</td>
</tr>
<tr>
<td>11.8</td>
<td>Exhibition Keynote: Designing Systems for the Connected Autonomous Future</td>
<td>THU 1400-1500</td>
</tr>
<tr>
<td>12.8</td>
<td>Tutorial: An Industry Approach to FPGA/ARM System Development and Verification</td>
<td>THU 1500-1730</td>
</tr>
</tbody>
</table>
EXHIBITION SESSIONS

2.8 Facilities for Design and Fabrication for FDSOI IC

Organiser: Ahmed Jerraya, CEA Leti, FR
Moderator: Carlos Mazure, Soitec, FR
Panelists: Giorgio Cesana, STMicroelectronics, FR
Co-Chair: Gerd Teepe, GLOBALFOUNDRIES, DE
Organiser: Patrick Blouet, STMicroelectronics, FR
Co-Chair: Olivier Thomas, CEA-Leti, Minatec, FR

FDSOI enable dramatically improved ICs performances at a much lower cost and power consumption than new leading-edge CMOS technology below 28 nm transistor fabrication. The success of these new ICs depends on the availability of new tools, flows, platforms, methodologies and skills that are required to achieve acceptable design quality and productivity. This introduces the FDSOI ecosystem and show current facilities for design and fabrication for FDSOI IC.

3.8 Hot Topic - Design Methodologies for a Cyber-Physical Systems Approach to Personalized Medicine-on-a-Chip: Challenges and Opportunities

Organiser: Krishnendu Chakrabarty, Duke University, US
Chair: Paul Pop, Technical University of Denmark, DK
Co-Chair: Mohammad Abdullah Al Faruque, University of California Irvine, US

Modern stressful and sedentary lifestyles coupled with inadequate, irregular and inappropriate sleep patterns and diet have contributed not only to increased prevalence of chronic diseases but also to increased healthcare costs. To address these emerging clinical and healthcare challenges, in this special session, we advocate for a cross-disciplinary approach to cyber-physical systems design (CPS) aiming at seamlessly and safely integrate sensing, computation, communication, control and actuation for developing new technology for personalized and precise medicine.

4.8 Strength by Interdisciplinary Research: The Cadence Academic Network

Organiser: Patrick Haspel, Cadence Academic Network, US
Chair: Jürgen Haase, edacentrum GmbH, DE

The Academic Network was launched by Cadence in 2007. The aim was to promote the proliferation of leading-edge technologies and methodologies at universities renowned for their engineering and design excellence. A knowledge network among selected universities, research institutes, industry advisors and Cadence was established to facilitate the sharing of technology expertise in the areas of verification, design and implementation of microelectronic systems.

Specific examples of research directions in the cadence academic network will be given in three talks.

5.8 Hot Topic - The Next Generation of Virtual Prototyping: Ultra-fast yet Accurate Simulation of HW/SW Systems

Organiser: Oliver Bringmann, University of Tübingen, DE
Chair: Andy D. Pimentel, University of Amsterdam, NL
Co-Chair: Christian Haubelt, University of Rostock, DE

This session addresses leading-edge solutions in the field of virtual prototyping. Employing techniques such as source-level software simulation, host-compiled firmware, OS and processor modeling, as well as abstract communication and peripheral models, it is possible to reach very high simulation speeds. With intelligent new out-of-order modeling, synchronization and temporal decoupling techniques, such ultra-fast simulation can be achieved while also maintaining a very high accuracy.

7.8 Critical Research Areas Driven by Industry Transformations

Organiser: John Zhao, MathWorks, US

Increasing demands of electrification arise from connected vehicles, medical devices, smart-grid and microgrid technologies, and the IoT evolution of devices into smart, interconnected systems. Those systems must meet market requirements for not only more sophisticated functionality, but also improved performance and robustness. As a result, companies need to transform how they design, analyze, implement, and verify their systems. At the same time, embedded-system platforms have become increasingly diverse combinations of digital/analog electronics and software, ranging from FPGA/ARM platforms (e.g., Xilinx Zynq and Altera SoC) to a diverse range of heterogeneous manycore systems.

To help companies leverage these trends in their product and system development, EDA and embedded-system researchers are called upon to focus their research on new kinds of issues that arise. This panel will explore the key research needs and opportunities that come from the transformations that industries must embrace.

8.8 Share a Fab - Multi Project Wafers Enable Your Innovations

Organiser: Jürgen Haase, edacentrum GmbH, DE

Today most innovations in the major industries include the use of dedicated chips. However, extremely high IC fabrication costs and foundries accepting only orders with high quantities are substantial obstacles for innovations developed from SMEs, start-ups, universities and research organisations.

The solution is that many of these innovators team up and share a fab run by using the opportunities offered by Multi Project Wavers (MPWs). European service providers like Europractice and CMP provide the access to MPW runs as well as the required know-how and tooling.

In the tutorial part of this session first-time users as well as experienced users will be provided with comprehensive information about the available semiconductor technologies, new design methodologies and possible applications. In the best practice part of the session users of such services will share their experience with the MPW concept with the audience and present projects and products realized by utilizing MPW opportunities.

9.8 Hot Topic - Monolithic 3D: A Path to Real 3D Integrated Chips

Organisers: Pierre-Emmanuel Gaillard, École Polytechnique Fédérale de Lausanne (EPFL), CH
Chair: Giovanni De Micheli, École Polytechnique Fédérale de Lausanne (EPFL), CH
Co-Chair: Ian O’Connor, Institut des Nanotechnologies de Lyon, FR

As compared to standard 3D technologies, 3D Monolithic Integration (3DMI) overcomes the vertical connectivity challenge through the use of nano-scale inter-layer vias, which are orders-of-magnitude smaller than TSVs. In this hot topic session, we cover 3DMI for actual (FDSOI) and emerging (CNFETs and RRAM) technologies, and identify its promises from a design perspective.

10.8 From IP to EDA Tools Enterprise Management: What is so special?

Organiser: Gabrièle Saucier, Design and Reuse, FR
Panelists: Huy-Nam Nguyen, Bull S.A.S., FR
Panelists: Philippe Quinio, STMicroelectronics International, CH

IPs are today part of any Electronic Systems and it is more and more urgent to trace, monitor and more generally “manage” IPs in systems or products. The key feature of such a management is its multidisciplinary facet implying multiple management views and actors (IP Engineering, IP Source, IP Procurement...).
Today an IP management platform needs to be a next generation web application hosted on an intranet server and receiving data from multiple sources (Design DB, IP Delivery DB, Product Shipment DB, Legal and Financial reports...). It aims at providing a reliable follow up to all of these departments such as IP Entry, IP Delivery, IP tracing in products... It delivers results (fee and royalty calculation for instance) as well as expertise for decision making (planning the future in terms of IP expenses, cost per product...).

The introductory talk will show how such a portal can be configured to fulfill the needs of an enterprise and what are the required “special” technical features missing in management tools presently available on the market.

Specific views namely Engineering view and Legal aspects will be commented by 2 speakers from companies veteran in IP management.

It will also be demonstrated that an amazing and straightforward extension concerns EDA Tool license management and optimization including integrated license monitoring. Such an extension aims at optimizing the tool cost for large enterprises using extensively and at a large scale a variety of development tools and gives an unique corporate global view on IP and Tools.

11.8 Exhibition Keynote: Designing Systems for the Connected Autonomous Future: An Industry Perspective

Chair: Jürgen Haase, edacentrum GmbH, DE
Organiser: John Zhao, MathWorks, US

Salle Lesdiguières 1400 - 1500

Speaker to be announced in the online programme.

Will I ever travel in an autonomous vehicle? Will my refrigerator really order food automatically from my grocery store? Can the watch I wear in the future warn me about an impending heart attack? Innovations at the SoC and board level are poised to provide the necessary computational power with low cost and high flexibility to make these products. However, designing the systems of the future -- whether an automobile, connected industrial machinery, medical device, consumer electronics, or an aerospace guidance system -- requires advances not only in embedded systems and software, but how they are designed and verified.

In this keynote, an expert from industry will discuss trends and innovations in systems that are incorporating more electronic content than ever before, and describe model-based development approaches that companies are using to create the system functionality that will power our connected autonomous future.

