
Manageable Dynamic Reconfiguration with EVE – Extendable VHDL Editor

Christopher Pohl, Ralf Fuest, Mario Porrmann

{pohl,rfuest,porrmann}@hni.upb.de

System and Circuit Technology Group - University of Paderborn

http://wwwhni.uni-paderborn.de/sct/

Abstract
Dynamic reconfiguration of FPGAs is a promising

approach for saving resources, thus becoming attractive for

industrial applications. In this paper we present a complete

tool flow which enables users to create dynamically

reconfigurable systems without in depth knowledge of the

underlying hardware and methodologies.

1. Introduction
Dynamic reconfiguration of FPGAs is a way to introduce a

flexible resource management into the FPGA design flow:

certain areas of the FPGA are configured at runtime, such

that hardware components use resources only when they are

truly required. In this way, e.g.; certain tasks can be moved

from software to hardware at runtime, allowing for

dynamically adopting the system performance according to

changing requirements. While the theoretical approaches

for partial dynamic reconfiguration are becoming more and

more mature, the practical use of this promising technique

is limited by the lack of complete and usable tool chains.

We present an approach where the user is guided through

the decision making process and the generation of valid

configurations by a graphical representation of the design

and the reconfiguration options. Based on an analysis of the

design in question, the partitioning into static and dynamic

parts is done graphically by the user, and the impact on

FPGA resources is estimated. Once a satisfactory

partitioning has been determined, the automatic integration

of communication infrastructures supporting partial

dynamic reconfiguration is performed, and the synthesis

flow can be started.

In this paper we give a short introduction into the

architecture of EVE and into the tools involved.

2. Design flow using EVE
Eve is a graphical frontend for our partial dynamic design

flow INDRA [1], integrated into the NETBEANS platform

[2]. The input to any EVE project comprises of design files,

either Xiinx EDK projects or VHDL code. These have to be

parsed by EVE in order to generate a graphical

representation of the design, therefore two of the main

components are a parser for EDK designs and a VHDL

parser (vMAGIC [3]). Both parsers have been built using

ANTLR [4], and both were augmented with functionality

for editing and writing their respective formats. The EDK

parser so far considers the EDK project file (.MHS) and the

associated core description files (.MPD) in order to generate

a correct bus hierarchy. This bus hierarchy is then

combined with the additional VHDL files provided by the

user to form a complete representation of the design. (see

figure 1).
In the next step, the user introduces groups of design

components based on this graphical representation (see

figure 2). These groups can then be marked as static or

dynamic: static components are those, which remain

untouched in the process of reconfiguration (typically a

processor and peripherals controlling the reconfiguration),

dynamic components are, e.g., hardware accelerators for

tasks like cryptography, video processing or controllers in

mechatronic systems.

Figure 1 EVE MHS Editor before grouping

An optional part in this step is the definition and integration

of debug and test components into the static part. EVE

supports offline (HiLDE [5]) and online (HiLDEGART)

monitoring, and it provides a means to visualize the

reconfiguration process using SiLLis.based component.

SiLLis (Simple Language for Listeners) is a language for

describing protocols, with the ability to automatically create

synthesizable hardware components to monitor

communication lines unsing these protocols. To integrate

these test components, the designer needs to specify, e.g.,

number formats, sample rates, protocols (SiLLis) and the

actual test points, the concrete implementation of the debug

components is performed by several vMAGIC based tools.

After the partitions and the test components have been

specified, the resource requirements of both the static and

the dynamic components are estimated using Xilinx ISE.

This step is necessary to ensure that the user-defined

partitioning is feasible using the chosen FPGA. If so, it is

necessary to generate and integrate a communication

infrastructure for the dynamically reconfigurable areas. The

infrastructure itself comprises of so called bus macros,

which can be created using tools from the INDRA flow; the

integration of these macros into the VHDL files, however,

is performed using vMAGIC, thus completing the design of

the reconfigurable system.

