

A Mixed HDL/PLI Test Toolbox

Nastaran Nemati, Zainalabedin Navabi

Electrical and Computer Engineering Department
Faculty of Engineering – Campus #2 – University of Tehran, 14399 Tehran, IRAN

{nastaran, navabi}@cad.ut.ac.ir

Abstract
Using RT level hardware description languages (HDL) in test
and DFT, helps advancing test methods to RTL, and at the same
time alleviates the need for use of software languages and
reformatting designs for evaluation and application of test
techniques. In moving to HDLs and HDL environments for test
and testability applications, HDL limitations such as inability of
description of complex data structures and procedural
programming must be considered. PLI (Procedural Language
Interface) provides a library of C language functions that can
directly access data within an instantiated Verilog HDL data
structure. In this work, by means of the PLI interface, a mixed
HDL/PLI test package is proposed.

1. Introduction
Utilizing existing software test tools, a design must be
 synthesized to gate level before undergoing the test phase. This
puts a large overhead on the process of design and test of a
digital core. It is desirable to bring testing in the hands of
designers, which certainly requires that testing is applied at the
level and with the language of the designers. This way, designers
will be able to better combine design and test phases.
Furthermore, using the same environment for design and test, all
 components in a large design can be tested independent of other
components. We can also test some components while others are
being designed. In a mixed level design, these advantages make
it possible to test a single component described at the gate level,
while leaving other components in RTL or even at the system
level.

By means of the procedural language interface (PLI), a test
designer can have the advantages of doing testable hardware
design in an HDL, and having software tools for manipulation
and evaluation of designs. PLI provides the necessary accesses to
the internal data structure of the compiled design, so test methods
can be performed in a mixed environment more easily and
without having to mingle with the original design.

2. PLI Test Toolbox
PLI gives access to the internal data structure of a compiled
design for reading and writing net and reg values, and for tracing
design modules and ports. Such facilities enable us to make an
efficient environment to perform test algorithms without
manipulating the HDL designs. Figure 1 shows the general form
of implementing and running test programs in such a mixed
environment.

3. Preparation Phase

Before using this test toolbox, the HDL code of the design under
test must be converted into an input format appropriate for
applying test applications. We use an FPGA synthesis tool and
conversion program to translate the synthesis output to our
required net-list format.

4. PLI Functions
PLI utilities that are useful for developing test applications are
provided in our HDL toolbox. These utilities are introduced in
the following Subsections.

4.1 Fault Injection

The most important utilities for implementing test algorithms are
fault injection (FI) and fault removal (FR). As noted, PLI
provides mechanisms for reading and writing net and reg values.
Therefore we can force and release values in the data structures
corresponding to nets, which gives us capabilities for fault
injection and fault removal on and from circuit lines. PLI also
enables us to have control on delays and to check changes on net
and reg values. Utilizing these capabilities, transient fault
injection, coupling and bridging fault injection and removal are
implemented in this package.

4.2 Fault Collapsing

Another process needed in many test applications is fault
 collapsing (FC). Reference [2] discusses a line FC method that is
based on gate types that circuit lines are connected to the inputs
of. Since PLI allows tracing all design hierarchies down to gate
primitives, and allows us to identify primitive types that a line
drives, the FC method of [2] is easily implemented by PLI
routines. Primitive types, that are a decisive factor in stuck-at
fault values of gates, can be looked up with PLI routines.

4.3 Signal Activity Estimator

Since PLI enables tracking changes on nets and registers, by
monitoring these changes on all the nets in a design, the signal
activity of different modules can be estimated and compared
together. This utility can be applied to power estimation, test
generation and statistical fault simulation.

4.4 Module Enabler-Disabler

Module-enabler-disabler is another PLI utility that can externally
select a module to be enabled or disabled. By using this utility to
enable or disable gate level or behavioral level description of
modules, hierarchical fault simulation is achieved.

4.5 Test Generation and Evaluation Utilities

Providing useful utilities for deterministic test generation is one
of the important features of this test toolbox. A number of these
utilities are described below.