12.8 Tutorial: An Industry Approach to FPGA/ARM System Development and Verification

Chair: Jürgen Haase, edacentrum GmbH, DE
Organiser: John Zhao, MathWorks, US

Salle Lesdiguières 1500 - 1730

MATLAB and Simulink provide a rich environment for embedded-system development, with libraries of proven, specialized algorithms ready to use for specific applications. The environment enables a model-based design workflow for fast prototyping and implementing of the algorithms on heterogeneous embedded targets, such as MPSoC. A system-level design approach enables architectural exploration and partitioning, as well as coordination between SW and HW development workflows. Functional verification throughout the design process improves coverage and test-case generation while reducing the time and resources required.

In this set of tutorial sessions, you will learn

- How to implement an application that leverages the FPGA and ARM core of a Zynq SoC
- The flexibility and diversity of the approach through examples that include prototyping a motor control algorithm and a video-processing algorithm.
- A HW/SW co-design workflow that combines system level design and simulation with automatic code generation
- Successful use of the HW/SW co-design workflow in commercial development
- Functional verification using MATLAB and Simulink in a SystemVerilog workflow illustrated by a detailed example

The University Booth is organised during DATE and will be located in booth 4 of the exhibition area. All demonstrations will take place from Tuesday, March 10 to Thursday, March 12, 2015 during DATE. Universities and public research institutes have been invited to submit hardware or software demonstrators.

The University Booth programme is composed of 39 demonstrations from 14 different countries, presenting software and hardware solutions. The programme is organised in 11 sessions of 2 or 2.5 h duration and will cover four major topics:

- Electronic Design Automation Prototypes
- Hardware Design and Test Prototypes
- Designing Electronics for the Internet of Things
- Designing Electronics for Medical Applications

The University Booth at DATE 2015 invites you to booth 4 to find out more about the latest trends in software and hardware from the international research community.

Several demonstrators will be shown more than once, giving visitors more flexibility to come to the booth and find out about the latest innovations.

We are sure that the demonstrators will give an attractive supplement to the DATE conference program and exhibition. We would like to thank all contributors to this programme.

More information can be found online at www.date-conference.com/group/exhibition/u-booth. A University Booth programme flyer will be included in the conference bags. The following demonstrators will be presented at the University Booth.

3D-COSTAR: USING 3D-COSTAR FOR 2.5D-/3D-SIC COST ANALYSIS
Mottaqiallah Taouil¹, Mottaqiallah Taouil¹, Said Hamdioui² and Erik Jan Marinissen²
¹TU Delft, NL; ²IMEC, BE

4-LOOP: 4-CORE LEON 3 WITH LINUX OPERATING SYSTEM, OPENMP LIBRARY AND HARDWARE PROFILING SYSTEM
Giacomo Valente, Vittoriano Muttillo and Fabio Federici, University of L’Aquila, IT

A FRAMEWORK FOR THE EMULATION AND PROTOTYPING OF NANO-PHOTONIC OPTICAL ACCELERATORS
Alberto García-Ortiz¹, Wolfgang Büter², A. Ali³, S. Mahmood³, S. Arefin³, V. V. Parsi Sreenivas³, M. Mike Büters⁴ and R.-B. Bergmann⁴
¹University of Bremen, DE; ²Institute for Electrodynamics and Microelectronics Systems (ITEM), DE; ³University of Bremen, Physics/Electrical Engineering, DE; ⁴Bremer Institut für angewandte Strahltechnik GmbH, DE

AIDASOF: ANALOG IC DESIGN AUTOMATION
Nuno Horta¹, Nuno Lourenço², Ricardo Martins², Ricardo Pôvoa³, António Canelas¹, Ricardo Lourenço² and Pedro Ventura²
¹Instituto de Telecomunicações/Instituto Superior Técnico, PT; ²Instituto de Telecomunicações, PT

AN FPGA LAB-ON-CHIP: AN ANALYSIS TOOL AND FRAMEWORK FOR ADVANCED MEASUREMENTS AND RELIABILITY ASSESSMENTS ON MODERN NANOSCALE FPGAS
Petr Pfeifer, Technical University of Liberec, CZ

BONDCALC: THE BOND CALCULATOR
Carl Christoph Jung¹, Christian Silber¹ and Jürgen Scheible¹
¹Reutlingen University, DE; ²Robert Bosch GmbH, DE
COMBINATION OF WSN AND 1ST ORDER KINETIC MODEL FOR REAL-TIME SHELF-LIFE PREDICTION OF PERISHABLE GOODS
Valerio Francesco Annese and Daniela De Venuto, Politecnico di Bari, IT

CRYPTOCHIP: DEMONSTRATION OF CRYPTOGRAPHIC ASIC PROTOTYPE
Xuan Thuy Ngo, Xuan Thuy Ngo, Jean-Luc Danger, Sylvain Guilley, Tarik Graba, Yves Mathieu and Zakaria Najm, Télécom ParisTech, FR

DESIGNING AND EVALUATING RESOURCE MANAGEMENT POLICIES FOR HETEROGENEOUS SYSTEM Architectures
Gianluca Durelli, Cristina Bolchini, Antonio Miele, Gabriele Pallotta, Marcello Pogliani and Marco Santambrogio, Politecnico di Milano, IT

FLARE: A RECONFIGURATION AWARE FLOORPLANNER
Riccardo Cattaneo, Marco Rabozzi and Marco Santambrogio, Politecnico di Milano, IT

FUNCTIONAL ECO: AN EFFICIENT REWIRING ENHANCED FUNCTIONAL ECO
Tak Kei Lam1, Xing Wei2, Yi Diao2, Tak Kei Lam2 and Yu-Liang Wu2
1The Chinese University of Hong Kong, HK; 2Easy-Logic Technology Limited, HK

GESTURE RECOGNITION BASED ROBOTIC EMBEDDED SYSTEM
Seetal Potturi1, Ravindran Balaraman2, Pradyot K. V. N.2, Mamimaran S. S. 1, Praharasan Raja1, Anshul Bansal1 and Abhishek Mehta1
1IIT Madras, IN; 2Punjab Engineering College, IN

HIPER-NIRGAM: A TOOL CHAIN BASED FRAMEWORK FOR MODELING THERMAL-AWARE RELIABILITY ESTIMATION IN 2D MESH NOCS
Ashish Sharma1, Manoj Singh Gaur1, Lava Bhargava1, Vijay Laxmi1 and Mark Zwolinski2
1Malaviya National Institute of Technology, Jaipur, IN; 2University of Southampton, GB

ID.FIX: AN EDA TOOL FOR FIXED-POINT REFINEMENT OF EMBEDDED SYSTEMS
Olivier Sentieux1, Daniel Menard1 and Nicolas Simon1
1INRIA, FR; 2INSA Rennes, FR

IMPLEMENTS OF THE SEMI-GLOBAL MATCHING 3D VISION ALGORITHM FOR AUTOMOTIVE APPLICATIONS
Affaq Qamar and Luciano Lavagno, Politecnico di Torino, IT

INTERACTIVE VISUALIZATION OF ESL DESIGNS
Jannis Stoppe1, Robert Wille2 and Rolf Drechsler2
1University of Bremen, DE; 2University of Bremen/DFKI GmbH, DE

ISIS: CUSTOMIZABLE RUNTIME VERIFICATION OF HARDWARE/SOFTWARE VIRTUAL PLATFORMS
Laurence PIERRE and Martial Chabot, TIMA, FR

ISP RAS VERIFICATION TOOLS: INTEGRATED APPROACH TO HARDWARE VERIFICATION AT UNIT AND SYSTEM LEVELS BASED ON STATIC AND DYNAMIC METHODS
Andrei Tatarnikov, Mikhail Chupliko, Alexander Kamkin, Artem Kotsynyak and Sergey Smolov, Institute for System Programming of the Russian Academy of Sciences (ISP RAS), RU

LINUX ON TSAR: PORTING THE LINUX KERNEL TO THE TSAR MANYCORE ARCHITECTURE
César Fuguet Tortolero, Joël Porquet and Alain Greiner, UPMC-LIP6, FR

MAMMA: SPEECH ENHANCEMENT DEMO EXPLOITING MEMS MICROPHONE ARRAY FOR PEOPLE WITH DISABILITIES
Luca Fanucci1, Alessandro Palla1, Luca Fanucci1 and Roberto Sammino1
1University of Pisa, IT; 2STMicroelectronics, IT

NETFPGA SUME: NETFPGA SUME: MAKING 100GBPS A COMMODITY
Noa Zilberman, Yury Audzevich, Georgina Kalogeridou and Andrew W. Moore, University of Cambridge, GB

NUMERICAL METHODS FOR EFFICIENT SIMULATIONS OF CIRCUITS WITH SEPARATED TIME SCALES
Genie Hsieh, Sandia National Laboratories, US