After having partitioned the design, which originally

comprised of VHDL and EDK components, the actual

implementation (synthesis, map, PAR, bitstream

generation) is carried out by the INDRA flow, while all

required actions are supervised by EVE. After a successful

implementation, an initial bitstream, containing the static

components and dynamic dummy components, as well as

the dynamic components are available. If debug and test

components have been integrated, a number of tools can

then provide assistance for starting the complete

dynamically reconfigurable systems.

The main benefit of the presented design flow is that a lot

of in depth knowledge of the Xilinx ISE tools is abstracted

into a convenient user interface, which supports all steps

from the partitioning to the implementation of a

reconfigurable system.

An additional feature of EVE is a VHDL editor featuring

syntax highlighting, template based code completion, code

folding, and, because of vMAGIC, a number of features to

speed up coding of VHDL designs.

3. vMAGIC
Our approach is based on vMAGIC, the VHDL

Manipulation and Generation Interface, a Java library for

analyzing and creating VHDL code. vMAGIC was

developed by the authors to provide the functionality

required in this demonstrator:

• Parsing VHDL’93 compliant code: processing VHDL

code is much easier in a parser tree (AST) than in a

textual representation.

• Easily manipulating code: Java classes representing

design objects (signals, multiplexers, registers) have

been developed to provide a structured means for

manipulating VHDL code. These objects can be

generated from scratch and added to existing code and

vice versa, existing objects can be altered or used to

generate new objects (e.g., generate an instance from

an entity)

• Writing code: the newly generated code can be emitted

as readable and well structured VHDL code.

For EVE, vMAGIC provides facilities to extract the

hierarchies from VHDL files, alter these hierarchies to meet

the new requirements (dynamic reconfiguration), and to

include the communication structures (bus macros) into the

VHDL design.

4. Conclusion
In this paper we have introduced a complete design flow for

partial reconfiguration of FPGAs (EVE), where the

partitioning of the system is supported by a graphical

environment. In particular, all necessary implementation

steps, including the generation of the communication

infrastructure are started and supervised by EVE, such that

the designer does not need to have an in depth knowledge

of the underlying architecture.

5. References
[1] J. Hagemeyer, B. Kettelhoit, M. Koester and M.

Porrmann. INDRA – Integrated Design Flow for

Reconfigurable Architectures. In Proc. of the Int.

Conference on Design, Automation and Test in Europe

(DATE), IEEE Computer Society, 2007.

[2] T. Boudreau, J. Glick and V. Spurlin. NetBeans: the

definitive guide. O'Reilly Associates, Inc. Sebastopol,

CA, USA, 2002.

[3] C. Pohl, C. Paiz and M. Porrmann. vMAGIC - VHDL

Manipulation and Automation for Reliable System

Development. In Proceedings of the 3rd International

Workshop on Reconfigurable Computing Education,

April 2008.

[4] T.J. Parr and R.W. Quong. ANTLR: A predicated-LL (k)

parser generator. Software: Practice and Experience,

vol. 25(7), pages 789--810, 1995.

[5] C. Paiz, C. Pohl and M. Porrmann. Reconfigurable

Hardware in-the-Loop Simulations for Digital Control

Design. In 3rd International Conference on Informatics

in Control, Automation and Robotics (ICINCO), pages

39-46, Setubal, Portugal, August 2006.

Acknowledgement
This work was developed in the course of the

"Collaborative Research Center 614-Self-Optimising -

Concepts and Structures - in Mechanical Engineering" -

University of Paderborn, and was published on its behalf

and funded by the Deutsche Forschungsgemeinschaft.

Design
VHDL Files/
XPS Projects

- partitioning for dynamic
reconfiguration

- bus-macro integration
- INDRA backend

Definitions
Testpoints, Number
formats, Data rates

EVE – powered by vMAGIC INDRA

Configuration-Data

Hardware
Implementation

P
lu

g
in

s

HiLDE

HiLDEGART

SiLLis

HiLDE/
HiLDEGART +

SiLLis

Visualisation and
Test

Test

Top Test

controlls ISE during

- synthesis
- Map/PAR
- Bitstream-Generation

for dynamic and static
components

 Design and Configuration Partitioning and Augmentation Hardware Generation Deployment and Test

Figure 2: Design-flow for partial dynamic reconfiguration using EVE