4.5.1 Walkers

As mentioned before, PLI provides some routines to trace the
design hierarchy. Using such features we have developed
functions that can start from an internal node and find all primary
inputs feeding the nodes, or find all primary outputs that are fed
by nodes. Because these functions walk toward PI or PO we refer
to them as walkers. By invoking these walkers properly in HDL
test-benches, fault activation and fault propagation - which are
two important parts of deterministic test generation algorithms -,
can be achieved.

4.5.2 Controllability and Observability Measurements

In order for developing efficient test generation algorithms, it is
necessary to have good means of measuring the controllability
and observability of internal nodes in the design under test. By
means of the same routines which are used for implementing
walkers, functions capable of estimating these measurements can
be employed.

4.5.3 X-Path checker

Several deterministic test generation algorithms like PODEM
require checking the existence of x-paths. The mechanism of
realizing x-path checker using PLI is also the same as that for
walkers.

5. Test Applications
PLI utilities mentioned above are used within HDL test-benches
for developing test applications that apply to a design under test.

The most important feature of these test applications is that they
are provided in a parametric form. In other words, the required
test-benches for developing these test applications for various
DUTs can be provided in a semi-automatic way by just setting a
number of parameters in the template test-benches.
5.1 Fault Simulation

5.1.1 Serial fault simulation

As soon as the FI and FC means are provided, we will be able to
prepare for the PLI serial fault simulation. Since the fault
injection and fault removal can be done with no HDL code
overhead and no changes in the design core, this environment
makes it possible to have a fast serial fault simulation. The run
time of serial FS for ISCAS benchmarks is measured for a stand-
alone FS, VHDL, and PLI. The PLI results are close to those of
the stand-alone fault simulator.

5.1.2 Hierarchical fault simulation

The simulation of behavioral description of modules is much
faster than for their gate level. Therefore by including both
descriptions for each module, enabling all modules in the
behavioral level but the one which is supposed to be tested, the
fault simulation process can become faster. As mentioned before,
by applying module-enabler-disabler for selecting different
abstract level descriptions of modules in a DUT, hierarchical
fault simulation is implemented.

5.2 Test Generation

Test generation is one of the most critical algorithms in test
domain. Two algorithms are developed in this toolbox for test
generation.

5.2.1 Pseudo random Test Generation

Like serial fault simulation, just by invoking fault collapsing,
fault injection and fault removal in an HDL test-bench, pseudo
random test generation is implemented. The test-bench controls
the timing of fault injection, fault removal and fault simulation.

5.2.2 Pseudo deterministic Test Generation

Those test generation utilities which were discussed in
Subsection 4.5 are used for advancing deterministic test
generation methods. The provided method is similar to the basic
PODEM.

5.3 DFT Evaluation

Using PLI, a designer can develop a virtual tester for the circuit
being designed with scan chains inserted in it. This virtual tester
can be used for evaluation of various DFT implementations. This
requires no modifications in the HDL code of the hardware under
test and its scan, since the PLI functions will be able to access
nodes and values in the CUT.

By means of the PLI utilities that we have developed, and the
example templates that we have provided, a design and test
engineer can create his or her own test and verification
applications.

Figure 1. Implementing and running test programs in HDL/PLI

References
[1] C. J. Hesscot, D. C. Ness, and D. J. Lilja, “A

Methodology for Stochastic Fault Simulation in VLSI
Processor Architectures,” In MoBs, 2005.

[2] M. Nadjarbashi, Z. Navabi and M. R. Movahedin, “Line
Oriented Structural Equivalence Fault Collapsing,” in
IEEE Workshop on Model and Test, 2000.

[3] N. Farajipour, S. B. Hosseini and Z. Navabi, “Utilizing
HDL Simulation Engines for Accelerating Design and
Test Processes,” In IEEE Int. East-West Design and Test
Symposium , 2008.

[4] P. A. Riahi, Z. Navabi, and F. Lombardi, “Simulating
Faults of Combinational IP Core-based SOCs in a PLI
Environment,” DFT, 2005.

[5] Z. Navabi, “VHDL: Modular Design and Synthesis of
Cores and Systems,” McGraw Hill, 1998.