ODEN: ASSERTION MINING FOR BEHAVIORAL DESCRIPTIONS
Alessandro Danese, Alessandro Danese, Tara Ghasempouri and Graziano Pravadelli, University of Verona, IT

ORIENTOMA: A WEARABLE ORIENTATION SYSTEM FOR BLIND AND VISUALLY IMPAIRED PEOPLE
Giuseppe AiroFarulla, Marco Indaco and Ludovico Russo, Politecnico di Torino, IT

OSTC: COMBINING HIFSUITE AND SCNSL FOR SMART DEVICE INTEGRATION AND SIMULATION
Graziano Pravadelli, Alessandro Danese, Franco Fummi, Valerio Guarnieri, Michele Lora, Graziano Pravadelli and Francesco Stefanni, University of Verona, IT

PARLOMA: A REMOTE COMMUNICATION SYSTEM FOR DEAFBLIND PEOPLE
Ludovico Orlando Russo1, Giuseppe Airo Farulla1, Marco Indaco1, Calogero Maria Oddo1, Daniele Pianu1, Paolo Prinetto1, Stefano Rosa1 and Ludovico Orlando Russo1
1Politecnico di Torino, IT; 2Scuola Superiore Sant'Anna, The Biorobotics Institute, IT; 3CNR, IIEIT, IT

REAL-TIME MULTIPROCESSOR COMPILER DEMO: COMPILER FOR REAL-TIME MULTIPROCESSOR SYSTEMS WITH SHARED ACCELERATORS
Bekoouj Marco, guus Kuiper, Stefan Geuns, Philip Wilmanns, Joost Hausmans and Marco Bekoouj, University of Twente, NL

REAL-TIME PATTERN DETECTION OF MOVEMENT RELATED POTENTIALS BY SYNCHRONIZED EEG AND EMG
Valerio Francesco Annese and Daniela De Venuto, Politecnico di Bari, IT

RECONFIGURABLE FPGA-BASED NON-INTRUSIVE BERT FOR PRODUCTION TEST
Sergei Odintsov and Artjom Jasnetski, Tallinn University of Technology, EE

RSOC FRAMEWORK: FRAMEWORK FOR RAPID PROTOTYPING OF APPLICATIONS ON RECONFIGURABLE SOCs
Korcek Pavol, Jan Viktorin, Vlastimil Kosar and Jan Korenek, Brno University of Technology, CZ

SMART CELL DEVELOPMENT PLATFORM FOR EMBEDDED BATTERY MANAGEMENT
Swaminathan Narayanaswamy1, Matthias Kauer1, Sebastian Steinhorst1, Martin Lukasiewycz1 and Samarrjit Chakraborty2
1TUM CREATE, SG; 2TU Munich, DE

STRING: A SELF-TIMED RING BASED TRUE RANDOM NUMBER GENERATOR WITH MONITORING AND ENTROPY ASSESSMENT
Abdelkarim Cherkaoui1, Laurent Pesquet1, Viktor Fischer1 and Alain Aubert2
1TIMA, FR; 2TIMA, FR; 3LaHC, FR

SYSTEM-LEVEL FPGA PROTOTYPING OF ANALOG/MIXED-SIGNAL SYSTEMS
Georg Gläser1, Eckhard Hennig 1 and Vojtech Dvorak2
1Institut für Mikroelektronik- und Mechatronik-Systeme gemeinnützige GmbH, DE; 2Brno University of Technology, CZ
UNIVERSITY BOOTH

THE \(\Psi \)-CHART DESIGN APPROACH IN TTOOL/ diplodocus: A FRAMEWORK FOR HW/SW CO-DESIGN OF DATA-DOMINATED SYSTEMS-ON-CHIP
Andrea Enrici, Ludovic Aprvílie, Daniel Camara and Renaud Pacalet, Télécom ParisTech, FR

VDA-ADMF: AN AGILE MIGRATION FRAMEWORK FOR ANALOG LAYOUT DESIGN
Po-Cheng Pan\(^1\), Ching-Yu Chin\(^1\), Hung-Ming Chen\(^1\), Tung-Chieh Chen\(^2\), Jou-Chun Lin\(^3\) and Yi-Peng Weng\(^3\)
\(^1\)National Chiao Tung University, TW; \(^2\)Synopsys Co., Ltd., TW; \(^3\)Taiwan Semiconductor Manufacturing Company, TW

VHDL TO SYSTEMC TRANSLATION AND ABSTRACTION: SYSTEMC MANIPULATION FRAMEWORK: FROM RTL VHDL TO OPTIMIZED TLM SYSTEMC
Syed Saif Abrar, Syed Saif Abrar, Valentin Tihhomirov, Maksim Jenihhin and Jaan Raik, Tallinn University of Technology, EE

WHERE IS IT? FIND THE CODE YOU ARE INTERESTED IN!
Jan Malburg\(^1\) and Görschwin Fey\(^2\)
\(^1\)University of Bremen, DE; \(^2\)University of Bremen / German Aerospace Center, DE

WORKCRAFT: WORKCRAFT: FRAMEWORK FOR INTERPRETED GRAPHS
Danil Sokolov, Newcastle University, GB

XTSI: THE 3-D ELECTRO-THERMAL SIMULATOR
Jürgen Schetble and Carl Christoph Jung, Reutlingen University, DE

See you at the University Booth!

University Booth Co-Chairs: Laurent Fesquet, TIMA and CIME Nanotech, FR
Andreas Vörg, edacentrum GmbH, DE

Contacts: Laurent Fesquet, TIMA and CIME Nanotech, FR
Andreas Vörg, edacentrum GmbH, DE
university-booth@date-conference.com

FRINGE TECHNICAL MEETINGS
A number of specialist interest groups will be holding their meetings at DATE 2015. The following meetings are scheduled at the moment. A complete list of fringe meetings can also be found on the DATE homepage www.date-conference.com

<table>
<thead>
<tr>
<th>Day+Time</th>
<th>Meeting & Contact</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON 1400-1700</td>
<td>ENI² meeting</td>
<td>Bayard</td>
</tr>
<tr>
<td>MON 1900-2100</td>
<td>ACM SIGDA/EDAA PhD Forum</td>
<td>Salle de Reception</td>
</tr>
<tr>
<td>TUE 1300-1430</td>
<td>eTTTC Meeting (European Group of the IEEE Test Technology Technical Council Meeting)</td>
<td>Berlioz</td>
</tr>
<tr>
<td>TUE 1830-2030</td>
<td>EDAA General Assembly</td>
<td>Les Bans</td>
</tr>
<tr>
<td>THU 0900-1600</td>
<td>MOS-AK Workshop</td>
<td>Berlioz</td>
</tr>
</tbody>
</table>

ACM SIGDA/EDAA PHD FORUM

Monday, March 9, 2015, 1900-2100, Room – Salle de Reception
Organiser: Rolf Drechsler, University of Bremen/DFKI, DE

The ACM SIGDA/EDAA PhD Forum at the Design, Automation and Test in Europe (DATE) Conference is a poster session and a buffet dinner organized and sponsored by ACM SIGDA and the European Design and Automation Association (EDAA). The purpose of the PhD Forum is to offer a forum for PhD students to discuss their thesis and research work with people of the design automation and system design community. It represents a good opportunity for students to get exposure on the job market and to receive valuable feedback on their work.

More information is available on the web www.date-conference.com
On behalf of the whole Organising Committee, we thank you very much for visiting DATE 2015 and are happy to welcoming you in the beautiful city of Grenoble, France!

All commercial sponsors and participating exhibitors are listed with contact details and information about their products and services being presented at the conference. The company profiles will assist you in finding the right solution and/or person to contact.

DAC DELIVERS

- High Level Research & Special Sessions
- Four Engaging Keynotes
- Technical Panels
- Designer Track Presentations
- IP Track Presentations
- Six Tutorials
- Seven Workshops
- Thursday is Training Day

COLOCALIZED CONFERENCES

- Embedded TechCon
- System Level Interconnect Prediction
- IBM-HPC Seminar & Workshop
- CELUG Annual Conference
- 2015 Electronic System Level Synthesis Conference
- International Workshop on Logic and Synthesis

175+ EXHIBITORS

- Advanced Electronics in the Automotive Pavilion
- Leading IP Providers
- The ARM® Connected Community (CC) Pavilion
- DAC Pavilion featuring 6 Sky Talks and Fireside Chats with EDA Executives

Exhibit Hours

Monday, June 8: 10:00am - 7:00pm
Tuesday, June 9: 10:00am - 7:00pm
Wednesday, June 10: 10:00am - 6:00pm
Advantest Europe GmbH

Contact: Cassandra König
Advantest Europe GmbH
Stefan-George-Ring 2
81929 Munich, Germany
Tel: +49 89 99312 204
E-Mail: Cassandra.koenig@advantest.com
Website: www.advantest.com

Cloud Testing Service, Inc., a wholly owned Advantest subsidiary, was founded in 2012, with the mission of creating a new paradigm for semiconductor test. Benefitting from decades of experience and our trusted leadership role in the semiconductor test industry, CloudTesting™ Service (CTS) is positioned to offer an alternative to standard test hardware. CTS addresses the challenges facing major chipmakers, R&D engineers, design labs, universities and research institutes to get access to large ATE testers to debug and test their devices.

We leverage the recent advances in cloud computing that have transformed the concept of ownership from physical possession of an asset to a licensing agreement. With the asset itself residing in the cloud, the semiconductor test business model expands customer access to testers by delivering test IP directly to their personal computers. This revolutionary concept of a tester in every lab defines our mission to transform the accessibility of test. Driven by our passion to solve customer issues with innovative products and services, we contribute to the further development of the semiconductor industry.

The main benefits of using CTS include:
- Small and portable personal test solution
- One box for all signals, features and performance
- Multiple IPs to customize testing needs
- Easy testing through GUI interfaces
- No capital investment in tester hardware
- Easy implementation of EDA data and straightforward migration to production

For detailed product information and user registration visit: www.cts-advantest.com/en/

Test:
- Design for Test
- Design for Manufacture and Yield
- Logic Analysis
- Test Automation (ATPG, BIST)
- Boundary Scan
- Silicon Validation

AUTOMICS

Contact: Dr. Ramy Iskander
Université Pierre et Marie Curie (UPMC), Laboratoire d’Informatique de Paris 6 (LIP6)
CC 169 4 Place Jussieu
75005 Paris
France
Tel: +33 1 4427 7120
E-Mail: ramy.iskander@lip6.fr
Website: www.automics.eu

Smart Power ICs integrating on the same substrate power stages and low power circuits are extensively used today in the field of automotive applications. Performance challenges (such as high integration, integration of functions of different natures, speed, low power consumption, ...) trigger numerous reliability problems especially the ones related to signal integrity inside such smart power ICs. The objective of AUTOMICS is to develop a novel computer-aided design methodology for fast modeling and simulation of destructive substrate coupling effects in integrated mixed-signal, High Voltage (HV) and High Temperature (HT) smart power ICs for automotive applications.

ASIC and SOC Design:
- Physical Analysis (Timing, Thermal, Signal)
- Analogue and Mixed-Signal Design
- System-Level Design:
- Physical Analysis

Test:
- Design for Manufacture and Yield
- Mixed-Signal Test

Avnet ASIC Israel Ltd

Contact: Karni Tohar
Avnet ASIC Israel Ltd.
Avnet Building, Avnet Road
Tel-Mond 4065001
Israel
Tel: +972-9-7780273
E-Mail: Karni.tohar@avnet.eu
Website: www.avnetasic.com

AAI is a leading provider of complete ASIC and SoC design and Turnkey Manufacturing Services for companies that develop advanced SoC (system-on-chip) devices. AAI offers a broad spectrum of ASIC services, among them Logic architecture and Design, IP selection and Integration, ASIC Implementation (RTL to GDSII), Analog design; Productization and Production services (Silicon, Package, Test) and others. AAI is experienced in both digital and analog mixed-signal technologies and can offer SoC solutions based on the most advanced process nodes from 180nm down to 28nm. AAI is a subsidiary of Avnet Israel, branch of Avnet, Inc. – the world’s largest distributor of electronic parts, enterprise computing and storage products and embedded subsystems. AAI has been serving the international SoC market since 1986 and has completed more than 300 successful tape-outs.
The proposed CLERECO framework for efficient reliability evaluation and therefore efficient exploitation of reliability oriented design approaches starting from early phases of the design process will enable circuit integration to continue at exponential rates and enable the design and manufacture of future systems for the computing continuum at a minimum cost contrary to existing worst-case-design solutions for reliability. The applications of such chips will play a major role in several fields ranging from avionics, automobile, smartphones, mobile systems, and future servers utilized in the settings of several types of HPC systems.

CEA-Leti

Contact: Caroline Arnaud
Circuit Multi-Projects (CMP)
Commissariat à l’énergie atomique et aux énergies alternatives, MINATEC Campus, 17 rue des Martyrs
F-38054 Grenoble Cedex 9
France
Tel: +33 4 38 78 38 59
Fax: +33 4 38 78 90 73
E-Mail: caroline.arnaud@cea.fr
Website: www.leti.fr

Leti is an institute of CEA, a French research and technology organization with activities in energy, IT, healthcare, defense and security. Leti is focused on creating value and innovation through technology transfer to its industrial partners. It specializes in nanotechnologies and their applications, from wireless devices and systems, to biology, healthcare and photonics. In addition to Leti’s 1,800 employees, there are more than 250 students involved in research activities, which makes Leti a main-spring of innovation expertise. Leti’s portfolio of 1,880 families of patents helps strengthen the competitiveness of its industrial partners. In parallel to these activities, Leti has built strong partnerships with main EDA actors as ATRENTA or DICEA. Leti proposes also a Silicon Product Enablement Center to enable industrial partners to develop and launch best in class products by providing them with access to advanced technology, design know-how and expert resources.

Circuits Multi-Projects (CMP)

Contact: Dr. Jean-Christophe Cebrier
Circuit Multi-Projects (CMP)
46 avenue Felix Viallet
38031 Grenoble
France
Tel: +33 476 574 617
Fax: +33 476 473 814
E-Mail: cmp@imag.fr
Website: http://cmp.imag.fr

Circuits Multi-Projects (CMP) is a manufacturing broker for ICs and MEMS, for prototyping and low volume production. Since 1981, more than 1000 Institutions from 70 countries have been served, more than 6700 projects have been prototyped through 800 manufacturing runs, and 60 different technologies have been interfaced. Integrated Circuits are available on CMOS, SiGe BICMOS, HV-CMOS, CMOS-Opto from STMicroelectronics and amps down to 28 nm FDSOI, 3D-IC from TEZARON/GLONCFUNDRIES. MEMS are available on various processes: specific MEMS technologies (PolyMUMPS, SOI-MUMPS, PiezoMUMPS, MetalMUMPS from MEMSCAP), MIDIS from TELELYNE DALLSA and bulk micromachining from am. Design kits for most IC CAD tools and Engineering kits for MEMS are available. Assembling is provided in a wide range of plastic and ceramic packages.

ASIC and SOC Design:
- MEMS Design
- Services:
- Prototyping
- Foundry & Manufacturing

CLERECO FP7

Contact: Maha Kooli
CNRS - LIRMM
161, rue Ada, 34095 Montpellier
France
Website: www.clerenco.eu

Advanced multifunctional computing systems realized in forthcoming technologies hold the promise of a significant increase of the computational capability that will offer end-users ever improving services and functionalities. However, the same path that is leading technologies toward these remarkable achievements is also making electronic devices increasingly unreliable. Reliability of electronic systems is therefore a key challenge for the whole information and communication technology and must be guaranteed without penalizing or slowing down the characteristics of the final products. CLERECO research project offers a solution involving Politecnico di Torino (Italy), National and Kapodistrian University of Athens (Greece), LIRMM (France), Intel Corporation Iberia S.A. (Spain), Thales SA (France), Yoctech spa (Italy) and ABB AS (Norway), recognizes early accurate reliability evaluation as one of the most important and challenging tasks toward this goal. Being able to precisely and early evaluate the reliability of a system means being able to carefully plan for specific countermeasures rather than resorting to worst-case approaches.

EUROPRAXTICE

Contact: Carl Das
IMEC vzw
Kapeldeur 75
3001 Leuven
Belgium
Tel: +32 16 28 12 48
E-Mail: Carl.Das@imec.be
Website: http://www.imec.be

The EUROPRACTICE Service offers CAD tools for education, low cost and easy access to ASIC prototype and small volume fabrication. The service is offered by IMEC (B), STFC (UK) and Fraunhofer IIS (D). Low cost prototyping is achieved by offering fabrication through regularly scheduled MPW runs whereby many designs are merged onto the same fabrication run. These runs are fabricated in industrial CMOS, BiCMOS and SiGe processes from 0.7 µm to 40nm at well-known foundries (ON Semi, austesicmicsystems, IHP, LFoundry, TSMC, UMC). A total integrated design and manufacturing flow is offered including cell library and design kit access and support, deep submicron netlist-to-layout, ASIC prototyping on MPW or dedicated single project prototype runs, volume fabrication, qualification, assembly and test. Volume fabrication starts with wafers as low as 12 wafers but can go up to...

Design & Reuse

Contact: Gabriele Saucier
Design & Reuse
12 Rue Ampere
38000 Grenoble
France
Tel: +33 476 21 31 02
E-Mail: gabriele.saucier@design-reuse.com
Website: http://www.design-reuse.com

Concept Engineering GmbH

Contact: Gerhard Angst
Concept Engineering GmbH
Boettzinger Str. 29
79111 Freiburg
Germany
Tel: +49 761 470940
Fax: +49 761 4709429
E-Mail: info@concept.de
Website: http://www.concept.de

Concept Engineering develops and markets innovative visualization and debugging technology for commercial EDA vendors, in-house CAD tool developers, SoC and IC/FPGA designers.

SpiceVision® PRO – a customizable debugger for SPICE based designs.

GateVision® PRO – a customizable debugger for Verilog, LEdF and EDIF based designs.

ASIC and SOC Design:
- Verification
- Analogue and Mixed-Signal Design
- MEMS Design
- RF Design

Test:
- Design for Test

D&R continues to maintain its focus on streamlining IP-based design with its Enterprise IP Management System (IPMS) offering, a next generation configurable Enterprise Java based platform offering the most innovative solution for internal and external IP management from design to reuse, IP tracking in delivery and products etc. It includes unique powerful procurement features for internal IPs (Finance reporting, Fee and royalty calculation). Recently, the platform has been extended to software license management. It incorporates a license monitoring Front End aiming at reducing License cost and offers powerful corporate financial reporting capabilities.
EuroTraining – Training in Nanoelectronics

Contact: Annette Locher
FSRM - Swiss Foundation for Research in Microelectronic Technology
Rueille Du Peyrou 4
2001 Neuchâtel
Switzerland
Tel: +41 32 7658 6573
E-Mail: locher@fsrm.ch
Website: www.eurotraining.net

EuroTraining develops and runs the website www.eurotraining.net offering access to hundreds of courses, summer schools, lecturing material and on-line tutorials in the field of nanoelectronics and micro-nano systems.

The service addresses industry and universities which are also encouraged to share the basic development of courses, text books and training material on the EuroTraining website.

Course providers, universities or European projects can announce their training offer on www.eurotraining.net for free. Upon request, the events can also be included in the monthly newsletter to over 16'000 addresses.

The EuroTraining project is funded by the European Union.

★ Booth: EP 4

H-INCEPTION

Contact: Dr Olivier Guillaume
STMicroelectronics (Grenoble) SAS
12, rue Jules Horowitz
38019 Grenoble
France
Tel: +33 4 7658 6573
E-Mail: olivier.guillaume@st.com
Website: www.soc.lip6.fr/trac/hinception

New types of emerging applications require microelectronics which closely interact with the surrounding environment in different physical domains (optical, mechanical, acoustical, biological, etc.). The main challenge is to correctly specify, dimension and verify these multi-domain microelectronic systems. To avoid unnecessary errors and redesigns which hamper product quality and thus time to market, heterogeneous INCEPTION (“H-INCEPTION”) aims at developing and deploying a novel unified design methodology and tools to address the system-level design and verification need for these systems. This will be deployed inside the European Industry with an ecosystem, delivering all design technology ingredients, from design and verification methodology to the essential modeling languages and simulation engines.

H-INCEPTION will enable the industrial partners to create multi-domain virtual prototypes by introducing abstract modeling techniques and fast system simulation concepts. A rich consortium from 5 countries composed of semiconductor and fabless companies, equipment suppliers, EDA vendors, research institutes and universities covering different fields and applications domains such as automotive, wireless, avionics and biomedical will all contribute to the creation and validation of this unified design methodology and ecosystem.

ASIC and SOC Design:
– Behavioural Modelling & Simulation
– Analogue and Mixed-Signal Design
– MEMS Design

System-Level Design:
– Behavioural Modelling & Analysis

★ Booth: 6

Keysight Technologies

Contact: Valérie Dupré
arc Technopolis – ZA de Courtabœuf
3 avenue du Canada
CS 50035
91431 LES ULIS CEDEX
France
Tel: +33 (0)1.64.53.53.86
E-Mail: valerie_dupre@keysight.com
Website: http://www.keysight.com/

Keysight Technologies Inc. (NYSE: KEYS) is the world’s leading electronic measurement company, transforming today’s measurement experience through innovation in wireless, modular, and software solutions. With its HP and Agilent legacy, Keysight delivers solutions in wireless communications, aerospace and defense and semiconductor markets with world-class platforms, software and consistent measurement science. The company’s 9,500 employees serve customers in more than 100 countries.

Methodics

Contact: Christian Burisch
Methodics, Inc.
2370 Market St., #506
San Francisco CA 94114
United States
Tel: +1 415 354 5726
Fax: +1 415 354 5726
E-Mail: christian.burisch@methodics.com
Website: www.methodics.com

Methodics delivers state-of-the-art semiconductor data management (DM) for analog, digital, and SoC design teams. Integration of IP Lifecycle Management with powerful analytics and industry-standard DM enables Methodic’s solutions to significantly reduce design cost; making design more efficient, predictable and with higher quality. Advanced IP distribution infrastructure, cataloging, and workspace management ensure that no matter where designers are located they have full visibility into the IP available to them and can easily access data regardless of its location. Methodic’s clients for analog and digital designers integrate natively with existing design environments making DM seamless to the users. Building our solutions on top of standard Subversion and Perforce infrastructure ensures data is safe, always available, and that the tools can take advantage for modeling and simulation in increasingly technical fields, such as financial services and computational biology. MATLAB and Simulink enable the design and development of a wide range of advanced products, including automotive systems, aerospace flight control and avionics, telecommunications and other electronics equipment, industrial machinery, and medical devices. More than 5000 colleges and universities around the world use MATLAB and Simulink for teaching and research in a broad range of technical disciplines.

ASIC and SOC Design:
– Behavioural Model & Simulation
– Verification
– Analogue and Mixed-Signal Design
– RF Design

System-Level Design:
– Behavioural Modelling and Analysis
– Hardware/Software Co-Design

Test:
– Design for Test

Services:
– Design Consultancy
– Training

★ Booth: 13

MathWorks

Contact: John Zhao
MathWorks
3 Apple Hill Natick, MA
United States
Tel: +1 508 647 7161
E-Mail: John.Zhao@mathworks.com
Website: www.mathworks.com

MathWorks is the leading developer of mathematical computing software. Engineers and scientists worldwide rely on its products to accelerate the pace of discovery, innovation, and development. MATLAB®, the language of technical computing, is a programming environment for algorithm development, data analysis, visualization, and numeric computation. Simulink® is a graphical environment for simulation and Model-Based Design of multidomain dynamic and embedded systems. The company produces nearly 100 additional products for specialized tasks such as data analysis and image processing.

MATLAB and Simulink are used throughout the automotive, aerospace, communications, electronics, and industrial automation industries as fundamental tools for research and development. They are also used to more than 5000 wafers per year per ASIC.

Test:
– Design for Test
– Design for Manufacture and Yield
– Boundary Scan
– Silicon Validation
– System Test

Services:
– Prototyping

Semiconductor IP:
– Analogue & Mixed Signal IP
– Physical Libraries

– System Test

★ Booth: 13

Mentor Graphics

Contact: Jean-Marie Saint-Paul
E-Mail: jean-marie_saint-paul@mentor.com
Website: www.mentor.com

Mentor Graphics is a technology leader in electronic design automation, providing products, consulting services and award-winning support for the world’s most successful electronics and semiconductor companies. Established in 1981, the company reported revenues over the last 12 months in excess of $1.15 billion. Corporate headquarters are located at 8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777. World Wide Web site: http://www.mentor.com/. We offer the broadest industry portfolio of best-in-class hardware and software design solutions focused on IC design and physical verification, functional verification, FPGA/PLD, design-for-test, PCB design and emerging technologies. Mentor Graphics innovative tools help our customers solve current and future design challenges, including scalable solutions for functional verification, cutting-edge technology for design-for-manufacturability and mixed-level IC design verification, award-winning test compression technology, embedded software development systems, and market-leading integrated system design solutions.

ASIC and SOC Design:
– Design Entry
– Verification
– Analogue and Mixed-Signal Design

System-Level Design:
– Acceleration & Emulation
– PCB & MCM Design

Test:
– Design for Test

Services:
– Embedded Software Development
– Compilers
– Real Time Operating Systems
of the latest advancements from the software development community. Our highly scalable and industry proven solutions are ideal for small specialized IP design teams, as well as large multinational, multisite, SoC design teams. For further information, visit www.methodics.com.

MINALOGIC

MINALOGIC
3 Parvis Louis Née - Maison Minatec
38054 Grenoble Cedex 9
France

Tel: +33 4 38 78 19 47
Fax: +33 4 38 78 41 24
Website: www.minalogic.com

Created in 2005, the Minalogic global competitive cluster in Grenoble is a public/private partnership with 240 members dedicated to smart systems integration and digital solutions. Minalogic’s collaborative projects are focused on developing products and services that capitalize on the potential of better combinations of micro- and nano-electronics, optics-photonics and software. The cluster encourages and supports industry research-training collaborations with companies in Europe, Asia and the U.S., while responding to the global high-tech community’s need to identify new value-added services that can be integrated into existing products in health care, the environment, mobility, the media, the textile industry and other areas.

MunEDA GmbH

Contact: Jin Qiu
MunEDA GmbH
Stefan-George-Ring 29
81929 Munich
Germany

Tel: +49 89 930 86 330
Fax: +49 89 930 86 407
E-Mail: info@muneda.com
Website: http://www.muneda.com

PRIME Research Programme – Power-efficient, Reliable, Many-core Embedded systems

Contact: Gerry Scott
Electronics and Computer Science
University of Southampton
Southampton
SO17 1BJ
United Kingdom

Tel: +44 2380592749
E-Mail: info@prime-project.org
Website: www.prime-project.org

PRIME is a five year collaborative research programme aimed at improving the reliability and power efficiency of many-core embedded systems. With funding of £5.6m from the UK’s Engineering and Physical Sciences Research Council, PRIME brings together four leading UK universities with expertise in advanced electronics and computer systems. Working in collaboration with five companies, PRIME will tackle the challenge of developing the theory and practice of future high-performance embedded systems utilising many-core processors.

PRIME’s objectives are to develop understanding of how to manage power consumption and improve the reliability of embedded many-core systems and to develop theory, methods and tools to address these issues.

PRIME seeks to exploit the vast potential of heterogeneous many-core processors; the objective is to enable processor core scaling with sustainable energy consumption and reliability.

PRIME has four inter-related research themes. Each theme focuses on the theory, algorithms, architecture and engineering challenges which need to be overcome to deliver PRIME’s objectives:

1. Cross-layer theories and model
2. Run-time management and optimisation
3. Many-core architectures and re-configuration
4. Platforms, applications and demonstrators

An integrated, cross-system layers (hardware and software) approach is being followed.

ASIC and SoC Design:
- Power & Optimisation

System-Level Design:
- Hardware/Software Co-Design

Embedded Software Development:
- Software/Modelling

Semiconductor IP:
- Embedded Software IP

PRO DESIGN Electronic GmbH

Contact: Patrick Le Mélédù
PRO DESIGN Electronic GmbH
30, Avenue de l’Amiral Lemonnier
78160 Marly Le Roi
France

Tel: +33 (0)1391706 - 89
Fax: +33 (0)1391706 - 89
E-Mail: patrick.jemeledo@prodesign-europe.com
Website: www.prodesign-europe.com

The privately held company was founded in 1982 and has around 80 employees, with various facilities in Germany and France. PRO DESIGN has more than 30 years of experience in the EDA market and as provider in the EPLS market. It has built extensive knowledge in the areas of FPGA Board development, electronic engineering, FPGA design, high performance PCB design, construction, production, assembly and testing.

PRO DESIGN is the vendor of the successful proFPGA product line. The proFPGA product family is a complete, scalable, and modular multi FPGA Prototyping solution, which fulfills highest needs in the area of ASIC and IP Prototyping and pre-silicon software development. The proFPGA product series consists of different kind of motherboards, various Xilinx Virtex 7 and Virtex UltraScale based FPGA Modules, a set of interconnection boards/cables, and a range of daughter boards (e.g. DDR3 memory boards, high speed interface boards (like PCIe, USB 3.0, Gigabit Ethernet, etc.). It addresses customers who need a scalable and most flexible high performance FPGA based Prototyping solution for early software development and IP and ASIC verification. The innovative system concept and technologies offers best in class reusability for several projects, which guarantees the best return on invest. For more information about PRO DESIGN please visit: www.proFPGA.com

ASIC and SoC Design:
- Verification

System-Level Design:
- Acceleration & Emulation
- Hardware/Software Co-Design

Test:
- System Test

Services:
- Prototyping

Hardware:
- FPGA & Reconfigurable Platforms
- Development Boards

Silexica

Contact: Weihua Sheng
Silexica
Karmeliterstr. 10
52064 Aachen
Germany

Tel: +49 241 990 34320
E-Mail: sheng@silexica.com
Website: www.silexica.com

Silexica provides programming tools for embedded multicore architectures. The product spectrum addresses software developers and hardware platform architects, as well as semiconductor vendors and fabless multi-core IP providers. Silexica’s unique source-to-source compilation approach frees the users from tedious manual software partitioning and distribution on multicore while delivering robust parallel code optimized for performance and power consumption.

System-Level Design:
- Behavioural Modelling & Analysis
- Hardware/Software Co-Design

Services:
- Prototyping
- Training

Embedded Software Development:
- Compilers
- Software/Modelling

Semiconductor IP:
- Embedded Software IP

Application-Specific IP:
- Digital Signal Processing
- Telecommunication
- Wireless Communication

SPRINGER

Contact: Lothar Minicka
SPRINGER
Tiergartenstr. 17
69121 Heidelberg
Germany

Tel: +49 6221 4870
Fax: +49 6221 4878366
E-Mail: lothar.minicka@springer.com

Looking to publish your research? Discover Springer’s print and electronic publication services, including Open Access! Get high-quality review, maximum readership and rapid distribution. Visit our booth or springer.com/authors. You can also browse key titles in your field and buy (e)books at discount prices. With Springer you are in good company.
STMicroelectronics

Contact: Marcello Coppola
E-Mail: marcello.coppola@st.com
Website: www.st.com

STMicroelectronics is one of the world's largest semiconductor companies. Offering one of the industry's broadest product portfolios, ST serves customers across the spectrum of electronics applications with innovative semiconductor solutions by leveraging its vast array of technologies, design expertise and combination of intellectual property portfolio, strategic partnerships and manufacturing strength. ST focuses its product strategy on sense and power technologies, automotive products, and embedded-processing solutions. The Sense and Power segment encompasses MEMS and sensors, power discrete, and advanced analog products. The Automotive portfolio covers all key application areas from powertrain and safety to car body and infotainment. The Embedded Processing Solutions include microcontrollers, digital consumer and imaging products, and digital ASICs. ST products are found everywhere microelectronics make a positive and innovative contribution to people's lives. From energy management and savings to trust and data security, from healthcare and wellness to smart consumer devices, in the home, car and office, at work and at play. By getting more from technology to get more from life, ST stands for life.augmented. Since its creation, ST has maintained an unwavering commitment to R&D. Almost one fifth of its employees work in R&D and product design. Among the industry's most innovative companies, ST owns almost 15,000 patents and pending applications corresponding to over 9,000 patent families. The Company draws on a rich pool of chip fabrication technologies, including advanced FD-SOI (Fully Depleted Silicon-on-Insulator) CMOS (Complementary Metal Oxide Semiconductor), mixed-signal, analog and power processes. From its inception, ST has established a strong culture of partnership and through the years has created a worldwide network of strategic alliances with key customers, suppliers, competitors, and leading universities and research institutes around the world.

Booth: 9

Synopsys

Website: www.synopsys.com

Synopsys, Inc. provides products and services that accelerate innovation in the global electronics market. As a leader in electronic design automation (EDA) and semiconductor intellectual property (IP), Synopsys’ comprehensive, integrated portfolio of system level, IP, implementation, verification, manufacturing, optical and field-programmable gate array (FPGA) solutions help address the key challenges designers face such as power and yield management, system-to-silicon verification and time-to-results. These technology-leading solutions help give Synopsys customers a competitive edge in quickly bringing the best products to market while reducing costs and schedule risk. For more than 25 years, Synopsys has been at the heart of accelerating electronics innovation with engineers around the world having used Synopsys technology to successfully design and create billions of chips and systems. The company is headquartered in Mountain View, California, and has approximately 90 offices located throughout North America, Europe, Japan, Asia and India.

Booth: 4

University Booth

Contact: Andreas Vörg and Laurent Fesquet

edacentrum
Schneiderberg 32
Hannover 30167
Germany

TIMA
46 Avenue Félix Viallet
Grenoble 38000
France

CIME Nanotech
3 Parvis Louis Néel
Grenoble 38000
France

Tel: +49 511 762 19686 (Andreas Vörg)
Fax: +49 511 762-19695 (Andreas Vörg)

E-Mail: university-booth@date-conference.com
Website: www.date-conference.com/group/exhibition/u-booth

The University Booth fosters the transfer of academic work to industry. The University Booth is part of the DATE 2015 exhibition and is free of charge for presenters and their visitors. The University Booth is sponsored by the DATE Sponsor’s Committee. The University Booth will be organized for EDA software and hardware demonstrations. Universities and public research institutes are presenting innovative hardware and software demonstrations. All demonstrations will take place during the exhibition within a dedicated time slot.

The detailed University Booth Programme is available in your conference bag and online at www.date-conference.com/exhibition/u-programme

The University Booth is organized by University Booth Co-Chairs Laurent Fesquet, TIMA and CIME Nanotech, FR

Andreas Vörg, edacentrum GmbH, DE university-booth@date-conference.com

ASIC and SOC Design:
- Design Entry
- Behavioural Modelling & Simulation
- Synthesis

Booth: 9

- Power & Optimisation
- Physical Analysis (Timing, Thermal, Signal)
- Verification
- Analogue and Mixed-Signal Design
- MEMS Design
- RF Design

System-Level Design:
- Behavioural Modelling & Analysis
- Physical Analysis
- Acceleration & Emulation
- Hardware/Software Co-Design
- Package Design
- PCB & MCM Design

Test:
- Design for Test
- Design for Manufacture and Yield
- Logic Analysis
- Test Automation (ATPG, BIST)
- Boundary Scan
- Silicon Validation
- Mixed-Signal Test
- System Test

Services:
- Design Consultancy
- Prototyping
- Data Management and Collaboration
- IP e-commerce & Exchange
- Foundry & Manufacturing
- Training
- Embedded Software Development:
 - Compilers
- Real Time Operating Systems
- Debuggers
- Software/Modelling

Hardware:
- FPGA & Reconfigurable Platforms
- Development Boards
- Workstations & IT Infrastructure
- Semiconductor IP:
 - Analogue & Mixed Signal IP
 - Configurable Logic IP
 - CPUs & Controllers
 - Embedded FPGA
 - Embedded Software IP
 - Encryption IP
 - Memory IP
 - On-Chip Bus Interconnect
 - On-Chip Debug
- Physical Libraries
 - Processor Platforms
 - Synthesizable Libraries
 - Test IP
 - Verification IO

Application-Specific IP:
- Analogue & Mixed Signal IP
- Data Communication
- Digital Signal Processing
- Multimedia Graphics
- Networking
- Security
- Telecommunication
- Wireless Communication
DATE EXECUTIVE COMMITTEE

General Chair
Wolfgang Nebel
OFFIS & University of Oldenburg, DE

Programme Chair
David Atienza
EPFL, CH

Vice General Chair
Luca Fanucci
University of Pisa, IT

Past Chair
Gerhard Fettweis
TU Dresden, DE

Vice Programme Chair
Jürgen Tich
University of Erlangen-Nuremberg, DE

Finance Chair
Wolfgang Mueller
Universität Paderborn, DE

Design Methods and Tools Chair
David Atienza
EPFL, CH

Application Design Chair
Ayse Coskun
Boston University, US

Test and Robustness Chair
Cecilia Metra
University of Bologna, IT

Embedded Systems Software Chair
Lothar Thiele
ETH Zurich, CH

Executive Track Chair
Yervant Zorian
Synopsys, US

Special Sessions Co-Chair
Marco Platzner
University of Paderborn, DE

Special Sessions Co-Chair
Marco Casale-Rossi
Synopsys, IT

Interactive Presentations Chair
Oliver Bringmann
FZI / University of Tuebingen, DE

Special Day Chair
"Designing Electronics for Medical Applications"
Jo De Boeck
IMEC, BE

Special Day Chair
"Designing Electronics for the Internet of Things"
Rolf Drechsler
University of Bremen/DFKI, DE

Tutorials Chair
Franco Fummi
Universita’ di Verona, IT

Awards Chair
Wolfgang Rosenstiel
University of Tübingen, DE

Friday Workshops Co-Chair
Jose Ayala
Complutense University of Madrid, ES

Friday Workshops Co-Chair
Cristiana Bolchini
Politecnico di Milano, IT

Local Liaison
Ahmed Jerraya
CEA Leti, FR

Exhibition Chair
Ahmed Jerraya
CEA Leti, FR

Local Arrangement Chair
Fabien Clermidy
CEA-Leti, FR

Audio Visual Chair
Jano Gebelein
Goethe University Frankfurt, DE

Publicity Chair
Marcello Coppola
STMicroelectronics, FR

Exhibition Theatre Chair
Jürgen Haase
edacentrum GmbH, DE

Press Chair
Fred Santamaria
DATE, FR

Proceedings Chair
Marian Verhelst
KULeuven - ESAT - MACS, BE

DATE SPONSORS COMMITTEE

Chair & EDAA Chair
Georges Gielen
Katholieke Universiteit Leuven, BE

EDAA Chair
Robert Gardner
EDA Consortium, US

IEEE Council on EDA
Donatella Sciuto
Politecnico di Milano, IT

ECSSI
Wolfgang Rosenstiel
University of Tübingen, DE

ACM SIGDA
Joerg Henkel
Karlsruhe Institute of Technology, DE

Russian Academy of Sciences (RAS)
Alexander Stempkovsky
IPPM RAS, RU

DATE EXECUTIVE COMMITTEE

ICT Chair
Frédéric Pétrot
TIMA Laboratory, FR

Review Co-Chair
Giorgio Di Natale
LIRMM, FR

Review Co-Chair
Jose M. Moya
Universidad Politecnica de Madrid, ES

European Projects Co-Chair
Alain Girault
INRIA, FR

European Projects Co-Chair
Daniela Dimitrova
USI - ALANS, CH

University Booth Co-Chair
Laurent Fesquet
TIMA and CIME Nanotech, FR

University Booth Co-Chair
Andreas Vörg
edacentrum GmbH, DE

Audit Chair
Volker Düppe
DATE, DE

DATE representative at ASPDAC
Jörg Henkel
Karlsruhe Institute of Technology, DE

DATE representative at ASPDAC
Norbert Wehn
TU Kaiserslautern, DE

EDAC Liaison
Robert Gardner
EDA Consortium, US

EDAA Liaison
Georges Gielen
Katholieke Universiteit Leuven, BE

EDAA/ACM SIGDA PhD Forum
Rolf Drechsler
University of Bremen/DFKI, DE

Event Secretariat
Franziska Kremling
K.I.T. Group GmbH, DE

Event Secretariat
Jörg Herrmann
K.I.T. Group GmbH, DE

Event Secretariat
Jörg Herrmann
K.I.T. Group GmbH, DE
<table>
<thead>
<tr>
<th>Topic Chairs</th>
<th>Co-Chairs</th>
<th>Chairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 System Specification and Modeling</td>
<td>Christian Haubelt, University of Rostock, DE</td>
<td>A3 Automotive Systems and Smart Energy Systems</td>
</tr>
<tr>
<td>D2 System Design, High-Level Synthesis and Optimization</td>
<td>Andreas Herkersdorf, TU München, DE</td>
<td>A4 Ambient Intelligence and Ultra-Low Power Systems for Healthcare and Wellness</td>
</tr>
<tr>
<td>D3 System Simulation and Validation</td>
<td>Prabhat Mishra, University of Florida, US</td>
<td>A5 Secure Systems</td>
</tr>
<tr>
<td>D4 Formal Methods and System Verification</td>
<td>Jason Baumgartner, IBM Corporation, US</td>
<td>A6 Reliable and Reconfigurable Systems</td>
</tr>
<tr>
<td>DT5 Design and Test for Analog and Mixed-Signal Systems and Circuits</td>
<td>Gühan Dündar, Boğaziçi University, TR</td>
<td>A7 Industrial Experiences Brief Papers</td>
</tr>
<tr>
<td>D6 Emerging Technologies and Systems</td>
<td>Michael Niemier, University Of Notre Dame, US</td>
<td>T1 Defects, Faults, Variability and Reliability Analysis and Modeling</td>
</tr>
<tr>
<td>D7 Power Modeling, Optimization and Low-Power Design</td>
<td>Martino Ruggiero, Wispes, IT</td>
<td>T2 Test Generation, Simulation and Diagnosis</td>
</tr>
<tr>
<td>D8 Network on Chip</td>
<td>Fabien Clermidy, CEA-Leti, FR</td>
<td>T3 Design-for-Test, Test Compression and Access</td>
</tr>
<tr>
<td>D9 Architectural and Microarchitectural Design</td>
<td>Todd Austin, University of Michigan, US</td>
<td>T4 On-Line Test, Fault Tolerance and Robust Systems</td>
</tr>
<tr>
<td>D10 Temperature and Variability Aware Design and Optimization</td>
<td>Siddharth Garg, New York University, US</td>
<td>DT5 Design and Test for Analog and Mixed-Signal Systems and Circuits</td>
</tr>
<tr>
<td>D11 Reconfigurable Computing</td>
<td>Marco Platzner, University of Paderborn, DE</td>
<td>E1 Real-time, Networked, and Dependable Systems</td>
</tr>
<tr>
<td>D12 Logic and Physical Synthesis, Timing Analysis and Verification</td>
<td>José Monteiro, INESC-ID / IST, TU Lisbon, PT</td>
<td>E2 Compilers for Embedded Systems</td>
</tr>
<tr>
<td>D13 On-Chip and Off-Chip Parasitic Extraction, Model Order Reduction and Signal Integrity</td>
<td>Luca Daniel, Massachusetts Institute of Technology, US</td>
<td>E3 Model-based Design and Verification for Embedded Systems</td>
</tr>
<tr>
<td>A2 Communication, Consumer and Multimedia Systems</td>
<td>Theodosis Theocharides, University of Cyprus, CY</td>
<td>E5 Cyber-Physical Systems</td>
</tr>
<tr>
<td>Co-Chairs</td>
<td>Andreas Burg, EPFL, CH</td>
<td>Co-Chairs</td>
</tr>
</tbody>
</table>
DETAILED INDEX

<table>
<thead>
<tr>
<th>ACM SIGDA/EDAA PhD Forum</th>
<th>133</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awards</td>
<td>040</td>
</tr>
<tr>
<td>Contact Event Secretariat</td>
<td>018</td>
</tr>
<tr>
<td>DATE At A Glance</td>
<td>018</td>
</tr>
<tr>
<td>DATE Executive Committee</td>
<td>146</td>
</tr>
<tr>
<td>DATE Networking Event (DATE Party)</td>
<td>012</td>
</tr>
<tr>
<td>Event Overview</td>
<td>019</td>
</tr>
<tr>
<td>Executive Sessions</td>
<td>013</td>
</tr>
<tr>
<td>Exhibition Guide</td>
<td>135</td>
</tr>
<tr>
<td>Exhibition Theatre Programme</td>
<td>125</td>
</tr>
<tr>
<td>Friday Workshops</td>
<td>097-124</td>
</tr>
<tr>
<td>Fringe Meetings</td>
<td>133</td>
</tr>
<tr>
<td>General Information</td>
<td>010</td>
</tr>
<tr>
<td>Interactive Presentations</td>
<td>012</td>
</tr>
<tr>
<td>Keynote Addresses</td>
<td>006-009</td>
</tr>
<tr>
<td>Media Partners</td>
<td>002</td>
</tr>
<tr>
<td>Opening Plenary</td>
<td>040</td>
</tr>
<tr>
<td>Programme Guide</td>
<td>001</td>
</tr>
<tr>
<td>Special Day: Designing Electronics for the Internet of Things</td>
<td>014</td>
</tr>
<tr>
<td>Special Day: Designing Electronics for Medical Applications</td>
<td>015</td>
</tr>
<tr>
<td>Special Sessions</td>
<td>016-017</td>
</tr>
<tr>
<td>Sponsors</td>
<td>01</td>
</tr>
<tr>
<td>Technical Programme</td>
<td>040-096</td>
</tr>
<tr>
<td>Tutorials</td>
<td>027-039</td>
</tr>
<tr>
<td>University Booth Demonstrations</td>
<td>129-132</td>
</tr>
<tr>
<td>Vendor Exhibition</td>
<td>136</td>
</tr>
<tr>
<td>Venue</td>
<td>010</td>
</tr>
<tr>
<td>Venue Plan</td>
<td>004</td>
</tr>
<tr>
<td>Welcome</td>
<td>004</td>
</tr>
</tbody>
</table>
Scope of the Event
The 19th DATE conference and exhibition is the main European event bringing together designers and design automation users, researchers and vendors, as well as specialists in the hardware and software design, test and manufacturing of electronic circuits and systems. It puts strong emphasis on both ICs/SoCs, reconfigurable hardware and embedded systems, including embedded software.

Structure of the Event
The five-day event consists of a conference with plenary invited papers, regular papers, panels, hot-topic sessions, tutorials, workshops, two special focus days and a track for executives. The scientific conference is complemented by a commercial exhibition showing the state-of-the-art in design and test tools, methodologies, IP and design services, reconfigurable and other hardware platforms, embedded software, and (industrial) design experiences from different application domains, such as automotive, wireless, telecom and multimedia applications. The organization of user group meetings, fringe meetings, a university booth, a PhD forum, vendor presentations and social events offers a wide variety of extra opportunities to meet and exchange information on relevant issues for the design and test community. Special space will also be allocated for EU-funded projects to show their results. More details are given on the DATE website (www.date-conference.com).

Areas of Interest
Within the scope of the conference, the main areas of interest are: embedded systems, design methodologies, CAD languages, algorithms and tools, testing of electronic circuits and systems, embedded software, applications design and industrial design experiences. Topics of interest include, but are not restricted to:

- System Specification and Modeling
- System Design, Synthesis and Optimization
- Simulation and Validation
- Design of Low Power Systems
- Temperature-Aware Design
- Power Estimation and Optimization
- Temperature Modeling and Management
- Emerging Technologies, Systems and Applications
- Formal Methods and Verification
- Network on Chip
- Architectural and Microarchitectural Design
- Architectural and High-Level Synthesis
- Reconfigurable Computing
- Logic and Technology Dependent Synthesis
- for Deep-Submicron Circuits
- Physical Design and Verification
- Analogue and Mixed-Signal Circuits and Systems
- Interconnect, EMC, EMD and Packaging Modeling
- Multiprocessor System-on-Chip and Computing Systems
- Communication, Consumer and Multimedia Systems
- Transportation Systems
- Medical, Healthcare and Assistive Technology Systems
- Energy Generation, Recovery and Management Systems
- Secure, Dependable and Adaptive Systems
- Test for Defects, Variability, and Reliability
- Test Generation, Simulation and Diagnosis
- Test for Mixed-Signal, Analog, RF, MEMS
- Test Access, Design-for-Test, Test Compression, System Test
- On-Line Testing and Fault Tolerance
- Real-time, Networked and Dependable Systems
- Compilers and Code Generation for Embedded Systems;
 Software-centric System Design Exploration
- Model-based Design and Verification for Embedded Systems
- Embedded Software Architectures and Principles; Software for MPSoC, Multi/multi-core and GPU-based Systems

Submission of Papers
All papers have to be submitted electronically by Sunday September 13, 2015 via: www.date-conference.com

Papers can be submitted either for standard oral presentation or for interactive presentation. The Programme Committee also encourages proposals for Special Sessions, Tutorials, Friday Workshops, University Booth, PhD Forum and Exhibition Theatre.

Event Secretariat
C/o K.I.T. Group GmbH Dresden
Muennzgasse 2
01067 Dresden, Germany

Phone: +49 351 4967 541
Fax: +49 351 4956 116
Email: date@kitdresden.de

Chairs
General Chair: Luca Fanucci
University of Pisa, Pisa, Italy
luca.fanucci@unipi.it

Programme Chair: Jürgen Teich
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
teich@cs.fau.de